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• A monocular sensing solution for probe and drogue aerial refueling is presented.
• Tracking the drogue without the need for modifications to the tanker hardware.
• The core of the system is a tracking algorithm based on direct image registration.
• Tested using images from real refueling hardware from a unique test environment.
• Robust position estimations under rapid motions and occlusions of the drogue.
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a b s t r a c t

Autonomous aerial refueling is a key enabling technology for both manned and unmanned aircraft where
extended flight duration or range are required. The results presentedwithin this paper offer one potential
vision-based sensing solution, together with a unique test environment. A hierarchical visual tracking
algorithm based on direct methods is proposed and developed for the purposes of tracking a drogue
during the capture stage of autonomous aerial refueling, and of estimating its 3D position. Intended to be
applied in real time to a video stream from a single monocular camera mounted on the receiver aircraft,
the algorithm is shown to be highly robust, and capable of tracking large, rapid drogue motions within
the frame of reference. The proposed strategy has been tested using a complex robotic testbed and with
actual flight hardware consisting of a full size probe and drogue. Results show that the vision tracking
algorithm can detect and track the drogue at real-time frame rates of more than thirty frames per second,
obtaining a robust position estimation even with strong motions and multiple occlusions of the drogue.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Aerial refueling, also referred to as air-to-air refueling (AAR),
was first developed in the 1920s and has since evolved into an es-
tablished means for extending the range, payload, and endurance
of manned aircraft in military operations [1].

There are two primarymethods for carrying out AAR: the probe
and drogue method pioneered by Flight Refuelling Ltd. [2], shown
in Fig. 1; and the Flying Boom method developed by Boeing [3].
In the latter, a retractable boom is extended from the tanker air-
craft, and steered by means of two ‘‘ruddervators’’, aerodynamic
control surfaces attached to the boom. An operator in the tanker
aircraft steers the tip of the boom to a coupling on the receiver air-
craft, which holds a formation position below and to the aft of the
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tanker. For probe and drogue refueling (shown in Fig. 1), the tanker
trails a flexible hose terminating in a drogue assembly, comprised
of a canopy to provide stability and a coupling for the fuel trans-
fer. The receiver aircraft is then maneuvered such that an attached
refueling probe is brought into contact with the drogue.

In unmanned aerial vehicles (UAVs), where endurance is no
longer limited bypilot fatigue, aerial refueling capabilities offer sig-
nificant benefits. Refueling operations have historically been con-
ducted as a piloted operation demanding a high level of training
and fast reactions, and as such are not appropriate for remotely pi-
loted aircraft controlled over relatively slow data links. The recent
proliferation of UAVs has therefore offered a potential new mar-
ket for autonomous air-to-air refueling (AAAR) capabilities. Devel-
opment of this capability relies on two key technologies: position
sensing and tracking, in order to allow the receiver aircraft to de-
termine the relative position of the refueling drogue; and control
strategies, to enable a robust and safe approach and coupling.

There have been extensive works on appropriate control sys-
tems developed with numerical flight simulations, using for
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Fig. 1. Probe–drogue refueling: courtesy of CobhamMission Equipment.

example traditional PID and LQR methods, gain scheduling [4],
adaptive controllers such as neural networks [5,6] and model ref-
erence adaptive control [7], differential game approaches [8–10],
and feedback linearization techniques [11]. Other work has inves-
tigated fault tolerance and actuator failure cases [12]. Numerical
simulations have been enhanced with the inclusion of turbulence
models and the development of improved tanker wake models
[13,14] and drogue modeling [15]. In addition to the simulation
results of the above studies, actual flight tests have been success-
fully conducted demonstrating formation flying and moving be-
tween stations for both the boom [16,17] and the probe and drogue
[18–20] methods. The latter study also demonstrated full contact
with the drogue on one flight, engaging successfully in two out of
six attempts.

For position tracking in AAAR, a variety of sensing technolo-
gies have been employed, including inertial measurements [21],
differential GPS (DGPS), and electro-optical systems. Often, these
are employed in tandem using wireless telemetry [22] and sen-
sor fusion methods, where in addition to improved accuracy, re-
dundancy affords a level of fault tolerance. Williamson et al. [22],
for example, used Kalman Filtering in their laboratory-based fly-
ing boom experiments. Similarly, the combination of GPS mea-
surements with position estimates from vision systems has been
explored in a number of publications [23–28], where the princi-
pal approach is to use the GPS measurements predominantly at a
distance, filtering in the machine vision data with increasing prox-
imity to the target.

Machine vision systems in unmanned air vehicle operations is
an increasingly popular method for collating position data. Re-
search has been carried out in applying electro-optical sensors
to the tasks of navigation [29], tracking [30], and collision avoid-
ance [31]. By identifying key features of a target from an image, rel-
ative position and orientation can be inferredwhen the 3D location
of these features on the target are known [32] (monocular system),
or when the position of these features from different view points
is known [33] (multi-camera or monocular systems). Advantages
of using vision systems for AAAR include the potential for instal-
lation without modification being required to the target aircraft,
and increasing precision with proximity to the target. Disadvan-
tages of vision systems can include high processing requirements
and susceptibility to environmental conditions such as cloud, fog,
and variable lighting conditions.

Tackling the issue of processing power, Junkins et al. developed
a system called VisNav [34] which has been used in several
AAAR studies [35–38]. In contrast to many vision systems, which
analyze complete images, VisNav employs a lens and a position-
sensing diode capable of detecting the line of sight of a light
source based on the region of the diode the light is focused on,
without digitizing an image. By employing sequenced illumination
of beacons in known locations on the target, in conjunction with
a communication link between the sensor and the beacons, the
system can triangulate the position and orientation of the target
with update rates of up to 100 Hz and relativelymeager processing
requirements.

Also advocating the use of beacons, Pollini et al. [39] proposed
placing light emitting diodes (LEDs) on the drogue and using an
inexpensive CCD webcam with an infra-red (IR) filter to identify
the LEDs. Images from the IR camera were fed into a modified Lu,
Hager and Mjolsness (LHM) algorithm [40] in order to determine
the relative position and attitude of the drogue. They conducted
indoor tests and simulations with natural lighting conditions [41]
and demonstrated that the algorithmwas able to make reasonable
estimates of the position of the target even with some markers
unidentified. One disadvantage associated with the use of beacons
in probe and drogue refueling is that the hose to which the drogue
is attached does not normally carry electrical power, and provision
for such power can require non-trivial modifications to the tanker
equipment.

Passive systems, on the other hand, do not require active coop-
eration from the target. Spencer [26] used a corner detection algo-
rithm to extract both structural and painted features on a tanker.
For each video frame, the detected features were compared to
known features on the tanker in order to compute 3D pointing vec-
torswhichwere used in a Kalman filter based navigation algorithm
to determine the relative position of the tanker.

Saghafi and Zadeh [42] had success with a pattern recognition
approach, although it was reliant on a radial basis neural network
andwas slow to converge on solutions. Generally the large compu-
tational overhead associated with pattern recognition techniques
can lead to comparatively low update rates. Doebbler et al. [43]
demonstrated a deformable contour algorithm and integrated it
into an automatic boom controller. The algorithm uses weighted
color statistics for the three image color channels to converge on
the outline of the docking markings around the refueling port and
estimate the position of the receiver with a 30 Hz refresh rate.

Vendra et al. analyzed the performance of well-known corner
detectors (SUSAN and Harris) for the use of a machine vision-
based approach in the UAV Aerial Refueling problem. A camera
was placed in the receiver aircraft looking upwards, capturing the
tanker aircraft and the feature extractor algorithms detect corners
of the tanker aircraft. These corners are matched with a set of
known physical features on the tanker (2D–3D match) using a
detection and labeling algorithm, and the positions of thematched
corners are used by a pose estimation algorithm to evaluate the
position and orientation of the receiver aircraft with respect to the
tanker aircraft. The study analyses the robustness of the corner
detection algorithms in the event of image noise, variations in
image contrast, motion blur; and also confirms the capabilities of
the corner detection algorithms for interfacing with detection and
labeling, and pose estimation algorithms in the AAAR problem.

Evidently, most of the existing vision-based approaches for
autonomous aerial refueling make use of features such as corners,
painted marks and LEDs. Not only do these methods often require
the installation of specific hardware, but they are also susceptible
to problems caused by the occlusion of one or more of these
features. This paper proposes the use of direct methods [44] and
hierarchical image registration techniques to solve the drogue
tracking problem for automated aerial refueling.

Direct methods have the advantage of solving – without
intermediate steps – the motion of the camera, and the matching
of the pixels using the intensity information of all the pixels in
the template. Hierarchical methods [45] allow the detection of
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Fig. 2. AAAR testbed: probe and drogue mounted on two ABB IRB6640 robots.
large image motion, with the additional advantage of increasing
the robustness in the estimation of the motion model using a
coarse to fine refinement of the parameters. This can be very
important in the context of turbulence effects that will produce
sudden, large motions in the image plane, and in an environment
where finite processing power is likely to give a direct correlation
between algorithm efficiency and position estimate refresh rate.
High refresh rates are critical in a real time aircraft control system
that needs to exhibit precise positioning in turbulent conditions.

In addition, whilst a limited set of studies have tested vision
systems under realistic operating conditions, many have relied on
simulated visual data to test the algorithms. This paper will fo-
cus specifically on the evaluation of a vision system for probe and
drogue refueling using a single camera in conjunction with real,
full-scale aircraft hardware in a laboratory test environment. The
real-time vision-based strategy is based on directmethods and im-
age processing techniques and differs from previous approaches in
that by using direct methods, installation of specialized hardware
or software is not required, and that under partial occlusions of the
drogue, the algorithm is able to continuewith the tracking task. The
test environment, developed as part of the UK ASTRAEA program,
comprises a robotic cell that simulates the tanker and receiver air-
craft. A drogue is attached to the free end of one robot, and a refu-
eling probe is attached to a second, track-mounted robot [46].

The paper is organized as follows: Section 2 describes the
laboratory equipment used to recreate the relative motion of the
probe and drogue hardware and Section 3 outlines the flight
dynamicsmodels and control algorithms fromwhich thepositional
data is derived. The vision tracking algorithms are then presented
in Section 4, followed by the experimental results in Section 5.
Conclusions are drawn in Section 6.

2. Autonomous air-to-air refueling testbed

The vision tracking algorithmpresented in this paperwas tested
experimentally in a laboratory using real flight hardware on a
bespoke AAAR testbed. This is a robotic cell which has been used to
reproduce the relativemotion of the probe and drogue, as pictured
in Fig. 2. The cell consists of two 6 degrees of freedom (DOF) robotic
Table 1
Performance characteristics for the IRB6640 robots and
the IRBT6004 track.

Maximum acceleration ∼ 2 g
Maximum relative velocity ∼ 6 m s−1
Operational envelope 10m×�2m
Position accuracy 0.16 mm
Position repeatability 0.07 mm
Stabilization time 0.36 s
Track length 7700 mm
Track maximum velocity 1.6 m s−1
Track pose repeatability 0.08 mm

arms, one fixed to the ground at its base and the other mounted on
a linear track. Actual flight hardware is mounted on the end of the
robot arms: a drogue is attached to the free end of the grounded
robot (R1 in Fig. 2) and a refueling probe is fitted to the track-
mounted device (R2 in Fig. 2). The robot motion is then driven
by data sets produced from a numerical simulation of a probe
and drogue refueling procedure, based on a closed loop F16 flight
dynamics model. The model used to generate the motion data is
outlined in Section 3. For the purposes of this paper, the robot
motion is based on predetermined flight paths. Future work will
close the loop on the sensors for the purpose of control system
development.

The robotic cell consists of two ABB IRB6640 robots, one fixed
to the ground and onemounted on a 7.7m IRBT6004 track. The cell
is designed such that the track-mounted robot can place the probe
anywhere in a working envelope defined by a cylinder 10 m long
and 2 m in diameter. The fixed robot has a similar working cross
section in which it can place the drogue, but it is limited in the lon-
gitudinal axis of the cylinder by the 2.55m reach of the robot. Both
the probe and the drogue can be positioned in any orientation and
performance characteristics for the robots are given in Table 1.

The robots are driven by a proprietary ABB controller, which
performs the coordinate transformations, kinematic computa-
tions, and regulates the current driving the six electric motors.
Robot motions are prescribed using RAPID code, a purpose-made
high level scripting language. For the tests described herein, a
script reads position and orientation data from an ASCII file and
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executes the corresponding motion instructions at a rate of 50 Hz.
Generation of representativemotion data to populate the ASCII file
is described in Section 3. The target points provided in the data
file define linear path segments, and the robot controller inter-
polates between the path segments in order to create a smooth
path. Measurements of the actual robot positions along with time
stamps provided by the robot controller are streamed over a TCP/IP
connection at a rate of 50 Hz, and recorded using an external
computer. It is these measurements that have been used in the
comparative analysis in Section 5.2. The purpose of this paper is
to evaluate the performance of the vision tracker, and hence the
existing ABB RAPID interface was found to be sufficient, however
for future, closed loop trials, an alternative real-time interfacewith
reduced latency was found to be necessary.

A gray scale Sony XCD-V60 FireWire camera with an 8 mm
focal length lens is mounted on robot R2, at the base of the probe,
as shown in Fig. 2. This camera is capable of capturing images at
60 Hz for both on-line and off-line tests. In the off-line tests, image
data was stored at 30 Hz in order to reduce storage requirements;
whilst the on-line tests utilized the full 60 Hz capabilities. The
Sony camera was connected to a 2.7 GHz Intel core I7 MacBook
Pro laptop, where the visual system ran using Ubuntu 11.04 as the
operating system.

3. Simulation environment

Themotion data sets for the tracking experiments are generated
using a simulation of the tanker aircraft, the receiver aircraft, and
their surrounding environment, constructed using Mathworks’
MATLAB and Simulink software. This simulation environment
includes the aircraft flight dynamics models, control systems,
and atmospheric turbulence effects. The data from two simulated
approaches to the drogue are used for this paper, the first is for
light turbulence applied to the receiver aircraft, and the second
for moderate turbulence. Positions of the probe tip relative to
the drogue (dtrp) are recorded in off-line runs for each case, and
used as the trajectory input for the robot controller in order to
replicate a six meter pre-contact approach to the drogue. It is also
possible to model the effects of turbulence on the tanker, hose and
drogue, however for the clarity of results, only the receiver has
been subjected to turbulence.

3.1. Aircraft models

For the purposes of this paper, the tanker is considered to be
a rectilinear moving point with the drogue offset. A six degrees
of freedom, nonlinear model of an F-16 multi-role fighter was
used as the basis for the receiver aircraft. The four primary control
surfaces, δe, δa, δr , δt , relate to the elevator, aileron, rudder, and
throttle positions respectively. Leading edge flaps and differential
tail inputs were not included in the simulation. Equations relating
to the aerodynamics of an aircraft in all six degrees of freedom are
mathematically represented in the form:

C(·) = C(·)S + C(·)D +∆δ(·) (1)

which is the summation of the static (S) and dynamic (D) coeffi-
cients, and the effect from control surface deflection (∆δ(·)). The
aerodynamic coefficients are tabulated in lookup tables as func-
tions of the angle of attack α, sideslip angle β , angular rates, and in
some cases the control surface deflections. Values for these tables
come from Stevens and Lewis [47], who presented a reduced ver-
sion of the full range nonlinear F-16 model originally published by
Nguyen et al. [48]. The reduced model is valid for α ∈ [−10, 45]
degrees and β ∈ [−30, 30] degrees, and wholly encompasses the
flight envelope required for aerial refueling.
Propulsive thrust is calculated in the engine model, originating
from [47]. It is generated from lookup tables as a function of the
current engine power demand cP , the altitude, h, and the Mach
numberM . It acts along the X axis only and so there are no induced
moments. For simplicity, the gyroscopic effects of the engine have
been omitted from the aircraft model. The response of the engine
power, P , is modeled using a first order lag:

Ṗ =
1

τ(rP , P)


r ′P(rP , P)− P


(2)

where the apparent desired power r ′P is dependent on the desired
demand, rP , and the current engine power. The desired power
level is generated through the throttle gearing, modeled using the
conditional function

rP =

64.95δt , for δt ≤ 0.77
217.38δt − 117.38, for δt > 0.77. (3)

The engine time constant is τ , is also a function of the actual and
desired power, details of which can be found in [47]. All commands
to the three primary control surfaces (the elevator, ailerons, and
rudder) are passed through a rate limiter, first order lag filterwith a
time constant of 0.0495 s, and saturation limits in accordance with
the actuator models described in [48].

3.2. Turbulence

Air turbulence was implemented using the following NASA
Dryden power spectral densities [49]:
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where σ(·) are the gust intensities, L(·) are the turbulence scales, U0
is the still-air aircraft velocity, ω is the turbulence frequency and b
is the wingspan.

Altitude and gust intensity were chosen in accordance with
Fig. 3 in order to satisfy themathematical requirement for isotropic
turbulence [50]. Eqs. (4) and (5) are solved in the time domain
by transforming them into canonical state–space form, so that
the turbulent velocity components can be added to the aircraft’s
inertial velocity states prior to solving (1).
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Fig. 3. Gust intensity mapping for different aircraft altitudes and turbulence
severities [50].

3.3. Control system

The receiver approaches the drogue using a control system
which acts in order to minimize the position difference, ep,
between the probe and a series of reference waypoints, rp, along
the refueling approach. The control structure used to achieve
this is illustrated in Fig. 4. AAAR switching logic dictates the
active waypoint which the receiver follows on its approach to the
drogue. Once selected position criteria have been satisfied, the next
waypoint is activated. The series endswith the last waypoint being
coincidentwith the position of the drogue; and the output from the
control system provides the input demands u for the actuators and
throttle command. For the purposes of the certification process, it
is likely that the drogue tracking controller would be refined and
implemented as an outer guidance loop.

In Fig. 4, Pd and Pp provide the location of the drogue and probe
tip respectively. These are then subsequently used to generate the
relative position of the probe. It should also be noted that it was
found to be necessary to implement an anti-windup strategy.

Controller gain matrices for both the Stability Augmentation
System, SAS, and AAAR Control System (K1 and K2) were
synthesized simultaneously using LQR [47]. A standard cost
function of the form

J =
1
2


∞

0
(xTQx+ uTRu) dt (6)

was used with the state and input weightings, Q and R, being used
to tune the controller gains. For the control system design, the
F-16 model was linearized using MATLAB’s linmod command at
the desired operating point (V = 200 ms−1 and h = 8000 m,
≈26 250 ft) in order to obtain the continuous time-invariant state
space model of the receiver aircraft. State feedback was used in
the trajectory generation with the assumption that perfect sensor
data was available in order to describe the state of the receiver,
probe and drogue positions. This simulation environmentwas then
linked through a bespoke interface to the two RMR robots and used
tomove the flight hardware for the vision tracking tests, the results
of which are given in the following two sections.

4. Visual system

The objective of the visual system used in this work is to
determine the relative three-dimensional position of the drogue
with respect to the receiver aircraft. Due to the inherent difficulty
of the task, fast, reliable and accurate relative position estimations
are required in order to achieve a successful capture of the drogue.
The machine vision strategy proposed here encompasses a
group of algorithms chosen under the criteria of robustness,
efficiency, and simplicity. At the core of the vision system is
the tracking algorithm, which is based on a hierarchical image
registration technique, which in turn is based on direct methods.
This algorithm provides a robust 2D position estimation of the
drogue in the image plane using all the pixels related to the drogue.
The resulting estimation is considered to be robust under a large
range of motions and with partial occlusions of the drogue.

In the implementation of the different techniques that were
used, it is assumed that the camera is calibrated, the dimension
of the drogue is known, and that the motion of the drogue in the
image plane can be modeled using three parameters: the two-
dimensional position coordinates in the image plane and a scale
value. As an extension, one aspect of the test regime presented
in this paper was to assess the behavior of the tracking algorithm
when the motion of the drogue cannot be described by these three
parameters.

The proposed algorithm was developed in C++ and the
OpenCV libraries [51] were used for managing image data.

4.1. Strategy overview

The proposed strategy contains four stages: detection, initial-
ization, tracking, and 3Dposition estimation, as shown in Fig. 5. The
algorithm is initiated with a lost status L = 1 (i.e. no drogue has
been detected). The detection stage is then used to find the region
of interest (ROI) or image template (T) corresponding to where the
drogue is located in the first image I0. The coordinates that define
this position in the image plane are found automatically using the
detection strategy described in Section 4.3.

Once image T is found, the tracking algorithm is initialized
(Section 4.4). In this initialization stage different components
of the image registration algorithm are calculated and created
(e.g. Hessian matrix; masks, Section 4.2). These steps are carried
out every time the detection stage is activated (i.e. when L = 1).

When a new image is analyzed (e.g. I1), if L = 0, the
tracking algorithm (described in Section 4.2) is used to estimate
the transformation (or motionmodel) that describes themotion of
the drogue in the image plane from image I0 to the image that is
being analyzed (current image, e.g. I1). This motion model is also
used to identify the location of the drogue in the current image.

As can be seen in Fig. 5, to switch between the detection and
tracking stages, performance assessment criteria are proposed to
monitor the behavior of the tracking algorithm. Therefore, the
result of the tracking stage is evaluated according to selected
criteria. If one of those criteria is not satisfied, the lost status is
activated (L = 1), and the detection stage will then be used until
the drogue is found again. Conversely, if the criteria are satisfied,
the estimated motion model is used to locate the drogue in the
current image, and the tracking algorithm will be used to locate
the drogue in the subsequent images.

Most of the time the tracking stage operates in isolation, as this
is the most accurate and computationally efficient approach. If the
tracking stage is unable to determine the position of the drogue
with a high degree of confidence, then the algorithm switches
to the detection stage. The criteria used to switch between those
stages are defined as follows:
• MAEjmax > thrA: the mean absolute error (MAE) at the lowest

resolution level (jmax) of the hierarchical structure in the track-
ing stage (Section 4.2) is below a threshold. Where MAEjmax is
defined as:

MAEjmax =


x
|T jmax(x)− I jmax(Wjmax(x; p))|

njmax
(7)

where x are the pixel coordinates in image Tjmax ,Wjmax(x; p) are
the pixel coordinates in image Tjmax transformed to image Ijmax ,
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Fig. 4. Control System (CS) implementation.
and njmax is the total number of pixels. It was found that by con-
trolling the MAE at the lowest resolution level it is possible to
identify the moment when the tracking algorithm fails.
• ∆pos > thrB: the difference between the current and the pre-

vious position of the drogue in the image plane is below a given
threshold. This position is controlled by analyzing the change of
the values of the ROI that defines the position of the drogue in
the image plane.
• % of pixels < thrC: the percentage of pixels that are used in the

minimization process is below a given threshold. This condition
is particularly usefulwhen the drogue goes out of the FOV (Field
of View) of the camera or when it is occluded.

The previously mentioned criteria are used in order to set the
flag L = 1, and are also used as performance assessment criteria in
order tomonitor the behavior of the tracking algorithm. The differ-
ent thresholds used in this paper have been found experimentally.
Section 5.1.2 presents an analysis of the different criteria and the
values of the different thresholds used for the AAAR application.

Finally, once the 2D position of the drogue in the image plane
is known either by using detection or via the tracking algorithms,
a 3D position estimation stage is used to calculate the three-
dimensional position of the drogue with respect to the probe
coordinate system. This estimation is found assuming that the
camera is calibrated and that the dimension of the drogue is known
(see Section 4.5).

4.2. Tracking stage

The tracking algorithm is based on a hierarchical implemen-
tation of an image registration technique. The registration pro-
cess [52] consists of aligning two images, a reference image (the
image template T) and a current image (I) by finding the trans-
formation (motion model W) that best aligns them. This trans-
formation is normally found iteratively by minimizing the Sum of
Squared Differences (SSD) between images T and I [52]. A widely
used approach is a gradient based optimization of the SSD, using a
first order Taylor series expansion.

In this application the reference image corresponds to the
image of the drogue T supplied by the detection stage during the
initialization of the tracking task (i.e. every time the detection stage
finds a new template image), and I corresponds to the image that
is being analyzed (i.e. the current image). The tracking task then
consists of an incremental image registration task, where the 2D
position of the drogue in I is found assuming that an initial position
of the drogue in the previous frame is known (i.e. the motion
model is propagated to the next frame, as an initial estimation for
the image alignment algorithm), assuming that the 3D motion of
the drogue projected in the image plane can be modeled by a 2D
transformation [53], and assuming that the intensity values of the
drogue do not change in time (direct methods constraint [44]).
Fig. 5. Proposed visual tracking system for AAAR tasks.

The tracking algorithm that is used is a Hierarchical Multi-
Parametric and Multi-Resolution implementation of the Inverse
Compositional Image Alignment technique HMPMR-ICIA. The ICIA
algorithm [54] permits an efficient identification of W. However,
this iterative algorithm relies on a linearization stage which is only
valid when the range of motion is small (so that the first-order ap-
proximation can be valid – i.e. close enough – to find a minimum).
In the current application, this assumption is not always applicable
as the medium turbulence can produce large and sudden motion
from one image to the next. In addition, the effects of this motion
in the image plane increases during the final stage of the refueling
task (i.e. the closer the probe and the drogue are, the greater the
perceivedmotion in the image). For this reason, this ICIA algorithm
is used in an HMPMR structure.

As described in Fig. 6, the strategy makes use of two hierarchi-
cal structures: theMulti-Resolution (MR) and theMulti-Parametric
(MP) ones. The general idea behind this strategy is that by estimat-
ing only a small number of parameters at the lowest resolution lev-
els and smoothly increasing the complexity of the motion model
through the MR pyramid, it is possible to obtain a robust estima-
tion of the motion model under large frame-to-frame motions.

The advantage of using the MR structure is that at low
resolutions, the vector ofmotion is smaller and long displacements
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Fig. 6. HMPMR-ICIA. I and T are downsampled to create the MR structure. In each level, the ICIA algorithm is applied iteratively. The minimization is done with respect to
the parameters defined at each level. At the highest resolution level the final estimation corresponds to the best transformation that locates the drogue in the current image.
can be better approximated [45]. On the other hand, taking into
account that at low resolutions, the quality and quantity of the
available information does not allow a large number of parameters
to be recovered (i.e. intensity values are smoothed due to the
subsampling of the original image), by integrating the MP and MR
strategies the imageswith low resolution are used to estimate only
a small number of parameters (e.g. the translation motion model,
2 parameters), and the higher resolution images are used to refine
these parameters and to estimate others (i.e. to estimate a more
complex motion model).

The two hierarchical structures of the HMPMR strategy were
created as follows. The MR structure is created by repeatedly
downsampling the images by a factor of 2 [55,56] in order to
create the different levels (pL) of the pyramid. The number of levels
pL has been defined taking into account the size in pixels of the
drogue (i.e. the size of image T) when the visual system starts
operating and the smallest dimension of T defined in the lowest
resolution level. Therefore, the number of levels of the pyramid in
the application are pL = 3, and so j is initialized as j = {2, 1, 0}.

As shown in Fig. 6, the MR structure is accompanied by a con-
current MP analysis of the motion model using the ICIA algorithm:
for each level of the pyramid, a specific number of parameters to
be estimated are defined.

The motion model chosen for the AAAR task has three
parameters that define the positions x and y of the drogue in the
image plane and the scale s. This motion model has been selected
taking into account that during the tracking task the probe moves
towards the drogue (i.e. there are scale changes), and that due to
the drogue appearance (symmetric structure) rotations around the
Zc axis (roll motions) and small rotations around the other axes
do not have a significant effect on the visual characteristics of the
drogue in the image plane. This is whymotionmodels that include
rotational information have not been considered. It should also be
noted that at this point, for the simulated trajectories, only the
reference position of the drogue relative to the receiver aircraft has
been used in within the control system structure. Orientation data
has not been used.

The transformation that will map the pixels x = (x, y, 1) from
image T to pixels x′ = (x′, y′, 1) in image I can be defined as
follows:

x′ = Wx = W(x; p)

W =

1+ p1 0 p2
0 1+ p1 p3
0 0 1


. (8)

This 3× 3 matrix (8) is parameterized by the vector of parameters
p = (p1, p2, p3)T in such a way that W is the identity matrix
when the parameters are equal to zero. Therefore, p2 and p3
represent the translation in the X and Y axes of the image
coordinate frame shown in Fig. 2, and p1 represents the scale
factor. In the MP structure, the number of parameters increases
with the resolution of the image. For this application therefore, the
translation parameters (p2 and p3) defined in (8) will be estimated
in the lowest resolution images (j = 2 and j = 1), and the whole
motion model (p1, p2, and p3) will be estimated using the highest
resolution image at j = 0.

4.2.1. Hierarchical multi-parametric and multi-resolution ICIA algo-
rithm

As shown in Fig. 6, some information required by the tracking
algorithm is calculated only once in the initialization stage
(as explained in Section 4.4), such as the number of levels of the
hierarchical structure, the MP structure, and the MR structure of
T, amongst others. After the initialization stage, a new image is
acquired (i.e. I1). This image is then downsampled by a factor of
2 in order to create the MR structure (see Fig. 6, tracking stage).

The tracking process starts at the lowest resolution level
(j = jmax = 2), as shown in Fig. 6. At this stage, the motion model
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(Wjmax ) in this level is initialized as the identitymatrix (because this
is the first frame to be analyzed). Then, as shown in Fig. 6, the image
coordinates x in T2 are transformed using W2 (the upper scripts
represent the level), and the ICIA algorithm presented by Ishikawa,
Matthews andBaker [57] is adapted to the drogue tracking task and
used in order to minimize:
∀x∈Tj:P j(Wj(x;p))=0

M j(x)[T j(Wj(x;∆p))− I j(Wj(x; p))]2 (9)

where Mj is a constant mask (as defined in the initialization stage
Section 4.4), which is used to ensure that in the minimization
process only the pixels in Tj that belong to the drogue are used
(the drogue is circular, as a consequence not all the pixels in image
Tj should be used); and Pj is another constant mask (see Fig. 7),
created manually when the visual system starts operating (for
these tests, the camera is always located in a defined and fixed
position with respect to the probe). This mask Pj is used to exclude
the pixels of the probewhen it is approaching the drogue, as shown
in Fig. 7. Therefore, Pj is used to select the pixels in the image Ij
that are included in the minimization process: only those pixels
x′ = Wj(x; p) whose intensity values in P j(Wj(x; p)) are equal to
0 are considered. This mask was shown to play an important role
in the stability of the tracking algorithm, because during the final
stage of the refueling approach the drogue will almost always be
occluded by the probe (see Fig. 7).

As can be seen in Fig. 6, in the lowest resolution level (j = 2),
the ICIA algorithm is applied: the error between T 2(x) and I2
(W2(x; p)) is calculated, the increment of the parameters is found
after a first-order Taylor series expansion of (9), and the motion
model is updated as follows:W(x; p) ← W(x; p) ◦W(x;∆p)−1.

The ICIA algorithm iteratively updates the parameters, until
stopping criteria are reached denoting the best local alignment
solution. In this application, three criteriawere used: theminimum
is reached if the increment of the parameters is below a threshold
(∥∆p∥ ≤ 10−5), if the MAE does not decrease after a defined
number of iterations (10 iterations), or if the maximum number
of iterations have been reached (100 iterations).

When the stopping conditions of the ICIA have been reached,
the parameters are propagated to the next level of the pyramid (j =
1) taking into account that the images have been downsampled by
a factor of 2, as follows:

pj−11 = pj1 for i = 1
pj−1i = 2pji for i = {2, 3}

(10)

where the subscript i represents the parameters of the motion
model defined in (8). The process is then repeated at each level
of the MR structure minimizing only with respect to the param-
eters defined for that level. At the lowest level of the pyramid
j = 0 (i.e. the highest resolution level), the motion model (8) is
estimated. The result at this level corresponds to the best transfor-
mation that can be applied in order to locate the drogue (T) in the
current image (I).

As can be seen in Fig. 6, when another image is acquired (i.e. I2),
the estimatedmotionmodel (Wjmax ) in theprevious image (i.e. I1) is
propagated to the lowest resolution level (j = 2) of the new image
I2 as an initial guess of themotion. This propagation of the parame-
ters from the lowest level of the pyramid in the previous image (I1)
to the highest level of the pyramid in the new image (I2) normally
makes T and I in the new image close enough to find a minimum.

4.3. Detection stage

The detection stage is used to automatically detect the drogue
every time the tracking algorithm is initialized (i.e. every time
L = 1), either at the start of the run or when the drogue has gone
out of the FOV of the camera; or because the tracking algorithmhas
failed to track the drogue.

The detection stage is composed of two algorithms, one based
on a basic template matching (TM) algorithm (see Fig. 8), and the
second one based on image segmentation (see Fig. 9(a) and (b)).
When using these algorithms, it is assumed that the center of the
drogue is within the field of view of the camera, so that the visual
characteristics can be used to define criteria for verifying that the
object that has been detected is the drogue.

The template matching algorithm that is used is the one imple-
mented by Bradski and Kaehler [51]. This TM algorithm is applied
over edge images in order to improve the matching stage, taking
into account that the structure of the drogue contains important
edge information that can be exploited to avoid mismatches. Thus,
before applying the TM algorithm edges are found in the images
using the Sobel operator [58,59], as shown in Fig. 8. Additionally,
taking into account that the TMmethod is computationally expen-
sive, low resolution images are used ( ImgSize

2 ) in order to alleviate
this problem.

Therefore, the TM algorithm consists of sliding a reference
image Ike_ref over an input image Ie, and calculating the quality of
the match according to the normalized cross correlation (NCC)
method (using a normalized method, variations in lighting levels
are accounted for), as follows:

Rk
ccorr(u, v) =


x,y
[Ike_ref(x, y)Ie(x+ u, y+ v)]2

x,y
Ike_ref(x, y)2


x,y

Ie(x+ u, y+ v)2
(11)

where Ike_ref(x, y) and Ie(x+u, y+v) represent the intensity values
of the edge images at positions (x, y) and (x + u, y + v), and
k represents the reference image that is analyzed. The reference
images correspond to different images of the drogue that have
been captured, cropped manually, and stored off-line (10 images,
k = {1 . . . 10}). These images contain the drogue with different
variations, such as scale, illumination, and position, as shown in
Fig. 8, images Ikref. On the other hand, Rk

ccorr is the NCC image (see
Fig. 8) that contains the correlation coefficients Rk

ccorr(u, v) of each
shift in position. Thus, u and v define the offset of the reference
image k relative to the image origin of I (each Ike_ref is slid over Ie).

The Rk
ccorr images are used to determine if a drogue has been

found in I. A found status is determined if there is a Rk
ccorr image

that contains a Rk
ccorr(u, v) > ccThr , where ccThr is a threshold that

has been found experimentally. Subsequently, from all the images
that satisfy this condition, the one that contains the highest NCC
coefficient is used to extract the coordinates of the drogue.

Depending onwhether the Rk
ccorr(u, v) > ccThr condition is sat-

isfied or not, different strategies are used to determine the position
of the drogue, as shown in Fig. 9. If the Rk

ccorr(u, v) > ccThr condi-
tion is satisfied, a second algorithm is applied (see Fig. 9(a)). This
algorithm uses as an input the region of interest (ROI) found by the
TM algorithm within which the drogue may lie. The main objec-
tive of this second algorithm is to verify that the object found is
the drogue, by analyzing the ROI with respect to the characteristic
features of the drogue. The key characteristic used in this study is
the dark circular zone, which should be located approximately in
the center of the region found by the TM algorithm, as shown in
Fig. 9(a).

The inner part of the drogue is imaged as the darkest area of
the drogue, as can be seen in Fig. 9(a). Using this, the center of the
drogue is segmented by applying a fixed threshold, found experi-
mentally, over the ROI image found by the TM method. Then, the
contours of the objects in the segmented image are extracted [51]
and analyzed using the following conditions:
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Fig. 7. Probe mask P. This constant mask excludes the pixels that belong to the probe.
Fig. 8. Template matching (TM). The TM consists of sliding reference images Ike_ref over the current image Ie , and calculating the match using NCC. The results are stored in
different Rk

ccorr images. If a high NCC coefficient is found, different strategies are used to find the position of the drogue (see Fig. 9).
(a) Segmentation of the ROI found by the TM.

(b) Segmentation of the entire image.

Fig. 9. Segmentation stage. If a maximum in the TM strategy is found, the center of the drogue is segmented (Fig. 9(a)) and analyzed to ensure that the detected area is the
drogue. If the TM does not find a maximum or the area found does not correspond to the drogue, the whole image is segmented and analyzed (Fig. 9(b)).
• Area condition: if the area of the inner part of the drogue is
within a range found experimentally.
• Shape condition: if the found contour corresponds to a circle.

This condition is evaluated analyzing the shape of the fitted
rectangle.
• Location condition: if the object found is the drogue, its darkest

area should be located in the center of the ROI found by the TM
algorithm.

If all of these conditions are satisfied, the ROI found by the TM
algorithm is considered the one that corresponds to the location of
the drogue in the image (see Fig. 9(a)), andwill define the template
image T used in the tracking stage (Section 4.2).
There are cases, however, where the template matching algo-
rithm can fail. For example, because it does not find an area with
a high correlation score (Fig. 8), or because the location found
does not correspond to the drogue (Fig. 9(a)). Under these circum-
stances, a second strategy is used to find the drogue. The strategy,
as can be seen in Fig. 9(b), follows the same idea of the segmen-
tation strategy explained previously. The differences in this case,
however, are that the threshold is applied to the entire image, and
that the location condition is not applied. Additionally, the previ-
ous segmentation strategy was only used to ensure that the area
found by the TM algorithm was the area where the drogue was lo-
cated, whereas in this second algorithm, the area that inscribes the
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drogue is defined using the information of the segmented dark area
(see Fig. 9(b)).

It is important to highlight that all themethods described in this
section comprise an important part of the overall tracking strategy.
Their interaction allows the identification of the drogue when the
tracking algorithm fails, when the drogue is out the FOV of the
camera, or when the tracking task is first initialized. Figs. 8 and 9
describe theway these strategies interact, and the resulting images
at each stage.

Additionally, at this point, it is important to mention that the
detection stage is the one in charge of dealing with illumination
changes in the proposed visual system. When the intensity values
of the drogue change after the tracking process has started because
of background or illumination changes, the tracking algorithmmay
lose the drogue and the detection stage will restart the tracking
process. This happens due to one of the direct method constrains:
‘‘the intensity values of the drogue cannot change in time’’.
Nonetheless, it should be noted that additional improvements in
the tracking stage, such as using normalized images (in the case
of illumination changes), or adding an illumination model to the
tracker, will help dealing with these situations.

4.4. Initialization stage

This stage encompasses the initialization of the different
variables required by the tracking algorithm which is the core
of the visual system. When the template image T is detected
for the first time or is changed, some elements of the tracking
algorithm must therefore be recalculated, the mask M in (9) must
be created, and the MR structures of T andM are to be created. The
MR structures of these images are created by downsampling the
images by a factor of 2 according to the different pyramid levels.

On the other hand, as shown in Fig. 10, due to the circular shape
of the drogue, T contains background information that should not
be considered during the tracking task, because the information
can affect the behavior of the tracking algorithm (values may
change during the task). For this reason, every time a new image T
is found, the maskMmust be initialized.

The mask M is used in the tracking stage to define the pixels of
the template that are going to be used in the minimization of (9).
Two options were analyzed in order to create the circular maskM:
• Based on the detected ROI: using the width or height informa-

tion of the ROI where the drogue is located. If the smallest value
is used, then important information could be lost (see Fig. 10,
images ROI.height and Mh). If the largest value is used, then
background pixels could be included in theminimization of (9).
See Fig. 10, images ROI.width andMw.
• Based on a Gaussian mask: the idea of this mask is to give

less weight to the pixels located at the corners of the template
(background pixels), and higher weight to the ones located in
the center. However, by only using thismask, lessweightwould
be given to pixels that are known to correspond to the drogue
(see Fig. 10, image Gaussian mask andMg).
Taking into account that there can be occlusions by the probe or

situations where part of the drogue is out of the FOV of the camera,
it is considered to be important to use asmany pixels that belong to
the drogue as possible in the tracking stage,without compromising
the frame rate of the algorithm. This is why, in order to create M,
both previouslymentioned options have been combined. As shown
in Fig. 10, by combining both options it is possible to obtain the
maskM, that includesmost of the pixels of the droguewhilst giving
less weight to those pixels located in the boundaries. It should be
noted that the mask based on the ROI that is chosen to create M is
the one that uses the maximum value between width and height
values of the ROI. As can be seen in Fig. 10, the Mw mask is the
one that contains the largest number of drogue pixels. The few
background pixels that it includes will receive less weight when
combining this mask with the Gaussian mask.
4.5. 3D position estimation stage

The 2D positions of the drogue in the image plane (see Fig. 11)
obtained either in the visual tracking or the detection stages are
transformed into 3D positions assuming that the dimension of the
drogue is known (the diameter is known), that the 3D points of
the drogue lie on a plane as shown in Fig. 11, and that the camera
calibration parameters [60] (optical center, focal length, etc.) are
also known.

Using the pinhole camera model [53], 3D coordinates can be
related to the 2D image coordinates, as follows:

x = λK[R | t]xw (12)

where x = (x, y, 1) are the 2D image coordinates of a point,
xw = (xw, yw, zw, 1) are 3D world coordinates of the same point,
λ is a scale factor, R and t are the orientation and position of the
world reference frame in the camera coordinate system, and K is
the camera calibration matrix found by an off-line calibration pro-
cess [60], using the camera calibration toolbox for Matlab [61].

As shown in Fig. 11, the known diameter of the drogue can be
used to define a plane where the world coordinate system is de-
fined, and so four 3D points that lie on this plane can also be de-
fined. With these four 3D points and the four 2D points of the ROI
that inscribes the drogue in the imageplane, expression (12) is sim-
plified for the planar case (being z iw = 0), as follows:xi

yi

1

 = λK[r1 r2 | t]

xiw
yiw
1


xi = Hwxiw

(13)

where xiw represents the coordinates of one of the four points that
lie on the drogue plane π described in Fig. 11. The index i repre-
sents each corner of the ROI that inscribes the drogue in the image
and in the world planes (i = {1, 2, 3, 4}), and Hw is the planar ho-
mography (a 3×3matrix) that transformspoints in theworld plane
into points in the image plane, as shown in Fig. 11.

Therefore, with the point-to-point (2D–3D) correspondence of
the four corners of the drogue and reorganizing (13), a system of
equations of the form Ahw = b can be created, where hw corre-
sponds to the components of Hw stacked into a vector. Therefore,
Hw can be estimated.

OnceHw is estimated, the translation vector t is found based on
(13) and taking into account that ∥r1∥ = ∥r2∥ = 1, as follows:

Hw = [hw1 hw2 hw3] = λK[r1 r2 t]
λ = ∥K−1hw1∥ = ∥K−1hw2∥

t =
1
λ
K−1hw3.

(14)

Using (14), the 3D position of the drogue (subscript d), or in the
testbed, the position of R1 (subscript R1) with respect to the cam-
era coordinate system (superscript c), is found t = ctvd = ctvR1,
where tv refers to a vision-based estimation.

5. Results and discussion

5.1. Tracking evaluation

In this section, the performance of the tracking algorithm
described in Section 4 is analyzed in three different conditions. In
the first test, the advantages of including the masksM and P in the
tracking algorithm are shown. A second test is conducted in order
to define the limits of the tracking algorithm in terms of speeds and
perturbations under which it can continue to function correctly.
Finally, a third test is used to select the proposed performance
assessment criteria.
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Fig. 10. Drogue mask M. Background information is excluded using this mask. M is created by combining a Gaussian mask with the mask obtained using the ROI found in
the detection stage.
Fig. 11. Position estimation strategy. The 2D positions of the drogue in the image plane are transformed into 3D positions assuming that the diameter of the drogue is
known, the known 3D points lie on a plane, and the camera calibration parameters are known.
5.1.1. Test 1: advantages of using the masksM and P
In this test, an image sequence that contains different move-

ments of the drogue and the probe is used to analyze the ad-
vantages of including the masks M and P presented in Section 4.
The analysis of the results is done visually, by analyzing the ROI
(red/dark square) found by the tracking algorithm.

The image sequence includes: basic motions of the drogue
(moving left, right, up and down) where the background informa-
tion changes (e.g. Fig. 12, frames 236 and 2504); spiral movements
of the probe that cause, in some situations, occlusions of the drogue
by the probe (e.g. Fig. 12, frames 2716 and 2720); and inclinations
of the drogue that produce changes in the appearance of the drogue
(e.g. Fig. 12, frame 2782, due to the inclination, the black circular
center of the drogue is not well perceived).

The first row of Fig. 12 presents the results of the tracking task
when the masks are not included in the tracking algorithm, and
the second row shows the results when these masks are included.
As can be seen in these images, by including the masks (M and P)
the performance of the tracking algorithm is markedly improved.
In all the situations identified here where the algorithm without
the mask failed, the algorithm that included the masks was able to
successfully track the drogue.
With the mask M the background information that surrounds
the drogue is excluded, which is why changes in the background
information do not affect the performance of the algorithm (see
e.g. Fig. 12, frames 236, 2504, and 2782). On the other hand, by
including the mask P, the pixels that belong to the probe are also
excluded from the minimization process. Therefore, the algorithm
is more robust to this kind of occlusion, as can be seen in Fig. 12,
frames 2716 and 2720.

5.1.2. Test 2: limits of the tracking algorithm
This second test analyses the limits of the tracking algorithm

using specific motions of the probe and drogue performed at a
range of different speeds andwith varying extent. The fivemotions
are: drogue movements in the XR1, YR1, and ZR1 directions at three
different speeds: 400 mm s−1, 1000 mm s−1, and 2000 mm s−1;
a wave motion, in the form of combined sinusoidal variations
of the vertical translation and the pitchwise orientation using
three different angle ranges: ±5°, ±10°, and ±20°; and a spiral
movement of the probe in the transverse plane combined with a
steady approach towards the stationary drogue.

The first three sets of tests, in the XR1, YR1, and ZR1 directions,
are intended to identify the extent of motion in each direction
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Fig. 12. Tracking results including masks M and P. The first row shows the results when the masks are not included. The second row shows that the performance of the
algorithm, tracking the drogue, markedly improves when using the masks defined in Section 4.
that can be accommodated by the algorithm between two image
frames before the accuracy of the tracking is degraded. In the fourth
test, the changing inclination of the drogue is used to examine
the response of the tracking system to a motion that violates the
assumptions made in the development of the algorithms: that
the motion of the drogue can be described by two translational
parameters and a scale factor that represents the longitudinal
translation (8). Finally, the spiral approach exhibits representative
occlusions of the drogue by the probe as are likely to be seen in a
real refueling exercise.

For each of the previouslymentioned situations, themotionwas
repeated three times, and the tests were performed off-line with
the tracking algorithm running continuously throughout each test.
Fig. 13, presents examples of the tracking task performance for the
differentmotion cases and the identified tracking algorithm limits.

In the case of changes in position, as can be seen in Fig. 13 first
row, the algorithm presented an unstable behavior (the red/dark
box is shifted to the right) in some parts of the sequence when
the speed changed from 400 to 2000 mm s−1 (when moving in the
plane YR1, ZR1). This instability was detected always at the same
point of the sequence (drogue moving to the left in the image
plane). Because of this, it is suggested that this is due to a change
in the appearance of the drogue at those points (due to its position
with respect to the camera) rather than because of a change in
the speed. Nonetheless, in spite of these minor instabilities, the
algorithm tracked the drogue throughout the whole sequence
when the changes in position were applied in the YR1 and ZR1 axes,
and also when significant changes in scale were applied at the
three different speeds (in the longitudinal XR1 axis, the position
changes from0m to 5m). This range of speedswas chosen as being
representative of the range of speeds that the camera imagewould
be subjected to in an actual refueling scenario.

When the wave movements were conducted (see Fig. 13,
second row), the performance of the algorithm was affected when
the inclination of the drogue increased from 10° to 20°. At these
angles, the appearance of the drogue changes significantly, and the
exact position of the drogue cannot be found using the existing
methods. It is important to note however for rotations of less
than 10°, the performance of the tracking algorithm was found
to be robust and accurate. Whilst further work could extend the
algorithm to allow for tracking through greater rotations of the
drogue, these are not expected to be present in a typical refueling
scenario.
Finally, the third row of Fig. 13 shows the results of the
algorithm during spiral movements. It can be seen that one of
the advantages of direct methods is that the algorithm is able to
continue tracking the drogue during partial occlusions, or when
part of the drogue is out the FOV of the camera. Nonetheless, when
the percentage of pixels occluded in T was greater than 80%, or in
other words, when the percentage of pixels in T that are used in
theminimization process of the tracking algorithmwas lesser than
20%, the drogue was not tracked correctly (see Fig. 13, third row,
right image), and the extent is not well defined. These percentages
were calculated taking into account the number of pixels in T that
were excluded in theminimization process: the pixels occluded by
the probe and the pixels out of the FOV of the camera.

5.1.3. Test 3: performance assessment and switching criteria
As mentioned in Section 4, three performance assessment

criteria are proposed in order to evaluate the performance of the
tracking algorithm, and which are also used to switch between
the tracking and detection stages. The criteria have been selected
experimentally, and some examples of the different situations
analyzed are given in Fig. 14.

Under ideal conditions (e.g. no appearance or illumination
changes), the MAE (Mean Absolute Error) can be a good measure-
ment of the performance of the tracking algorithm. However, it
was found that there are some situations where the distribution
of intensity values in parts of the image (e.g. Fig. 14, first row,
frame 214) are similar to the ones of the drogue (T), whereupon
the MAE(s) are low (frame 188 has a similar MAE as frame 214)
but the object that is tracked does not correspond to the object of
interest (e.g. in frame 214 part of the background is identified as
part of the drogue), e.g. when part of the tanker aircraft is imaged
as part of the background of the drogue. This situation led to the
use of additional criteria in order to evaluate the performance of
the tracking algorithm.

The second criterion considered is the change in position of
the ROI that inscribes the drogue. During the refueling approach,
the image of the drogue will smoothly increase in size (changes in
scale), and the position of the drogue in the image plane will have
significant changes only due to turbulence effects. Nonetheless, us-
ing the HMPMR approach and considering that the algorithm runs
at a frequency>30 fps (frames per second), it is possible to see rel-
atively large changes in position as smooth variations in the image
plane. Taking this into account, it was found that incorrect results
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Fig. 13. Limits Description. 3Dmovements at different speeds (first row),wavemovementswith different angles (second row), and spiralmovements that produced different
type of occlusions (third row) were tested.
Fig. 14. Performance assessment and switching criteria. These three criteria are used to detect when the tracking algorithm fails. They are used to evaluate the tracking
algorithm, and are also used as switching criteria between the tracking and detection stages.
generated by the tracking algorithmcan be detected by tracking in-
cremental changes in position in the image plane. In the images of
the second row of Fig. 14 it can be seen that during normal opera-
tion of the tracking algorithm, the increments in position are small
(frame 389, ∆x = 2). Nonetheless, in frame 390 of Fig. 14 (second
row, right image) it can be seen that the increment in the Y axis
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gives an indication of incorrect results generated by the tracking
algorithm.

A third criterion was selected to deal with situations when the
drogue leaves the FOV of the camera (e.g. under strong turbulence
effects), and also when it is occluded by the probe. As can be seen
in the third row of Fig. 14, when only a few transformed pixels of
T lie on I, the lack of information causes the tracking algorithm to
fail. In the previous test (Test 2: limits of the tracking algorithm),
we could also see that when the percentage of pixels occluded was
greater than 80% the drogue was not tracked correctly (see Fig. 13,
third row).

All the different thresholds mentioned in Section 4, that
define the different criteria described above have been found
experimentally. For the MAEjmax , thrA = 50. For the change in
position in the X and Y axis thrB = 8 pixels, and for the scale
thrB = 5 pixels (scale is controlled using the width of the ROI).
Finally, thrC that represents the percentage of the total number of
pixels in T that after being transformed (x′ = W(x; p)) lie inside
image I, was selected to be thrC = 15.

5.2. Aerial refueling trajectory tests

The different components of the drogue tracking strategy
presented in Section 4 are tested using motions representative
of an aerial refueling task using the AAAR testbed presented in
Section 2. The simulation environment presented in Section 3
provides the motion data for the task, using two scenarios: light
turbulence andmoderate turbulence. The drogue is kept stationary
for these tests, and motion of the probe is used exclusively to
reproduce the relative motion of the two bodies.

During the tests adverse conditions are presented in the image
sequences, including thedroguebeing out of the FOVof the camera,
occlusions (drogue occluded by the probe), sudden rapid motions,
and changes in appearance (e.g. pitch and roll effects cause the
aspect of the drogue or its background to change in the image
plane). As to the latter, although the conditions of the background
that are going to be found in a real scenario are not directly
mimicked, the current testbed represents a challenging scenario
for the visual system (background changes due to different objects
presented in the workspace). That is why the camera parameters
were modified in order to reduce the background information.

The evaluation of the visual system during the refueling tasks
is based on the analysis of the performance assessment criteria
defined in Sections 4 and 5, based on a visual examination of the
tracking results, and also based on a comparison of the estimated
motion from the vision algorithm with the recorded position data
from the robots. The latter comparison is evaluated using the RMSE
(Root Mean Square Error) between the data.

On-line and off-line tests of the visual system during AAAR
tasks have been conducted using the AAAR testbed (Section 2).
Nonetheless, for the analysis of the visual system presented in
the following paragraphs, the image data and the robot data were
recorded and processed off-line.

5.2.1. Light turbulence test
Fig. 15 presents a collection of images illustrating the perfor-

mance of the tracking task with light turbulence effects with the
red/dark box indicating the results of the visual system. The drogue
was detected automatically in frame 1, and tracked during the en-
tire refueling task, in spite of the changes in scale (see Fig. 15,
frames: 1–1632), occlusions (see Fig. 15, frames: 665, 903, 931,
etc.), and periods where part of the drogue was out of the FOV of
the camera (see Fig. 15, frames: 931, 971, 1613, and 1632).

As can be seen in Fig. 16, regardless of the different motions
during the task, the tracking strategy did not require an update of
the template. The different control parameters were always under
the thresholds defined in Section 5, so that the lost status (L = 1)
was never reached (the red/dashed line was always zero).

Fig. 17 compares themeasured positions of the probe computed
from the robot joint positions and the positions of the probe
estimated by the visual system. The visual system estimates
ctvd/ctvR1: the position of the drogue (or robot R1) with respect to
the camera coordinate system (14). Nonetheless, because during
the task the drogue (robot R1) is kept stationary, the changes in
position of the drogue in the image plane are due to the motion
of the probe. Therefore, in order to compare the data, the motion
estimation ctvd/ctvR1 can be used directly in order to obtain the
relative motion of the probe.

For the purpose of comparison, the position of the probe with
respect to the drogue coordinate system (dtrp/R1trR2) recorded
by the robot controller (tr) is transformed into relative positions
of the probe ptr. Because the visual information does not
recover orientation, the image points must be compensated for
rotation before the position estimation can be compared. This
compensation is done using the known orientation data of the
probe recorded by the robot controller: relative rotation angles of
the probe from the starting point of the tests. Therefore, the visual
data ctvd/ctvR1 found in Section 4, is transformed into the probe
coordinate system ptrd/R2trR1, using the known fixed rotation
between both coordinate systems (pRc), and is used to determine
the relativemotion of the probe ptv estimated by the visual system.
This transformation is considered valid, as the orientation of the
receiver aircraft is expected to be known in a typical refueling
scenario.

From Fig. 2, pRc is defined as a rotation of 90° in the Yc axis,
followed by a rotation of 90° in the rotated Zc axis. As can be seen
Fig. 17, the motion of the receiver aircraft (R2/p) inferred using
the visual estimation obtained in the 3D position estimation stage
(red/dashed line), correspondswellwith themotion recorded from
the robots (green/solid line). The RMSE(s) reached by the visual
system estimating the position of the probe were in the range of
5.5 cm in the pX axis, 1.3 cm in the pY axis, and 1.6 cm in the pZ
axis. These are considered to be relatively low, in particular for a
monocular based system.

5.2.2. Moderate turbulence test
The second test was conducted using data from the simulation

environment operating in moderate turbulence conditions. Fig. 18
shows a collection of images illustrating the performance of the
tracking task. The drogue was again detected automatically in
the first image using the detection algorithm, and tracked during
much of the refueling task. The moderate turbulence conditions
represent a more challenging scenario for the tracking algorithm,
with motions that are relatively sudden and faster than those
exhibited in the light turbulence case. Specific difficulties are posed
by: the occlusion of the drogue by the probe (Fig. 18, frames:
670, 694, and 1445, among others), large changes in scale (Fig. 18,
frames: 1582–1608), changes in orientation, including roll, pitch
and yaw (Fig. 18, frame: 670), and periods where the drogue is
outside the FOV of the camera (Fig. 18, frame: 931).

A significant feature of this test is the disappearance of the
drogue from the FOV for approximately 200 frames. When the
drogue goes out of the FOV of the camera at frame 891, the detec-
tion algorithm is activated. The drogue remains outside the FOV
until frame 1105, where it begins to reappear in the image. At this
stage the position is not immediately recovered: the segmenta-
tion scheme used to find and verify the location of the drogue re-
lies on an unobstructed view of the central region of the drogue.
When this region is partially occluded, as seen in Fig. 18, frame
1111, the drogue position and size can be misidentified. When the
drogue moves further from the occluded zone the detection al-
gorithm is able to recover the position and size effectively, as in
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Fig. 15. Tracking results: light turbulence. The green crosshair and red box indicate the estimated position and extent of the drogue. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 16. Performance assessment criteria: light turbulence. During the test, the lost status (L = 1)was never reached, the red/dashed linewas always zero. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 18, frame 1175. Throughout this period the tracking algorithm
performs well, but it is clear that there is scope for a more timely
recovery of the drogue position through the implementation of de-
tection methods which are more robust to occlusions.

Promisingly, the tracking was robust with respect to the
relatively large changes in scale and orientation of the drogue.
The latter is particularly important, as changes in orientation are
not modeled by the transformation applied in the algorithm. The
success of the scheme in these circumstances is attributed to
the nature of the drogue appearance: symmetry means that roll
does not have a significant effect on the patterns being searched,
and small pitch and yaw motions do not greatly alter the visual
characteristics.

In Fig. 19, the performance assessment criteria for the tracking
task are plotted. In this figure it is possible to see the different times
the template was updated by the detection stage, and the reason
for each update. In Fig. 19, frame 892 (in the dashed circular area
marked on the plot), it can be seen that when the drogue was go-
ing out of the FOV of the camera, there is an error in the tracking
algorithm that the ∆y criterion detected (green/light solid line),
and therefore the lost status (L = 1) was activated (red/dashed
line). From frames 891 to 1105 the lost status remains activated
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Fig. 17. Position estimation: light turbulence. The motion estimated by the tracking algorithm (red/dashed line) is compared with the motion of the R2 robot (green/solid
line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 18. Tracking results: medium turbulence. The green crosshair and red box indicate the estimated position and extent of the drogue.
(red/dashed line). After frame 1105, when the drogue reappears in
the FOV of the camera, the detection algorithm recovers the posi-
tion of the drogue. When the drogue does reappear, because the
center remains obstructed the extent of the drogue was miscalcu-
lated (e.g. frame 1108).

Nevertheless, Fig. 19 shows that in frame 1161 the lost status
was activated for a second time (red/dashed line). In this situation,
the % of pixels (magenta/dashed-circle line) activated this status,
and the other performance criteria∆y andMAE2, can be seen to be
close to the trigger level at this point as well.

It is interesting to see that when the template was incorrectly
updated, the different criteria (Fig. 19, frames 1105–1161) rapidly
detected a failure of the tracking algorithm. This occurs due to the
fact that when the detection algorithm misidentified the drogue,
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Fig. 19. Performance assessment criteria: medium turbulence. The control parameters activated the lost status (red/dashed line) twice. In each situation, the detection
algorithm was used to recover the drogue in order to continue with the tracking task. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
the incorrect template encompasses most of the center of the
drogue. The pixels in that area have low gradient information,
whereupon, the HMPMR-ICIA algorithm is not able to find a
good transformation of the parameters, so that high MAE(s) and
unstable positions are obtained, and hence the lost status was
activated again.

At this point, the detection stagewas used for approximately 10
frames (Fig. 18, frames 1161–1172). After frame 1172, a new tem-
plate was correctly found (see Fig. 18, frame: 1175), and the track-
ing task continued. In this sequence, the template was therefore
updated several times, however it can be seen that the detection
algorithm was able to correctly detect the drogue when required,
allowing the tracking task to continue.

The comparison of the position data from the vision estimation
(ptv/R2 tv) and the robot joint measurements (ptR/r2 tR) is shown
in Fig. 20. As mentioned in the light turbulence test, the image
coordinates of the drogue found using the tracking algorithm are
compensated for rotation, and then the position data estimated in
Section 4 is used to determine the relative motion of the probe ptv.

The shaded areas in the plot represent the moments when the
lost status was activated, and the detection algorithm was oper-
ating. In those frames (frames 891–1105, and frames 1161–1172),
position data is not estimated. For the purposes of analyzing the re-
sults, the RMSE(s) are calculated separately for the initial and final
part of the test.

In the first half of the test, from frames 1–891, the RMSE(s) are
29 cm in the pX axis, 4.3 cm in the pY axis, and 5.1 cm in the pZ
axis. Although the error in the pX axis is not high for a monocular-
based position estimation, the value is higher than in the other
axes. The reason for this value is due to a small tracking error in
frames 650–690. In these frames, the position of the drogue was
correctly identified but the extent of the drogue (scale) was not.
For this reason, the error in these frames only affects the scale axis.

In Fig. 20, the tracking error in the estimation in frames 650–690
in the pX and pY axes can be seen. This discrepancy is attributed
to a small error of the tracking algorithm caused by the turbulence
effects, when part of the drogue goes outside the FOV of the camera
and the drogue is also occluded by the probe (see Fig. 20, frame
665). This loss of information is also indicated by the performance
assessment criteria. In Fig. 19, it can be seen that the % of pixels
(magenta/dashed-circle line) is close to the trigger level, producing
an unstable behavior of the tracking algorithm that is also reflected
in the unstable behavior of criterion MAE2 (blue/dark line).

In the final part of the test, from frames 1172–1680, the ob-
tained RMSE(s) are 8.6 cm in the pX axis, 5.7 cm in the pY axis,
and 6.1 cm in the pZ axis. In this test, it can be seen that the mo-
tion estimated with the vision system closely matches the posi-
tions measured by the robots. The detection scheme operated as
intended, successfully locating the drogue when it reentered the
field of viewof the camera. The scheme relies heavily on the visibil-
ity of the central portion of the drogue, however if required, further
work would allow improvements to be made to both the accuracy
and the recovery time in the presence of partial occlusions.

6. Conclusions

Previous work on machine vision systems applied to aerial
refueling tasks have predominantly employed feature-based
methods to detect and track the target entity, often requiring the
placement of beacons or painted features. Additionally, many of
the tests found in the literature have been conducted using only
simulated visual information.

This paper presents a drogue tracking strategy for use in probe
and drogue refueling tasks based on direct methods that allows
position tracking of the drogue without the need for modifications
to the tanker hardware.

The vision strategy is comprised of three main parts: an
efficient, robust tracking stage based on the Hierarchical Multi-
Parametric Multi-Resolution Inverse Compositional Image Align-
ment method; a detection stage based on template matching and
image segmentation methods; and a 3D position estimation stage
based on the known dimensions of the drogue.

The strategy has been tested in a robotic laboratory facility, us-
ing unmodified flight refueling hardware and simulated aircraft
motion data, recreating an automated refueling approach con-
ducted in both light and moderate turbulence.

During these tests, the proposed visual system proved to be
robust under adverse conditions including rapid motions, large
changes in proximity and scale, small changes in orientation of
the drogue, and significant occlusions of the drogue by the probe.
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Fig. 20. Position estimation:medium turbulence. Themotion estimated by the tracking algorithm (red/dashed line) is comparedwith themotion of the R2 robot (green/solid
line). The shaded areas represent the moments when the lost status was activated, and the detection algorithmwas operating. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
It was found that the drogue’s position was only lost when it
left the field of view of the camera. The average accuracy of the
position estimation was found to be within 2 cm for the light
turbulence conditions and 10 cm for the moderate turbulence test
whilst running at real-time frame rates of>30 fps. Current work is
focused on integrating and evaluating the proposed vision strategy
using the robots to perform sensor-in-the-loop testswithin the full
simulation environment.

The performance of the proposed vision strategy has been
shown to be of a standard appropriate to the probe and drogue
autonomous aerial refueling problem. It has low computational
overheads for a vision system, and requires no modification of
the target. It is particularly relevant to the final approach and
contact stage, where changes in orientation are small and the
algorithm’s strengths in the presence of occlusions and restricted
field of view can be exploited. It is anticipated that in future work
this technology will be augmented by other sensing technologies
and incorporated into a control algorithm using sensor fusion
techniques.
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