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Identifying and tracking dynamic modes in a multi-dimensional parameter space is a problem that 
presents itself in many engineering disciplines. In a flight dynamics context, the dynamic modes refer 
to the modes of motion obtained from a linearisation of the aircraft system about a known operating 
point. Typically dynamic results derived from these linear models are unsorted, where mode indices 
are unrelated from one operating point to the next. When varying the parameters, or in this case 
operating point, difficulties in automating the process of relating modes from a linear system derived 
at one parameter set to the next exists. This paper builds on the work in tracking modes in a structural 
context, using the Modal Assurance Criterion (MAC) to numerically relate modes from two comparable 
linear systems. The (MAC) is deployed within a spanning algorithm to discover and identify all modes 
within all conditions, with their relationship to adjacent/neighbouring conditions. This is tested on a 1-, 
2- and 3-dimensional parameter space, twelve state system.

© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

For a nonlinear dynamic system, the modal characteristics and 
shapes are likely to vary considerably throughout the operational 
envelope of the system. Observing how specific modes evolve in 
a system can be beneficial when analysing the stability proper-
ties, and in the development of controllers. The linear dynamic 
properties of these nonlinear systems are typically obtained by 
linearising the system about an operating point, and using linear 
systems analysis methods, the modal properties can be extracted. 
However, the analysis method typically generates unsorted eigen-
structures of the system dynamics, such that there is no relation 
between the data from one operating condition to another.

Identifying and tracking modes is also a problem in structural 
dynamics. Structural dynamicists are concerned with, for example, 
validating a model to represent one or more modes of a system 
from experimental data, at various operating points. The Modal As-
surance Criterion (MAC) has been widely used to address problems 
in structural dynamics and vibrations [20], providing a measure to 
correlate modes from two comparable systems. In this case, the 
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system is a structure, where the system dynamics of a model is 
being compared to the experimental data at the equivalent op-
erating point. It is conceivable that using the same algorithm for 
the model at varying operating points, the dynamic results can be 
compared to relate the modes from one operating point to another.

In this paper, the MAC is applied to adjacent/neighbouring 
(graph theory) operating points, to ascertain dynamic correspon-
dence, and track a mode through this parameter space. The paper 
deploys this MAC in a spanning algorithm to identify and link 
modes. Where previous papers address deployment of the MAC for 
comparison of two systems, or tracking over a single dimension, 
this paper proposes an algorithm suitable for comparisons over an 
N-dimensional parameter space of the operating condition. The al-
gorithm is deployed using an ‘embarrassingly parallel’ approach to 
span modes. Although this enables multiple cores to be used to re-
duce the time to solution, it is also shown that the computational 
resources are not being exploited to their full potential, resulting 
in significant processor idle time. This is applied to a flight dy-
namics example, for a model of a novel Unmanned Aerial Vehicle 
(UAV) platform, simulated using a standard 6 Degrees of Freedom 
(DoF) Equation of Motion (EoM), using the Euler angle description 
for orientation.

Section 2 provides the motivation behind the proposed frame-
work for the modal identifying and tracking algorithm, and a de-
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Nomenclature

A Linear time invariant system plant matrix
B Linear time invariant system control matrix
C Linear time invariant system output matrix
D Linear time invariant system feed forward matrix
x System state vector
u System input vector
v System eigenvector matrix
λ System diagonal eigenvalue matrix
�c,m Eigenvector of the mth mode of the cth system
MACc,d,[m,n] MAC value comparing the eigenvector of the mth

mode of the cth system, to the eigenvector of the nth
mode of the dth system

α and β Angles of incidence: angle of attack and sideslip angle 
respectively

Vt Aircraft flight speed
p̄, q̄ and r̄ Body axis rotation rates: Roll, pitch and yaw 

respectively
φ, θ and ψ Orientation expressed in Euler angles: Roll, pitch 

and yaw respectively
−z or h Altitude in an Earth frame of reference
�XCoG Increment in aircraft Centre of Gravity (CoG) from 

nominal position
η Span retraction parameter
ζ Damping ratio

Superscript

∗ Complex conjugate
T Transpose of a matrix
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scription of the methods deployed to perform the modal analysis 
and categorisation.

Section 3 presents a structure for the proposed framework, with 
a description of the required components. Section 4 presents the 
theory of the methods used in the components for the framework.

Section 5 presents the aircraft model example which will be 
used to generate results from this algorithm.

Section 6 presents results for the aircraft example, and a dis-
cussion of the algorithm performance, followed by conclusions and 
recommendations presented in Section 7.

2. Background

Many engineering systems are nonlinear, where the linear dy-
namic characteristics will vary over its operational envelope. These 
dynamic systems can be represented by a set of dynamic first or-
der system state equations, where the dynamic state is a function 
of time, system state and inputs [28]. Furthermore, this model can 
be idealised to a linear model about a specific system state and 
input [26], from which the linearized systems model can be de-
rived/generated. From this, traditional linear dynamic analysis tools 
can be used to analyse the system [10]. These systems can be 
represented in state-space form or by transfer functions [25]. Lin-
ear modes can be found through the system’s eigenstructure [16], 
where the eigenvalues define the modal characteristics and the 
eigenvector the mode shape.

Algorithms used to extract the eigenstructure generally out-
put an unstructured set of eigenvalues and eigenvectors [24]. This 
means that for a nonlinear system, where varying the operating 
point modifies the linear description of the system, the modes 
output from the algorithm indexed with the same number are gen-
erally unconnected. For systems of greater than two modes, this 
makes it difficult to trace how the characteristics of the modes 
change over the system’s operational envelope. For this, a robust 
method is required to relate modes from varying eigenstructure 
for a system over its operational envelope. Furthermore, to design 
controllers to modify the behaviour of specific modes requires the 
distinction of these modes, such that the controller can be modi-
fied (feedback gains) to appropriately control [14] the response for 
varying operational conditions.

The MAC is a correlation parameter [1], computed by compari-
son of two comparable eigenvectors. The value of this parameter 
compares the similarity of one mode shape to another, and is 
bounded between 0 to 1. A value of 0 represents no correlation, 
where values increasing approaching unity signify the increasing 
similarity, and hence correlation, of mode shapes. It has been ex-
tensively deployed to analyse structural engineering system modes, 
to track how vibration modes change due to variation in a design 
or operational parameter [21], or using an improved formulation 
of the MAC to small changes, for example to measure the effect 
of salt accumulation to a turbine blade on its dynamics [18]. Fur-
thermore, for comparisons between experimental and analytical 
models, the MAC is deployed to provide information of the modal 
response, and hence is an indication of correspondence between 
the analytic and experimental models. Amsallem and Farhat [3]
presents a framework to interpolate Linear Parameter Reduced Or-
der Model (LPROMs) that uses the MAC parameter to identify po-
tential cross-over points, or behaviour associated with the mode 
veering phenomenon. Because these systems can be large, with 
multiple interacting modes, a robust algorithm is required to en-
sure accurate tracking of each individual mode’s eigenvalue. When 
extending this problem into multiple dimensions, a simple single 
dimensional spanning algorithm is no longer viable to track modes 
in this multi-dimensional space.

Other parameters that are used to correlate modes includes 
the Modal Observability Criterion (MOC) parameter outlined by 
Yaghoubi and Abrahamsson [27], and a series of parameters that 
extend the original MAC presented by Allemang [1]. These use 
alternative formulations or adaptations of the MAC correlation pa-
rameter. Some of these formulations include the mass or stiffness 
matrix to ensure orthogonality between the modes.

The framework developed in this paper builds on the MAC pa-
rameter, which succeeded in its application to demonstrate the 
benefits of applying a correlation parameter alongside a spanning 
algorithm to track the dynamic modes present in flight dynamic 
systems. The MAC within this framework can be replaced by other 
correlation parameters, where the application permits, along with 
the spanning algorithm proposed to track the modes across several 
parameters. Alternately, other numerical methods that potentially 
involve mode tracking as a part of the framework include numeri-
cal continuation [2] and mode veering [3,11,8].

3. Algorithm overview and structure

In this section, an outline of the algorithm used to identify, 
assign a unique index, and link associated modes through an 
N-dimensional parameter space is given. This includes defining the 
input to the framework, the functions and algorithms used to drive 
the analysis, identify and track the modes in the parameter space. 
Fig. 1 provides an illustration of the proposed framework used to 
develop the algorithm.

The schematic of the software framework shows the data 
flow through the various components. The letter ‘D’ indicates a 
database, where ‘F’ is used to refer to a function or algorithm. 
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Fig. 1. Software framework hierarchy.

These components are marked by ‘#.0’, where the ‘.0’ refers to 
the base level component, with appropriate values assigned for 
sub-level components in the hierarchy. Essentially the framework 
allows for a structured input of linear systems for pre-defined op-
erating points, where these undergo pre-processing to condition 
the input for comparison of conditions, followed by linking each 
condition. This produces a set of modes, where each mode is re-
lated to any connecting operating condition mode with maximum 
correspondence. The framework components are described in the 
following sections.

3.1. Input interface

The framework requires a structured input according to the in-
dependent parameter space. For each parameter set that defines 
an operating point, a linear state-space system is required. Linear 
systems analysis tools can then be used to compute the system’s 
eigenstructure, which describes the linear dynamic state at that 
operating point. Generally, the output from algorithms used to 
compute the eigenstructure are unstructured [4], hence there is 
no relation between the modes computed at one operating point 
to another. This necessitates a method to relate modes, such that 
the dynamic behaviour and modes can be tracked through a multi-
dimensional parameter set.

The driver to compare and relate modes from the linear systems 
at two different parameter sets is the MAC, which is a correlation 
parameter that compares mode shapes to quantify their similar-
ity. To deploy this effectively, the search space for comparisons is 
limited to operating points that are local, or in Graph Theory [15]
terminology, only neighbouring nodes (operating points) are com-
pared. This reduces both the memory requirement and number of 
executions of the MAC function. This section describes components 
D1.0 and F2.0 from Fig. 1. Fig. 2 illustrates this using terminology 
derived in Graph Theory [15], and shows the nodes that are inves-
tigated, or interrogated by the algorithm.

Essentially, D1.0 is a database of all available parameters for a 
set of systems. As a minimum this includes the state-space de-
scription of the system at each operating point. The precondition-
ing algorithm (F2.0 in Fig. 1) is then used to supplement data 
which is required to track the modes, which is as follows:

1. Calculate eigenstructure at each node (eigenvalues and eigen-
vectors)

2. Declare connectivity between node pairs (requires minimal in-
formation)

3. Identify node pairs
4. Prepare data-structures for storing run data
Fig. 2. Node network visited by the algorithm (connectivity).

From this, the primary algorithms can be executed to identify 
and track modes. The eigenstructure for a standard form linear 
state-space system can be computed by solving to find the roots 
of the system plant matrix (see Sections 4.1.1 and 4.1.2). This can 
be addressed relatively trivially using the eig command within 
MATLAB, which uses QZ-decomposition [13] to compute the eigen-
structure.

3.2. Correlation parameter: the Modal Assurance Criterion (MAC)

At the core of this framework is the MAC function, which 
drives the algorithm to identify, index and track modes in an 
N-dimensional parameter space. The F3.0 component in Fig. 1 rep-
resents the function to compute the MAC parameter, and through 
using the connectivity between node pairs information, the MAC 
between each pair is computed and stored. Each pair is only com-
pared once, and only compared to its adjacent neighbours from 
the connectivity array. This is followed by an algorithm to pick the 
maximum MAC for each mode being compared with another com-
parable mode. Modes can only be linked to a single mode from 
another condition.

The basis of the MAC is that it compares the mode shapes of 
two comparable modes through their eigenvectors. This compares 
the relative magnitudes and angles between the vectors of each 
of the states, to generate a correlation parameter, that quantifies 
the relative difference in mode shape. In the context of two linear 
systems, A and B, each mode in system A can be compared to all 
modes in system B, where the maximum MAC value relates the 
mode from A to the corresponding mode in B that produces this 
value.

3.3. Spanning/linking algorithm

The MAC provides the function to compare modes from two pa-
rameter sets, where the input pre-conditioning provided a method 
for only comparing modes from connected operating points. From 
this, all modes in connected operating points can be compared, 
identified and linked if necessary. It is then required that all unique 
modes can be identified and tracked. This requires a spanning al-
gorithm, where modes from each operating point can be spanned 
until a boundary is met in the parameter space. Modes may not 
span the entire operating point parameter space. For operating 
points where a spanning mode cannot be connected, this operat-
ing point can be flagged to begin a new unique mode to span. The 
failure of a mode to span the space generally occurs when either 
a complex mode encounters the real axis, or two aperiodic modes 
interact and form a complex mode, when undergoing parameter 
variation for two comparable operating points. When a mode un-
dergoes this transition, the mode/s are no longer comparable, and 
so a protocol is used to generate separate modes. This is observed 
on the root locus where varying a parameter causes a modifica-
tion to the character of a system, a bifurcation, to the dynamics 
where a complex conjugate pair becomes a real pair of modes (or 
visa versa). This continues until all modes have been indexed and 
connected. This is represented by the F4.0 component within the 
framework presented in Fig. 1.
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Fig. 3. Spanning algorithm structure to span node space.

Fig. 3 presents a structure to develop a pseudo-code (see Sec-
tion 4.3) for the spanning algorithm. The first part of the algorithm 
must identify a mode at a particular operating point which is yet 
to be assigned. If a mode is found, a new thread is spawned, and 
the spanning algorithm begins. Each iteration of the spanning al-
gorithm compares all operating points connected to the current 
active operating point that have been identified as connected to 
the mode of interest. If the operating point is connected, then 
all connected operating points that have not been investigated for 
connectivity are appended to a list of operating points to investi-
gate. This continues until all operating points have been investi-
gated, or no more connected operating points can be found. This 
algorithm is repeated until all modes have been indexed, mapping 
the connectivity of modes. The output of this algorithm is a com-
plete mapping of indexed modes.

4. Methods and tools

Section 3 presented the outline of the required framework for 
this work, this section will present the mathematical tools and 
pseudo code required to construct functions and algorithms in 
the framework. This includes the input preconditioning algorithms, 
MAC function and finally the algorithms used to link the modes.

4.1. Linearized systems

Although the systems being analysed are essentially nonlin-
ear, linear analysis at progressing operating points is used to infer 
nonlinear behaviour, and can be considered a form of grid-based 
Linear Parameter Varying (LPV) system when observing these lin-
ear systems over the parameter space of interest. The dynamic 
representation of a linear system obtained through linearising a 
nonlinear system, is a valid description of the dynamics for only 
small relative perturbations or amplitudes of the systems state. The 
tracking algorithm assumes small perturbations to the structure of 
the plant matrix (A matrix) for the variation in operating point, 
such that the eigenvectors observed are from the same system. The 
data set uses a grid that is sufficiently dense that for modes whose 
eigenvectors are similar the eigenvalues must also be close. For the 
linear system generated at each operating point, the system plant 
matrix (A matrix) is used to track the modes.

4.1.1. State-space model
Linear systems can be represented by both time and frequency 

domain forms. The general system state-space form representation 
is:

ẋ = A(x,u)x + B(x,u)u , (1)

y = C(x,u)x + D(x,u)u . (2)

With this description, the systems dynamic modes can be com-
puted from the systems plant matrix (A).

4.1.2. Eigenstructure: eigenvectors and eigenvalues
The dynamic of the system can be determined by first taking 

a Laplacean of Equation (1), putting the system in the frequency 
domain, and solving the following equation:

Av = λv . (3)

By solving this equation, the eigenvalues, λ, and correspond-
ing eigenvectors, v, can be computed. The eigenvalues describe the 
modal properties (frequency and damping), where the eigenvectors 
describe the mode shape. When identifying a mode with param-
eter variations, it is the eigenvectors that are used to identify the 
mode. Comparison of the eigenvectors of two comparable systems 
should reveal the correspondence of the modes from one system 
to another.

In the context of flight dynamics, the Short Period refers in 
general, to the complex conjugate pair, with the poles located in 
positions of relative high frequency and moderate damping when 
compared to other longitudinal flight modes. The Short Period 
would be identified by observing the eigenvector with relatively 
large contributions from the angle of incidence and pitch rate in 
the dynamics of the mode.

4.2. Modal Assurance Criterion (MAC)

The MAC is a correlation parameter, which compares two eigen-
vectors to quantify the similarity (or difference) in the mode 
shapes. The MAC is defined as:

MACc,d,[m,n] =
∣∣∣{�c,m}T {��

d,n}
∣∣∣2

({�c,m}T {��
c,m}).({�d,n}T {��

d,n}
) , (4)

where �c,m defines the eigenvector corresponding to mode index 
m of linear system c, �d,n similarly mode index n of linear sys-
tem d, �∗ indicates the complex conjugate of �, �T indicates the 
transpose of � and MACc,d,[m,n] the MAC value corresponding to 
the comparison of mode m with n, from system c and d respec-
tively.

The following example is of a longitudinal flight dynamic 
model, with two complex conjugate modes. The state vector con-
sists of angle of incidence, flight speed, pitch rate and pitch angle 
([α, Vt ,q, θ ]). The modes of the aircraft are calculated for two 
trimmed flight conditions at two different speeds. System X is 
at 50 kph and Y at 55 kph; the system’s plant matrix and eigen-
structures are:

System X :

A|X =

⎡
⎢⎢⎣

−2.2244 −0.0593 0.9228 −0.2171
−9.6156 0.1185 0.3094 8.6460
−53.4078 −1.7931 −2.8787 5.5391

0 0 1.0000 0

⎤
⎥⎥⎦
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Fig. 4. MAC example.

λ1,2
∣∣

X = −2.8092 ± 6.6991i λ3,4
∣∣

X = 0.3169 ± 0.4675i

v1,2
∣∣

X =

⎡
⎢⎢⎣

−0.0078 ± 0.1358i
0.0328 ± 0.0034i
0.9809 ± 0.0000i

−0.0522 ± 0.1245i

⎤
⎥⎥⎦

v3,4
∣∣

X =

⎡
⎢⎢⎣

0.0327 ∓ 0.0057i
−0.9970 ∓ 0.0000i
0.0319 ∓ 0.0131i
0.0124 ∓ 0.0598i

⎤
⎥⎥⎦

System Y :

A|Y =

⎡
⎢⎢⎣

−2.5732 −0.0495 0.9229 −0.1698
−6.0271 0.1692 0.4361 8.6874
−64.7566 −1.6061 −3.1510 5.8961

0 0 1.0000 0

⎤
⎥⎥⎦

λ1,2
∣∣
Y = −3.0391 ± 7.4236i λ3,4

∣∣
Y = 0.2616 ± 0.4222i

v1,2
∣∣
Y =

⎡
⎢⎢⎣

−0.0052 ∓ 0.1233i
−0.0304 ± 0.0055i
0.9843 ± 0.0000i

−0.0465 ∓ 0.1136i

⎤
⎥⎥⎦

v3,4
∣∣
Y =

⎡
⎢⎢⎣

−0.0239 ± 0.0042i
0.9981 ± 0.0000i

−0.0227 ± 0.0113i
−0.0048 ± 0.0508i

⎤
⎥⎥⎦

The MACs matrix computed is as:

MAC|X,Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9956 0.8764 0.0047 0.0033

0.8764 0.9956 0.0033 0.0047

0.0001 0.0004 0.9997 0.9869

0.0004 0.0001 0.9869 0.9997

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is graphically represented in Fig. 4.
All values are between 0 and 1, values of zero representing no 

correlation, and 1 representing equivalent modes. As can be seen 
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re, the modes that are highlighted on the diagonal of the MAC 
ay are the modes that are correlated from condition X to con-
ion Y . Also observed from the array and Fig. 4, the correlated 
de and its complex conjugate are generally closer than the other 
plex conjugate pair. Note that if two modes are correlated to a 

gle mode from the other condition, it is the maximum of these 
t is selected.
The two modes identified are the Short Period (1, 2) and 

ugoid (3, 4). By inspection, the Short Period and phugoid in 
th systems are easily identifiable by their eigenvalues. Also, by 
pection of the eigenvectors, these modes can be identified by 
ir distinct mode shapes. As is highlighted on the diagonal of 
 MAC matrix for the comparisons of these systems, the cor-
t eigenvalues are identified by the algorithm. Note that the im-
mentation of the algorithm ignores comparisons of real with 

plex, regarding these as incomparable modes. Therefore the 
cking algorithm only follows purely real or purely complex 
des.

. Spanning algorithms

To deploy this effectively to identify all simply connected 
des, a spanning algorithm is required to identify and index new 
des, linking these modes to all connected modes from other pa-
eter sets. In the simplest case of 1-dimensional spanning, the 

orithm is only required to interrogate modes from one or two 
acent parameter sets. In N-dimensions, to span a mode over a 
re general parameter space, a more complex algorithm is re-

ired, which can work regardless of the dimensionality of the 
blem. Essentially the dimensions are the degree of the nodes 
e number of neighbours connected to each node), for example, 
en expanding over 3 parameters, there are up to 26 connected 

ighbours (see Fig. 2c). Because the connectivity need not be 
uctured, the algorithm has been designed to manage over ar-
rary dimensions at each node.
With this code, driven by the MAC, a mode index can be 
wned and span within the parameter space where the mode 
sts. From this, all modes can be assigned an index relating it to 
similar modes in the parameter space. The algorithm presented 
Appendix A can be parallelised, although with its current struc-
e this is limited to the number of modes at any one node using 
ple parallelisation methods.

Tracking flight dynamic modes

The following example is of a flight dynamics problem, where 
 model was used first by Beaverstock et al. [7,5,6] to investi-
e the effect of span morphing on the flight modes. The aircraft 
del is based on the Tekever AR4, and modified to accommodate 
n morphing (image with illustration presented in Fig. 5).
The unmorphed and morphed wing parameters that define the 

craft are summarised in Table 1 [6].
For this model, bη is the span position with morphing applied, 
is the nominal full span, η is the span retraction parame-

 (1 for fully retracted and 0 for no retraction), bη

∣∣
η=1 is the 

n position when fully retracted and c̄ is the mean aerodynamic 
rd. The model contains a 6-DoF Equation of Motion (EoM). The 
del typically produces five modes broken down as follows:

Longitudinal
– Short Period: complex conjugate pair typified by angle of 

attack (α) and pitch rate (q̄)
– Phugoid: complex conjugate pair, long period mode typified 

by variations in velocity (Vt ), attitude (θ ) and altitude (−z
or h)
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Table 1
Varying properties of the reference UAV based on the Tekever AR4 presented by Beaverstock et al. [6].

Parameter Unmorphed Morphed asymmetric Morphed symmetric

AR 6.67 5.83 5
H-Tail Volume ( St lt

Sc̄ ) 0.2966 0.3389 0.3954

V-Tail Volume ( S v lv
Sb ) 0.0258 0.0336 0.0458

CoG Y Pos (% Span) 0 ±0.28 0
[Ixx, I yy , Izz] (kg m2) [7.54,6.88,13.14] [6.68,6.88,12.28] [5.83,6.88,11.42]
[Ixy , Ixz, I yz] (kg m2) [0,0.28,0] [±0.02,0.28,±0.05] [0,0.28,0]
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Fig. 5. Modified AR4 span morphing.

• Lateral
– Dutch Roll: complex conjugate pair characterised by the 

side-slip (β) and yaw rate (r̄), and also roll rate ( p̄)
– Roll Convergence/Subsidence: a real mode dominated by roll 

rate ( p̄) and roll angle (φ)
– Spiral: A slow mode characterised by side-slip (β), roll angle 

(φ)

These modes are described in many textbooks [12,17,19,22,23,9], 
along with methods to estimate/ predict both the modal charac-
teristics (eigenvalue) and mode shape. Although these modes are 
generally observed, changes in aircraft design and flight condition 
affect the contribution of each state to the modes. This leads to 
subtle changes in the mode, where, for example, the characteristic 
roll-yaw rate ratio of the Dutch Roll may vary. The literature also 
suggests that in more extreme flight regimes, or unconventional 
designs, atypical modes can be present and identified.

The following example shows changes in the mode due to pa-
rameter changes in the velocity (Vt ), span morphing parameter (η) 
and CoG position (�XCoG). The parameter ranges and increments 
are summarised in Table 2.

6. Results

In the following section, results showing the unprocessed dy-
namic data, and numerical outcomes of applying the algorithm 
are presented. This is followed by an analysis into the varia-
tion in dynamic characteristics, consisting of modal characteristics, 
across the parameter space under consideration. These are pre-
sented alongside the maximum MAC values for the mode at each 
parameter set.

6.1. Unsorted dynamic results

To emphasise the problem, all modes are plotted in Fig. 6, for 
the case of a 1-, 2- and 3-dimensional problem. As can be ob-
served, trends in modes increase in complexity, in their interac-
tions and number as the dimensions increase. In Fig. 6, the varia-
tion of each individual parameter is highlighted, holding the other 
two parameters at a nominal value.
Table 2
Summary of parameter ranges and increments.

Parameter Range Increment

min max

Vt (kph) 55 150 5
η % 0 100 5
�XCoG % c̄ −25 25 5

Fig. 6. Unsorted modes varying across 3 parameters.

In some cases, the related modes are clearly observable graph-
ically, and as can be seen, varying parameters individually, the 
behaviour of these clearly defined modes are relatively simple/pre-
dictable. Although these evaluations/observations can easily be 
made visually, automating this to sort the modes can be a labour 
intensive and cumbersome process to manage manually. Over large 
data sets spanning multiple dimensions, this may not be practical 
or even feasible in a reasonable time frame. Furthermore, more 
complex interactions, where modes vary between aperiodic and 
harmonic, maybe more difficult to analyse manually over a multi-
dimensional space.

With this unsorted data, dynamic characteristics cannot be il-
lustrated whilst varying parameters, as there is no structure to 
determine which modes are related to which in each flight con-
dition.

6.1.1. Identified modes
The first test for the algorithm is to observe the tracking of a 

mode/s through the variation of a single parameter. Fig. 7 presents 
the variation in a single parameter for each of the 3 param-
eters. These are varied as the single parameters are varied in 
Fig. 6.

Fig. 7 shows that more than 12 modes are identified. Essen-
tially because the algorithm spans and terminates at nodes where 
a neighbouring node has no comparable mode; a new mode is 



JID:AESCTE AID:3405 /FLA [m5G; v1.159; Prn:14/09/2015; 14:22] P.7 (1-14)

C.S. Beaverstock et al. / Aerospace Science and Technology ••• (••••) •••–••• 7

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
Fig. 7. Sorted modes varied over 3 parameters individually.
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Table 3
Summary of run information for varying 3 parameters individually (see Fig. 7).

Parameter No. of modes No. of cycles Time to 
completion (s)

Vt 15 2 0.1222
η 12 2 0.0732
�XCoG 15 3 0.1197

spawned at the unidentified mode in neighbouring node. Also in 
a single parameter variation example, because no other parameter 
exists to navigate around these nodes, disjointed sets where two 
modes are related may exist. Table 3 summarises the running of 
each set, setting the number of modes identified, the number of 
parallel cycles of the algorithm and the time taken to complete 
execution of the algorithm. In each cycle, a single node is selected, 
the node with the maximum number of unidentified modes, where 
each of these modes represents a thread on a single processor. This 
means that if there are fewer jobs (modes available) than pro-
cessors available, those processors without jobs will be idle for 
this cycle. Furthermore, because the number of maximum avail-
able modes at a node diminishes with each cycle, generally the 
number of idle processors increases as the number of cycles in-
crease. This was performed on a Dell Precision T5500, using 2 Intel 
Xeon X5650 @ 2.67 GHz (6 physical cores per processor). This en-
ables 12 modes per flight condition to be sorted for each cycle of 
the algorithm. This means all 12 modes can be followed in paral-
lel.

Where a single parameter is varied, it can be observed that 
more than 12 modes are tracked through the span of the param-
eter. These plots in Fig. 7, along with Table 3, show that some 
modes are observed for all values of a parameter, where others are 
only observed partially over the envelope. The disjoint is typically 
caused by a mode behaviour changing between aperiodic and har-
monic.

A similar analysis to that which is presented in Fig. 7, where 
two parameters are varied concurrently, is presented in Fig. 8.

From Fig. 8, the algorithm has identified a greater number of 
unique modes when compared to the single parameter case. In 
general, the modes outlined in Section 5 were clearly identified, 
with the variation approximately following the trend of combin-
ing the appropriate two results from Fig. 7. Thus, each mode can 
be individually extracted and analysed to investigate its behaviour, 
and how it varies over each parameter combination. Fig. 9 high-
lights the effect of two dimensional variations of the parameters 
on the Short Period mode. This mode was selected automatically 
from the 12 modes available at each flight condition, and linked 
through the two-dimensions.

Again, additional modes to the initial 12 are identified, with 
complex interactions with the real axis. The algorithm, as can be 
seen in the timing results from Table 4, performs this for all cases 
in under 30 seconds. Performing this manually would require sort-
ing through in excess of 1000–1500 pairwise comparisons to link 
the modes, and repeated for however many sets of data. Further-
more, the code developed can be used over an arbitrary number 
of dimensions, negating the necessity of developing bespoke code 
for data for varying dimensionality.

As can be observed, running over increased dimensions in-
creases the time to solve and complete the algorithm. The added 
dimension means that the algorithm complexity does not scale 
solely on the increased number of flight conditions, but also the 
additional dimension increases the complexity as a function of 
both conditions and dimensions. Fig. 10 presents the graph con-
nectivity of some example modes, showing the effect of the span-
ning algorithm for a complete graph for a mode at all flight condi-
tions, along with the graph that does not fully span the space.
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Fig. 8. Sorted modes varied over the 2 parameters for 3 parameter combinations.

Fig. 9. Sorted Short Period mode varied over the 2 parameters for 3 parameter combinations.
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Fig. 10. Graph of modal connectivity in two-dimensions.
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Table 4
Summary of run information for varying parameter pairs for the mode behaviour 
over 2-dimensions (see Fig. 8).

Parameter No. of modes No. of cycles Time to 
completion (s)

Vt and η 20 7 29.22
Vt and �XCoG 23 9 13.62
η and �XCoG 16 4 9.94

Typically, a mode does not span the entire space as the mode 
modifies its behaviour between aperiodic and harmonic. On occa-
sion, the algorithm failed to span the space as two comparable 
modes from one flight condition were similar to one from an-
other condition, leading to one linked and one unlinked mode. This 
was typically associated to aperiodic modes. Additional strategies 
to avoid this can be as follows:

• For each cycle of spanning a mode, each condition is compared 
only once to an already identified condition. An additional 
loop is required to ensure that where a disjoint appears, that 
the disjointed condition is compared to all of its connected 
nodes that have identified the mode.

• Where modes are similar, with MAC values that are close, 
these should be tested for modal veering, to ensure the cor-
rect mode is tracked, following two similar modes interacting.

It is suggested that following completion of the algorithm, the 
finite number of connected regions should be investigated to form 
disjointed sets of modes that are potentially related. Currently the 
algorithm is only concerned with spanning a connected set of 
nodes, and disjointed sets should be connected through analysis 
by the user.

In the final run, all parameters are varied simultaneously. The 
full modal Argand diagram is presented in Fig. 11 over three-
dimensions. Each 2-D Argand plane represents variation over ve-
locity and span retraction parameter, where the third dimension is 
used to represent variation in the CoG position.

Fig. 11 illustrates that in excess of 40 modes are identified. The 
Short Period and Dutch roll are present in all conditions, Roll sub-
sidence and Spiral are present in most, and the phugoid in a more 
limited number of operating points in the parameter space.

Other modes are formed when a complex conjugate pair, for 
example, the phugoid mode, encounters the real axis, and splits 
into two real longitudinal modes. Or two real modes, for example, 
the roll convergence and spiral, encounter one another and com-
bine into a complex conjugate pair. On inspection, some of these 
Fig. 11. Argand diagram varying parameters over 3 dimensions, 3rd dimension rep-
resents �XCoG .

Table 5
Summary of run information over three-dimensions.

Parameter No. of modes No. of cycles Time to 
completion (s)

Vt , η and �XCoG 42 7 15,978

Table 6
Cycle time summary for three-dimensional case.

Cycle index No. of modes Time to complete

1 12 7682 s
2 4 6566 s
3–28 1 14 cycles at 10–15 s/cycle

5 cycles at 15–20 s/cycle
2 cycles at 20–30 s/cycle
4 cycles at >60 s/cycle

minor modal groups should actually be considered as members of 
a larger primary group. These have been disconnected as the con-
dition that they were tested at is similar to another mode that has 
already been identified. Changing the initial condition, alters the 
connectivity of some of these modes. However, analysing many of 
these modes, some of these modes are only present in a handful 
of conditions. A summary of the run information is presented in 
Table 5.

As can be observed, with increased dimensions, there is an in-
crease in the time to solve the entire space, and also the time for 
each cycle. Table 6 provides a breakdown of a cycle and the time 
to solution for sections of the pseudo code.
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Fig. 12. Graph of modal connectivity in three-dimensions. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
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Table 7
Summary of model properties of identified primary mode sets.

Mode Frequency (Hz) Damping ζ

min max min max

Short period 0.5 4 0.3 0.6
Phugoid 0.01 0.1 −0.2 −1
Dutch roll 2 9 0 0.35

This reveals the complexity of the code, and demonstrates how 
the complexity scales with the size of a problem, and the number 
of dimensions of the problem. The addition of a third dimension 
results in a greatly increased time to solution. From this table, 
firstly the maximum time to complete a cycle increases by more 
than two orders of magnitude. For this problem, the increase in 
dimensions from two to three results in 8 node comparisons in 
two dimensions to 26 in three dimensions. This increase is di-
rectly related to the increase in time to compute. Cycle 2 shows 
that although only a third of the modes are being computed, the 
time taken for the solution is the same order of magnitude. The 
algorithm runs in parallel, with a maximum of 12 active modes 
tracked. The algorithm requires that all of these modes be from 
the same node. Therefore, when there are fewer than 12 modes 
available in the node under investigation, or a processor finishes 
its work before other processors, the result is idle time for some 
processors. This represents an inefficiency in the parallelisation of 
the problem, and requires investigation. Fig. 12 presents a poly-
tope that shows the connectivity of a complete and an incomplete 
graph.

For the incomplete graph, this could be a member of a dis-
jointed set of similar modes, or in some cases, a member of a 
connected group, where the algorithm has failed to identify the 
connecting edge using the MAC parameter. In the context of this 
example, the complete graph represents the Short Period or Dutch 
roll, which shows that a mode in every node is connected to a 
mode from at least one of the other connected nodes. Fig. 12b 
presents an example where a mode does not span all conditions, 
where the blue points represent nodes where both a spiral and 
roll convergence mode have been identified, and the red points 
are where the mode has become a complex conjugate pair that 
represent a roll-spiral mode.

6.1.2. Modal properties (characteristics and shapes)
Figs. 13 to 17 show the eigenvalue characteristics are shown, 

namely the frequency and damping for the identifiable flight 
modes. Tables 7 and 8 present a summary of the information.

The Short Period, which spans the parameter space, shows gen-
erally that at high speed, maximum span and CoG aft position 
(unstable) the frequency is highest. The damping ratio is at its 
Fig. 13. Short period modal characteristics. (For interpretation of the colours in this 
figure, the reader is referred to the web version of this article.)

greatest when the span is at its maximum, and the CoG at its most 
fore position (stable). The damping appears to be relatively insen-
sitive to variations in flight speed.

When the Short Period spans the entire parameter space, the 
other longitudinal complex conjugate pair associated with the 
phugoid only spans a limited portion of the parameter space. The 
mode only appears present in the unstable CoG range, upon which 
the damping indicates that the mode encounters the real axis, 
changing its behaviour to two real modes. The mode is unstable 
throughout, the frequency varying from 0.01 Hz at low speed, in-
creasing one order of magnitude to approximately 0.1 Hz at high 
speed. The damping indicates that it is sensitive to all three pa-
rameters, where its sensitivity to each parameter is coupled to the 
others.

The complex lateral mode, the Dutch Roll, like the Short Period, 
spans the parameter space. According to Fig. 15 the frequency is 
dominated by its relationship to flight speed, varying from 2 Hz to 
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Fig. 14. Phugoid modal characteristics. (For interpretation of the colours in this fig-
ure, the reader is referred to the web version of this article.)

Fig. 15. Dutch Roll modal characteristics. (For interpretation of the colours in this 
figure, the reader is referred to the web version of this article.)

9 Hz when increasing the speed. The mode damping is primarily 
dependent on the speed and the CoG position, and is minimum for 
high speed and unstable CoG position.
Fig. 16. Roll subsidence/convergence modal characteristics. (For interpretation of the 
colours in this figure, the reader is referred to the web version of this article.)

Fig. 17. Spiral modal characteristics. (For interpretation of the colours in this figure, 
the reader is referred to the web version of this article.)

Table 8
Summary of model properties of identified primary mode sets.

Mode Time constant (s)

min max

Roll convergence 0 0.35
Spiral 0.3 4.5

The two real lateral modes, Roll Subsidence (Fig. 16) and Spiral 
(Fig. 17) are present throughout the speed and CoG range. Re-
tracting the span at low speeds and unstable CoG positions causes 
these two modes to form a complex conjugate pair. The figures 
indicate at high speed and unstable CoG position, the spiral time 
constant is at its highest, and the Roll subsidence is at its low-
est.

In summary of these modal characteristics, this data repre-
sents the characteristics related to a root locus of the modes in 
a parameter space of three dimensions. The interactions shown 
in these figures show the effect of varying parameters on the 
dynamic characteristics, and the potential interactions and modifi-
cations that can occur in a dynamic system. This shows that tradi-
tional idealised models of dynamic systems are modified and even 
breakdown within a multi-dimensional parameter space. With re-
spect to the algorithm, the nodes are connected by their adjacency 
to modes from a neighbouring system, which are essentially au-
tonomous. With simple deployment of the MAC parameter, rela-
tionships of modes in a multidimensional space can quickly be 
related for further analysis.

One problem that is highlighted by this investigation is the 
scaling problem. In this physical example, the eigenvector is com-
posed of both translational and rotational state parameters. These 
can be angles, linear translational displacements and rates. As the 
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Table 9
Summary of cycle run times.

Test case No. of nodes No. of 
comparisons

Total cycle 
time (s)

Time per 
comparison (s)

Time per 
comparison per 
node (s)

1st Dim 22 21 7.4397 × 10−2 3.5427 × 10−3 1.6103 × 10−4

2nd Dim 21 20 7.3151 × 10−2 3.6576 × 10−3 1.7417 × 10−4

3rd Dim 11 10 5.8274 × 10−2 5.8274 × 10−3 5.2976 × 10−4

1st Dim and 2nd Dim 22 × 21 = 462 1721 2.3129 × 101 1.3439 × 10−2 2.9089 × 10−5

1st Dim and 3rd Dim 22 × 11 = 242 871 6.0365 × 100 6.9305 × 10−3 2.8638 × 10−5

2nd Dim and 3rd Dim 21 × 11 = 231 830 5.6725 × 100 6.8343 × 10−3 2.9586 × 10−5

(1st Dim, 2nd Dim and 3rd Dim) 22 × 21 × 11 = 5082 57,971 7.6824 × 103 1.3252 × 10−1 2.6077 × 10−5

Fig. 18. Average timings on initial cycle per comparison and per node. (For interpretation of the references to colour in this figure, the reader is referred to the web version 
of this article.)
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MAC parameter is dependent on the relative magnitude and an-
gle in the eigenspace, dominant state parameters will affect the 
magnitude, in addition to the ability to reliably track a mode. Ad-
ditionally, comparing systems with comparable dynamic structure 
and modal response, but with significantly different systems con-
figuration (larger variation in mass, speed or flight configuration) 
can be difficult to compare two similar modes, due to the dif-
ferent interacting scales of a dimensional eigenvector. This may 
require the eigenvector to be re-scaled, and non-dimensionalised 
to normalise the result. Modifying the systems description to a 
mass-stiffness (M and K) representation can be used to normalise 
the result, such that the scale of the states in the eigenvector are 
comparable.

6.2. Performance

Deploying this practically by observing the performance over 1-, 
2- and 3-dimensions (Tables 3, 4 and 5) shows that increasing the 
dimensionality of the data-set has a more significant effect than 
the number of flight conditions. Therefore, the greater the dimen-
sional connectivity at a node, the more comparisons have to be 
interrogated, and so increases the time spent interrogating a node. 
The algorithm tested using MATLAB provides a practical solution 
for a 22 by 21 by 11 grid of points, in 1-, 2- and 3-dimensions 
within a few hours. It is expected that the algorithm deployed 
more efficiently could yield an order of magnitude improvement, 
enabling larger grids and more dimensions to be feasible.
Table 9 presents a summary of the timing data for the first cy-
cle of each test case. The first 3 test cases are a single dimension, 
followed by 3 two dimensional runs and the final run is performed 
over all three dimensions. The table shows the total number of 
node-to-node comparisons, total number of nodes, total time to 
complete the cycle, average time per comparison and the average 
time per comparison normalised by the number of nodes.

The results show that the time to complete increases with both 
the number of nodes as well as the number of comparisons. The 
number of comparisons is a function of the number of nodes in 
addition to the degree of each node to determine the number of 
unique node-to-node comparisons. For a structured uniform grid, 
Fig. 2 showed that the maximum number of connected nodes con-
nected to a single node increases from 2 to 26 as the dimensions 
are increased from one to three. The effect of this can be observed 
with the number of comparisons, where the factor by which the 
number of comparisons increases is greater than the equivalent 
factor of increase in number of nodes. Fig. 18 presents the average 
time taken per comparison (blue bars), and the average time taken 
per comparison normalised to the number of nodes in the space 
(red crosses).

The two and three dimensional test cases in Fig. 18 (supported 
by the numerical results presented in Table 9) shows that the av-
erage time per comparison normalised by the number of nodes 
is constant. This implies that the maximum time to complete a 
single cycle is the product of the number of nodes and the num-
ber of comparisons, multiplied by a constant time factor. Fig. 18
also shows the effect of dimensionality, where time per compari-
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son increases rapidly when progressing from the two to the three 
dimensional problem. The one dimensional test cases contradict 
these assertions. The reason for this is explained by an initial over-
head which is used to initiate each cycle. Because the initial over-
head is of the same order of magnitude as the one dimensional 
test cases, this results in greater average time per comparison, and 
average time per comparison normalised by number of nodes. This 
is also supported by these times increasing with decreasing num-
ber of nodes.

Parallelisation for the comparisons of system eigenstructures to 
compute the MAC parameter was quick, where all comparisons for 
a 3 dimensional parameter space were completed within 10 sec-
onds (for 5000+ comparisons). This was largely due to the simple 
parallelisation of the problem, which enabled each processor to be 
used for the entire duration of the loop. For the spanning algo-
rithm, the definition of the problem restricts the utilisation of the 
processors. Because each processor can only span a single mode, 
and this mode must be from the seed node that spawned the 
mode, a processor is only being utilised if the mode is still active. 
If a processor becomes inactive whilst other modes are still being 
processed, this processor will remain inactive until a new flight 
condition is investigated. Furthermore, if there are fewer modes 
than processors available, a number of processors will be inactive 
for that run. It is suggested that for improvement in the total time 
to solution, modifications to the parallelisation is necessary that 
utilise all processors throughout the run, reducing the total idle 
time of any single processor, for example in searching for the con-
nectivity of nodes.

7. Conclusions and recommendations

In this paper, integration of the MAC parameter within a span-
ning algorithm, applied to a flight dynamics problem was used to 
track dynamic multiple modes in 1-, 2- and 3-dimensional param-
eter space. Although the algorithm was only demonstrated for up 
to 3 dimensions, its application can be extended to automatically 
track modes over N-dimensions. It was shown that the complexity 
is affected by both the number of nodes/flight conditions to inves-
tigate, the number of dimensions these are distributed over and 
the number of modes found. It was shown that for the problem 
presented in this paper, that the time to solution was primarily 
dependent on the number of dimensions due to the functional 
relationship with the algorithm complexity. This meant using the 
algorithm for increasing dimensions resulted in a much greater run 
time. The test case had 12 modes, and so utilisation of the compu-
tational processing power was maximum while all of these solved 
over the entire parameter space. However, where fewer than 12 
modes (and thus processors) were being solved, or where some 
modes did not span the entire space, results in larger idle time of 
computational resources, and increasing number of cycles to solve 
the entire space. It is suggested that an alternative spanning algo-
rithm, which enables all processors to be utilised, and to minimise 
the potential of processors be idle, should be implemented. This 
may involve operating processors to solve single subspaces, where 
the solutions are then stitched. Another problem highlighted with 
the spanning algorithm used is that each node is only investigated 
with one of its neighbours. This leads to possibly connected mode 
spaces not being found due to failure in the connecting edges MAC 
comparison. Two suggested methods are either: 1) re-investigate 
failed connected nodes, re-running the algorithm if a connection 
can be established, 2) or to compare border nodes of completed 
identified sets at connected points.

The MAC was computed using raw, dimensional eigenvectors. 
As such, scaling between different states in the eigenvector can 
lead to the MAC deriving its “similarity” based on the most signif-
icant components numerically, with no real physical interpretation 
imposed. In reality, these eigenvectors are composed of variables 
with varying scales, and units used. Therefore, it is suggested to 
ensure proper handling of modal comparisons, that possible non-
dimensionalising and normalisation of this vector is performed, 
such that the MAC is representative of the relative dynamic state. 
Such an approach allows comparisons of the dynamic state for air-
craft of varying scales, for example, comparing the dynamic spec-
trum of a large and relatively fast aircraft, to that of a small UAV 
scale aircraft, such that a “Short Period” at one scale can be found 
at another.

Future work with this algorithm should focus on two primary 
aspects; 1) Reducing the complexity, or the effect of dimensional-
ity of the problem on the time to solution for a single processor. 
The current algorithm can solve a mode across the full span of 
the space in hours for a three dimensional problem, where it takes 
less than a minute across two. Reducing the effect of dimension-
ality on the algorithm complexity, will enable the algorithm to 
extend feasible its range of application to problems greater than 
3 dimensions. 2) Modifying the parallelisation approach to ensure 
maximum utilisation of the computational resources, and minimise 
processor idle time.
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Appendix A. Spanning algorithm pseudo-code

Algorithm 1 Spanning algorithm: main algorithm.
1: function SpanningAlgol

2: while Modes Unassigned do
3: SeedMode()
4: TrackMode()

5: end while
6: end function

Algorithm 2 Spanning algorithm: seed mode.
1: function SeedMode

2: for i = 1 : noOfFltCons do � Go through flight conditions
3: for j = 1 : noOfModes do � Go through modes in flight condition index i
4: if modeIdxFlag(i, j) = false then � Test if mode j in flight 

condition i has been indexed
5: unModeIdx = unModeIdx + 1 � Incrament mode index by 1
6: modeIdx(i, j) = unModeIdx � Assign mode index to unassigned 

mode
7: modeIdxFlag(i, j) = true � Flag mode as assigned
8: ConnectCons(i, cmpModeIdx, openForInspFlag) � Locate connected 

mode in other flight conditions
9: end if

10: end for
11: end for
12: end function
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Algorithm 3 Spanning algorithm: connect conditions.
1: function ConnectCons(i,cmpModeIdx,openForInspFlag)
2: for m = 1 : noOfFltCons do � Search flight conditions for connected
3: if connIdxFlag(i, m) = true & connRunFlag(m) = false then � Test if 

flight conditions are connected and if flight conditions has already bee run for 
this instance

4: openForInspFlag(m) = true � Set conditions as open for inspection
5: cmpModeIdx(m, 1) = i � Give position of condition to compare flight 

condition m with
6: cmpModeIdx(m, 2) = j � Give mode index j in position i to compare 

modes in flight condition m
7: end if
8: end for
9: return cmpModeIdx, openForInspFlag

10: end function

Algorithm 4 Spanning algorithm: track mode.
1: function TrackMode

2: while openForInspFlag(:) = true do � While at least one condition is open 
for inspection keep looping

3: for i = 1 : noOfFltCons do � For all conditions test if open and then 
perform model comparison

4: if openForInspFlag(i) = true then � Test if condition i is open for 
inspection

5: cmpModeIdx(m, 1)

6: cmpModeIdx(m, 2)

7: CompareMAC(i), � If open then compare condition i with the 
condition that was connected to it

8: openForInspFlag(i) = false � Close mode for inspection
9: connRunFlag(i) = true � Mark condition as run

10: end if
11: end for
12: end while
13: end function

Algorithm 5 Spanning algorithm: compare MAC.
1: function CompareMAC(i, m, n)
2: for j = 1 : noOfModes do
3: if MACIdxCon(i, m)( j, n) = true then
4: modeIdx(i, j) = unModeIdx
5: modeIdxFlag(i, j) = true
6: ConnectCons(i, cmpModeIdx, openForInspFlag)

7: end if
8: end for
9: end function

Appendix B. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.ast.2015.08.013.
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