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Eigenvalue problems play an important role in the dynamic analysis of engineering

systems modeled using the theory of linear structural mechanics. When uncertainties

are considered, the eigenvalue problem becomes a random eigenvalue problem. In this

paper the density of the eigenvalues of a discretized continuous system with uncertainty is

matrices. An analytical expression involving the Stieltjes transform is derived for the

density of the eigenvalues when the dimension of the corresponding random matrix

becomes asymptotically large. The mean matrices and the dispersion parameters asso-

ciated with the mass and stiffness matrices are necessary to obtain the density of the

eigenvalues in the frameworks of the proposed approach. The applicability of a simple

eigenvalue density function, known as the Marc̆enko–Pastur (MP) density, is investigated.

The analytical results are demonstrated by numerical examples involving a plate and the

tail boom of a helicopter with uncertain properties. The new results are validated using an

experiment on a vibrating plate with randomly attached spring–mass oscillators where

100 nominally identical samples are physically created and individually tested within a

laboratory framework.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Uncertainties are unavoidable in the description of complex dynamical systems such as helicopters and aircrafts. Within
the scope of probabilistic methods, two broad approaches have been adopted in the literature, namely the parametric
approach and the non-parametric approach. In the parametric approach, uncertainties in geometric parameters, material
properties such as Poisson’s ratio, Young’s modulus, mass density and damping coefficients are modeled using random
variables or random fields. These uncertainties can be systematically propagated using the stochastic finite element method
[1,2]. Non-parametric or model uncertainties do not explicitly depend on the system parameters. For example, there can be
unquantified errors associated with the equation of motion (linear or nonlinear), in the damping model (viscous or non-
viscous), in the model of structural joints. Model uncertainties may be tackled by the so-called non-parametric method such
as the random matrix based approach pioneered by Soize [3,4] and subsequently adopted by others [5–8]. The equation of
motion of a damped n-degree-of-freedom linear dynamic system can be expressed as

M €qðtÞþC _qðtÞþKqðtÞ ¼ fðtÞ, (1)
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where fðtÞ 2 Rn is the forcing vector, qðtÞ 2 Rn is the response vector and M 2 Rn�n, C 2 Rn�n and K 2 Rn�n are the mass,
damping and stiffness matrices respectively. In order to completely quantify the uncertainties associated with system (1) we
need to have the probability laws of the random matrices M, C and K. Using the parametric approach, such as the stochastic
finite element method, one usually obtains a problem specific covariance structure for the elements of system matrices. This
can be obtained either by random variables or by discretizing the random fields using the Karhunen–Lo�eve expansion. The
non-parametric approach, on the other hand, results in a central Wishart distribution for the system matrices, see e.g. [3,4]
for the justification of the use of approach in structural mechanics.

For stochastic structural dynamic problems, the study of random eigenvalues play a crucial role as the dynamic
response is governed by the eigenvalues. The undamped eigenvalue problem corresponding to Eq. (1) can be given by

K/j ¼o2
j M/j, j¼ 1;2, . . . ,n, (2)

where o2
j and /j are respectively the eigenvalues and mass-normalized eigenvectors of the system. The parametric

uncertainties and related random eigenvalue problems are considered in a number of papers (see [9–19] and references
therein for example). However, for the Wishart random matrix based non-parametric approach, till date only Monte Carlo
simulation based methods are used for the eigenvalue problem. Since the Wishart random matrix based method for
stochastic structural dynamics is now a well established method, it may be useful to develop understanding on the nature
of the eigenvalues for further application of this method.

The aim of this paper is to develop analytical methods for the analysis of the density of the eigenvalues when the
system matrices are modeled by Wishart random matrices, in particular, to derive the large size asymptotic form of the
density under certain assumptions. This may help further understanding on the Wishart random matrix model for
stochastic structural dynamical systems. The outline of the paper is as follows. A brief overview of random matrix models
in probabilistic structural dynamics is given in Section 2. The density of the eigenvalues are discussed Section 3. In Sections
4 and 5 the accuracy of the proposed results regarding the density of the eigenvalues are verified numerically and
experimentally. Based on the study taken in the paper, a set of conclusions are drawn in Section 6. The details of derivation
of results of Section 3 are presented in Appendix A.

2. The Wishart random matrix model

2.1. Background on Wishart distribution

Random matrices were introduced by [20] in the context of multivariate statistics. However, the Random Matrix Theory
(RMT) was not used in other branches until 1950s when [21] published his works (leading to the Nobel prize in Physics in
1963) on the eigenvalues of random matrices arising in high-energy physics. Using an asymptotic theory for large
dimensional matrices, Wigner was able to bypass the Schrödinger equation and explain the statistics of measured atomic
energy levels in terms of the limiting eigenvalues of these random matrices. Since then research on random matrices has
continued to attract interests in multivariate statistics, physics, number theory and more recently in mechanical and
electrical engineering. We refer the review works [22–31] for the history and applications of random matrix theory.

Among the various random matrix models, Wishart random matrix model is particularly relevant to structural
dynamics due to its symmetry and positive-definiteness property. If X is a n�p Gaussian random matrix with identical
and independent distribution (i.i.d.) entries, then the matrix S¼XXT has the Wishart distribution. The probability density
function of a Wishart random matrix can be expressed as

pSðSÞ ¼ 2ð1=2ÞnpGn
1

2
p

� �
9R9ð1=2Þp

� ��1

9S9ð1=2Þðp�n�1Þ
etr �

1

2
R�1S

� �
: (3)

This distribution is usually denoted as S�Wnðp,RÞ. Here p and R are respectively the scalar and matrix parameter of the
Wishart distribution. For a realistic distribution R should be a n�n positive definite matrix and pZn. We refer to a recent
book [28] for more detailed discussions on the eigenvalues of Wishart random matrices.

2.2. Parameter selection for structural dynamics

We assume that the baseline model of the system under consideration is known. Since the proportional damping model
is assumed, the baseline model consists of the mass and the stiffness matrices given by n�n matrices M0 and K0. These
matrices are in general large banded matrices and can be obtained using the conventional finite element method [32–35].
In addition to this, it is assumed that the dispersion parameters associated with these matrices are known. The dispersion
parameter, proposed by Soize [3,4], is a measure of uncertainty in the system and it is similar to the normalized standard
deviation of matrix. For example, the dispersion parameter associated with the mass matrix M is defined as

d2
M ¼

EfJM�M0J
2
Fg

JM0J
2
F

, (4)

where J � JF denotes the Frobenius (or Hilbert–Schmidt) norm of a matrix, and the symbol Ef� � �g denotes the operation of
averaging with respect to the corresponding probability distribution. The dispersion parameter dK associated with the
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stiffness matrix K can be defined in a similar way. The dispersion parameters dM and dK can be obtained using the
stochastic finite element method [7,8] or experimental measurements [5,36]. Given the dispersion parameters dM and dK

and the baseline mass and stiffness matrices M0 and K0, the parameters for the random matrices M and K can be obtained
in closed form. Various parameter selection options have been investigated and optimal parameters can be obtained via
closed form expressions using optimisation approaches [7].

Over the past decade, it has been established in a number of works (see e.g. [3–8]) that one obtains a fairly reasonable
model in structural dynamics assuming that the matrices K and M are the Wishart matrices, widely known in multivariate
analysis and random matrix theory and its applications [23,25–27,29–31,37,38]. An equivalent form of (2) is the standard
eigenvalue problem for the matrix

N¼M�1=2KM�1=2: (5)

It turns out that the eigenvalue problem (2) (or (5)) is fairly difficult to solve analytically when both K and M are Wishart
matrices. Therefore, the possibility of using the single Wishart is investigated here.

Note that if K and M are the Wishart matrices, the matrix N is not Wishart (see e.g. [37] for its distribution). Let us
consider the simplest case where the mass matrix M is deterministic. In this case the dynamical matrix N is also a Wishart
matrix. In a recent work [8], however, the possibility of N itself being a Wishart matrix for the general case was
investigated. Since N is a positive definite matrix, a Wishart can be fitted using the maximum entropy principle or
otherwise [7], just like the mass and stiffness matrices provided the dispersion parameter and the baseline value are
known. It was observed that such a single Wishart matrix also provides a reasonable model [8]. Thus the proposed
approach does not strictly follow from the original Wishart matrix model of the system matrices and should be considered
as one used for mathematical simplicity and computational efficiency, providing the qualitative (and in some cases
quantitative) description of stochastic dynamics. The detailed derivation of such generalized Wishart matrix and its
numerical and experimental validation can be found in Ref. [8].

We consider an equivalent Wishart distribution for the matrix N�Wnðp,RÞ. We refer to the books by Muirhead [26],
Girko [25], Gupta and Nagar [37] and Tulino and Verdú [23] for discussions on Wishart random matrices and related
mathematical topics. The parameters p and R can be obtained from the available data regarding the system, namely M0,
K0, dM , and dK . Following Ref. [8], we have

N�Wnðp,RÞ, (6)

where

R¼X2
0=y, p¼ nþ1þy, and y¼

ð1þbÞ
d2
�ðnþ1Þ: (7)

The matrix X0 is a diagonal matrix containing the undamped natural frequencies of the baseline model o0j
. The constant b

and the dispersion parameter d can be obtained as

b¼
Xn

j ¼ 1

o2
0j

0
@

1
A2,Xn

j ¼ 1

o4
0j

(8)

and

d¼
ðp2

1þðp2�2�2nÞp1þð�n�1Þp2þn2þ1þ2nÞb
p2ð�p1þnÞð�p1þnþ3Þ

þ
p2

1þðp2�2nÞp1þð1�nÞp2�1þn2

p2ð�p1þnÞð�p1þnþ3Þ
: (9)

Here the constants

p1 ¼
1

d2
M

f1þfTrðM0Þg
2=TrðM2

0Þg and p2 ¼
1

d2
K

f1þfTrðK0Þg
2=TrðK2

0Þg: (10)

These relationships completely define all the parameters of the Wishart random matrix necessary to study the density of
the eigenvalues. Dynamical response obtained using this generalized Wishart matrix has been validated against the
stochastic finite element method, full Wishart matrices and experiential results [8]. Here we take this model to study the
density of the eigenvalues.

3. Density of the eigenvalues of Wishart matrices

The spectral properties of the Wishart random matrix N play a key role in the uncertainty quantification of stochastic
dynamical systems. For low frequency vibration problems and if the size of matrices and/or the amount of uncertainties is
not too large, the probability distributions of individual eigenvalues provide a useful physical insight. However, for random
systems when the system parameters vary, the eigenvalues may show the veering effect [39,40]. Additionally, for higher
eigenvalues of a random system and for sufficiently large matrices and/or the amount of uncertainties, the eigenvalues
start to statistically overlap each other [41]. Soize [42] showed that for moderately uncertain system (d2

k ¼ 0:25), there can
be significant statistical overlap even for eigenvalue number as low as 30. When there is mode veering and significant
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statistical overlap of the eigenvalues, the physical significance of the probability distribution of individual ordered

eigenvalues becomes questionable. For instance, the perturbation type approach [43,44] may seem less valid as the
standard deviation of the eigenvalues becomes more than the mean spacing between the eigenvalues. In this case an
alternative approach which considers the density of a collection of eigenvalues [27] seems more meaningful. This type of
approach may be particularly useful for aerospace structures such as helicopters and spacecrafts as they are often
subjected to high frequency vibrations which may excite many higher modes. For example, it is estimated that NASA’s
Saturn launch vehicle had about 500,000 modes in the range of 0–2 kHz [45].

Motivated by these, we will discuss in this section the density of the eigenvalues of linear dynamical systems modeled
by Wishart random matrices. The density is the simplest but quite important characteristic of a random dynamical system,
providing primary information on their eigenvalue distribution and determining a number of other properties, in
particular, the response statistics. The eigenvalue density of the Gaussian Orthogonal Ensembles (GOE) matrices have been
used previously [46,47] to obtain dynamic response of random systems. In the similar way, the results to be derived in this
paper could be useful to obtain response statistics when the eigenvalue distribution is modeled using the Wishart random
matrix ensemble. In the following subsections, only the main results are described. The detailed derivations are given in
Appendix A.
3.1. Linear eigenvalue statistics

In this section linear statistics of eigenvalues are considered. The interest is in the limit when the dimension of the
system is very large, that is, n-1. Such large systems are widely used in many high-fidelity numerical models of
aerospace and mechanical systems. This is particularly true for vibration problems where a fine mesh size in the finite
element model is necessary to capture short wave lengths. We define the density of the random eigenvalues as

rnðlÞ ¼ n�1
Xn

l ¼ 1

dðl�lðnÞl Þ, (11)

where

lðnÞ1 , . . . ,lðnÞn (12)

are the random eigenvalues (natural frequency squared) of the corresponding stochastic dynamical system, and d is the
Dirac delta-function. We intend to find analytical descriptions of the following two moments:

ðiÞ EfrnðlÞg as n-1, (13)

ðiiÞ Efr2
nðlÞg as n-1: (14)

The problems (13) and (14) are well studied in the random matrix theory and its applications (see e.g. [22–31] and
references therein) as well as in the random operator theory (see e.g. [48,49] and references therein). We outline below the
results, which are pertinent for the stochastic structural dynamics and to the best of our knowledge has not yet received
detailed attention.

Note that while (13) is well defined, this is not the case for (14). Indeed, we have by definition

r2
nðlÞ ¼ n�2

Xn

l1 ,l2 ¼ 1

dðl�lðnÞl1
Þdðl�lðnÞl2

Þ ¼ n�2
Xn

l1 ¼ 1

d2
ðl�lðnÞl1

Þþn�2
X
l1al2

dðl�lðnÞl1
Þdðl�lðnÞl2

Þ,

and we see that summand d2
ðl�lðnÞl1

Þ of the first sum on the r.h.s. is not well defined (it is often said that the square of
delta-function is infinity).

To avoid this we have to ‘‘smooth’’ the delta-function by replacing it with a regular function having a well pronounced
peak at zero. If we denote this function u, then we have

n�1
Xn

l ¼ 1

uðl�lðnÞl Þ ¼

Z
uðl�mÞrnðmÞ dm (15)

instead of rn of (11). The smoothing is unavoidable, in particular, when one computes rnðlÞ numerically, because one first
finds the eigenvalues and then draws a continuous envelope curve which corresponds to smoothing rn with a function u

whose peak has a width bigger that the distance (of the order Oðn�1Þ) between the eigenvalues. This is why we will not
deal with rn itself but rather with so-called normalized linear eigenvalue statistics, defined for any sufficiently smooth test

function j as

Nn½j� :¼ n�1
Xn

l ¼ 1

jðlðnÞl Þ ¼

Z
jðmÞrnðmÞ dm: (16)
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Note that rn of (11) corresponds formally to jðmÞ ¼ dðl�mÞ for a given l and the smoothed density (15) of rn

corresponding to jðmÞ ¼ ulðmÞ :¼ uðl�mÞ. Another motivation to consider linear statistics is that we need quite often not
the density rn itself but the integrals of products of rn and certain known function (observables), or, in other words, the
sum over the spectrum of certain function of frequency. We consider now the density of eigenvalues within these general
frameworks of the random matrix theory.

3.2. The self-averaging property of the eigenvalue density

We start from an appropriate form of problem (14), since it is not only of interest in its own, but also will also be used in
solving problem (13). We consider the variance

VfNn½j�g ¼ Ef9Nn½j�9
2
g�9EfNn½j�g9

2
(17)

of a linear eigenvalue statistic of Wishart matrices. This is the simplest measure of the fluctuations of Nn½j� around its
expectation EfNn½j�g. It is shown in Appendix A that VfNn½j�g vanishes sufficiently fast in the limit

n-1, p-1, p=n-c 2 ð1,1Þ: (18)

Namely, we have the bound

VfNn½j�gr
4

bn2p
Tr R2 max

l2R
9j0ðlÞ9

� �2

, (19)

where b¼ 1 for real symmetric and b¼ 2 for hermitian Wishart matrices.
It can be shown that if we want to keep the spectrum of N bounded for all n,p of (18) rather than escaping to infinity, we

have to assume that in the limit (18)

max
n

n�1 Tr R2rCo1: (20)

Similarly, in fact stronger, condition is necessary to find (13). Assuming this and

max
l2R

9j0ðlÞ9o1, (21)

we obtain from (19) that

VfNn½j�g ¼Oðn�2Þ (22)

under condition (18), (20) and (21).
Note that if the eigenvalues (12) of N were i.i.d. random variables, then the variance of their linear statistics is equal to

n�1Vfjðl1Þg, i.e., is Oðn�1Þ for any j such that Vfjðl1Þgo1 (see (25) and (26)). Thus, (22) is the manifestation of strong
statistical dependence between the eigenvalues of Wishart random matrices, known also as the repulsion of eigenvalues
and/or the rigidity of spectrum (see e.g. [27]).

It is also worth to emphasize that the order Oðn�2Þ in (22) is the case if the test-functions satisfy (21). Consider, for
instance, the Heaviside function

jHðlÞ ¼
j0, l 2 ½a,b�,

0 otherwise,

(

as j in (16). In this case Nn½j� is just the relative number Nnða,bÞ of eigenvalues of N falling in the interval [a,b]. It can be
shown that at least for R¼ a2In we have

VfNnða,bÞg ¼
log n

p2n2
ð1þoð1ÞÞ, n-1: (23)

Thus the rate of decay of the variance of the normalized linear eigenvalue statistics of N depends on the smoothness of the
test function but it is faster than Oðn�1Þ, i.e., the rate for i.i.d. random variables, for sufficiently large class of continuous test
functions [28].

The fact that the fluctuations of linear eigenvalue statistics around their mean are Oðn�2Þ as in (22) implies that for large
systems the density is effectively deterministic. This property is known as the self-averaging property in random matrix
theory and the theory of disordered systems (see e.g. [27]). The property is similar to the Law of Large Numbers of
probability theory, according to which if x1,x2, . . . ,xn are independent identically distributed (i.i.d.) random variables, then
the random variable

Ln ¼ n�1
Xn

l ¼ 1

xl (24)

tends to the non-random limit Efx1g as n-1. The simplest manifestation of this is the form of variance

VfLng :¼ Ef9Ln9
2
g�9EfLng9

2
¼ n�1Vfx1g ¼ n�1ðEf9x19

2
g�9Efx1g9

2
Þ (25)
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of Ln. Indeed, it follows from the above that if Ef9x19
2
g is finite, then

VfLng ¼ Oðn�1Þ, n-1, (26)

i.e., the fluctuations of Ln are negligible for large n. In Section 4 we demonstrate the self-averaging property using
numerical and experimental methods.

3.3. Asymptotic density of the eigenvalues

Let N be an n�n real symmetric or hermitian Wishart matrix with p degrees of freedom and an n�n matrix R, i.e.,
N�Wnðp,RÞ or

N¼ p�1R1=2XXTR1=2, (27)

here X¼ fXjag
n,p
j,a ¼ 1 is the n�p matrix, whose entries are the standard Gaussian random variables, determined by the

relations

EfXjag ¼ 0, EfXj1a1
Xj2a2
g ¼ dj1j2

da1a2
, (28)

and S is positive definite.
All the parameters of N have been explicitly defined in Section 2 and the model has been numerically and

experimentally validated [8]. Consider the linear statistic (16) of eigenvalues of X, corresponding to a real or complex
valued test function j. It can be shown (see [29,50,51] and Appendix A) that

lim
n-1,p-1,p=n-c2½1,1Þ

EfNn½j�g ¼
Z

jðlÞrðlÞ dl, (29)

where r is the limiting eigenvalue density of N that can be found by solving a functional equation for its Stieltjes
transform [23]

f ðzÞ ¼

Z rðlÞ dl
l�z

, Iza0: (30)

Given f, one can find r from the inversion formula

rðlÞ ¼ p�1If ðlþ i0Þ: (31)

Assuming that the limiting eigenvalue density of R exists and denoting it n, we can write the equation for f of (30) as (see
Appendix A)

f ðzÞ ¼ c

Z nðsÞ ds
sððc�1Þ�zf ðzÞÞ�cz

: (32)

The equation has to be solved in the class of functions, analytic for Iza0 and such that

If ðzÞIz40, Iza0: (33)

Given the eigenvalue density n of R which is related to the mean system matrix, Eqs. (32) and (33) give an algorithm to
find the density of eigenvalues of the corresponding random system. In Eqs. (32) and (33) the eigenvalue density n of the
baseline model can be viewed the ‘‘input data’’ and the Stieltjes transform f(z) of (32), determining the density r of the
random eigenvalues via (31), can be viewed as the ‘‘output data’’. In view of the definition of R in Eq. (7), one can relate the
eigenvalues R with the undamped natural frequencies as

fs1,s2, . . . ,sng ¼ fo2
01
=y,o2

02
=y, . . . ,o2

0n
=yg: (34)

The value of y in Eq. (7) is related to the dispersion parameter of the random matrix. From the values of fsjg
n
j ¼ 1, the input

density n can be obtained from their normalized histogram if n is large enough. This in turn implies that n can be obtained
from the conventional deterministic finite element approach. Therefore, using this approach, the conventional finite
element method can be used to obtain the eigenvalue density of the corresponding random system.

3.4. The Marc̆enko–Pastur (MP) density

Eqs. (32) and (33) is hard to solve in closed form for an arbitrary n. Numerical methods are normally necessary to solve
the equation and obtain the limiting density of the random eigenvalues from (31). We consider the simplest case where
the profile of the undamped eigenvalues is asymptotically ‘flat’, hence

nðsÞ ¼ dðs�a2Þ: (35)

This is often the case with many systems in the high frequency, for example, the rectangular plate considered in the next
section. For this case the matrix R becomes the unit matrix times a240, that is R¼ a2In. Using this, Eq. (32) reduces to the
quadratic equation

a2zf 2
ðzÞþðczþa2ð1�cÞÞf ðzÞþc¼ 0, (36)
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whose solution, satisfying (33), is

f ðzÞ ¼
�ðczþa2ð1�cÞÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðczþa2ð1�cÞÞ2�4a2cz

q
2a2z

, (37)

where the branch of square root is defined by its asymptotic czþO(1), z-1.
Substituting f(z) from Eq. (37) into Eq. (31) yields that, for c41

rðlÞ ¼ c

2pa2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ�lÞðl�a�Þ

p
, l 2 ½a�,aþ �,

0, l=2½a�,aþ �,

(
(38)

where

a7 ¼ a2ð17c�1=2Þ
2: (39)

For c¼1 one obtains

rðlÞ ¼ 1

2pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4a2�lÞ=l

p
, l 2 ð0;4a2�,

0, l=2ð0;4a2�:

(
(40)

The density of eigenvalues given by Eq. (38) or Eq. (40) is now known as Marc̆enko–Pastur (MP) density [50].
Recall that c¼p/n and p given by Eq. (7). Therefore p is always greater than n and we have cZ1. As a result, the MP

density given by Eq. (38) need to be used. The parameters can be obtained by looking at the domain of validity, namely
½a�,aþ �. Suppose o0min

and o0max
are the lowest and the highest natural frequency of the baseline dynamical system under

consideration. Since lj ¼o2
j we have

a� ¼o2
0min

and aþ ¼o2
0max

: (41)

Using these values, and solving the two equations given by (39) one obtains

c¼
o0max

þo0min

o0max
�o0min

� �2

and a¼ ðo0max
þo0min

Þ=2: (42)

Eq. (38), together with (41) and (42) completely defines the MP density for the eigenvalues of a stochastic linear dynamical
system. The validity of this density function will be examined in the next section using numerical and experimental
studies.
4. Numerical and experiential studies: a rectangular plate with uncertain properties

Given the density of undamped eigenvalues n, we derived in the previous section Eq. (32) for the density of eigenvalues
of the corresponding random system (the ‘output density’). The density of undamped eigenvalues (the ‘input density’) can
be obtained using the finite element method together with the dispersion parameter. In general numerical methods are
necessary to solve Eq. (32). Since the equation is in terms of the Stieltjes transform, an explicit form of the output density is
not easy to find. This is why a simple formula (38) was derived for a special case where the input density is (35). It was also
proved that for large random dynamical systems, the density of eigenvalues of the random system reaches a non-random
limit. In this section we examine the validity of these results using numerical examples and an experimental study. We
also verify if the MP density (40) is valid for structural dynamic systems. The analytical results derived in the previous
section is based on asymptotic theory, that is, when n is infinitely large. On the contrary, the numerical examples
considered here are for finite values of n.

A rectangular cantilever steel plate is considered to illustrate the convergence of the eigenvalue-density. The deterministic
properties are assumed to be E ¼ 200� 109 N=m2, m ¼ 0:3, m ¼ 7860 kg=m3, t ¼ 3:0 mm, Lx¼0.998 m, Ly¼0.59 m. The
discretized model has 4650 degrees-of-freedom. The Wishart random matrix model given by Eq. (6) has a parameter matrix
which is a general diagonal matrix. The density of eigenvalues of such matrices cannot be obtained by closed-form expression.
In general one can only define them implicitly involving Stieltjes transform or obtain by direct numerical simulation. Another
simpler approximation investigated in Ref. [8] is when the parameter matrix R is a scalar times an identity matrix, that is
R¼ aIn. For this simplified case the density of the eigenvalues can be given the MP density (38). The constants appearing in this
equation can be obtained from Eqs. (41) and (42). In Fig. 1 the density of first 40 and 600 eigenvalues of the deterministic
system is compared with the MP density (38). The histograms are computed from the eigenvalues obtained using the finite
element method. The Matlab

TM function ksdensity is used to obtain the density (the dashed line). It can be seen that the
simple MP density function agrees reasonably well with the Finite Element results. Clearly with 40 eigenvalues the density is
not very accurate, as can be seen from the histogram in Fig. 1(a). When large number of eigenvalues are used, as in Fig. 1(b), the
pattern of the density function becomes obvious from the histogram. For this particular simple example of a plate, this can also
be explained using analytical expressions.
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Fig. 1. The density of eigenvalues of the baseline plate model. (a) Density of the first 40 eigenvalues, (b) density of the first 600 eigenvalues.
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The (non-normalized) density of the natural frequencies (square root of the eigenvalues) of a plate can be obtained
using the analytical expression derived by Xie et al. [52] as

nðoÞ ¼ Lxky

4p

ffiffiffiffiffiffiffiffiffi
mth

D

r
þ

1

2

rth

D

� �1=4 Lxþky

p

� �
o�1=2, (43)

where D¼ Et3
h=ð12ð1�m2ÞÞ. The quantity nðoÞ is also known as the modal density. The constant modal density for plates,

often assumed in many approximate methods for high-frequency vibration analysis, only arises when frequency is high
enough so that only the first term dominates in Eq. (43). To convert Eq. (43) to a probability density function comparable
to those shown in Fig. 1, we have to (a) first perform a change of variable l¼o2, and (b) normalize the resulting function
so that the total area under the curve is unity. Considering the transformation l¼o2 and noting that we are interested
only in the positive values, one can derive (see for example [53])

rðlÞ ¼ 1

cp

nð
ffiffiffi
l
p
Þffiffiffi

l
p , (44)

here cp, the normalization constant, is derived such that the expression (44) results into unity when integrated between
lmin and lmax. We can show that

rðlÞ ¼ 1

cp

Lxky

4p

ffiffiffiffiffiffiffiffiffi
mth

D

r
l�1=2

þ
1

2

rth

D

� �1=4 Lxþky

p

� �
l�3=4

( )
, (45)

where

cp ¼
Lxky

2p

ffiffiffiffiffiffiffiffiffi
mth

D

r
ðl1=2

max�l
1=2
minÞþ2

rth

D

� �1=4 Lxþky

p

� �
ðl1=4

max�l
1=4
minÞ: (46)

Eq. (45) is plotted in Fig. 1 by a solid line. Observe that the density obtained using all the approaches match well. The
results in Fig. 1 show that Wishart random matrix model can be used even in the lower frequency range where the modal
density is not constant.

From the numerical results we observe that a simple Wishart random matrix model leading to the MP density (38) is
not a very bad approximation when compared to exact analytical expression. However that unlike Eq. (45), which is only
applicable to a rectangular plate, the MP density (38) is applicable to a general positive definite system. It only uses the
information regarding the minimum and maximum of the eigenvalues. We refer the readers to the book by Tulino and
Verdú [23] for further discussion on the generality of the MP density.

Two different cases of uncertainties are considered next. In the first case it is assumed that the material properties are
randomly inhomogeneous. In the second case we consider that the plate is ‘perturbed’ by attaching spring–mass oscillators
at random locations. The stochastic finite element method is used for the first case, while experimental method is used for
the second case.
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4.1. Plate with randomly inhomogeneous material properties

It is assumed that the Young’s modulus, Poisson’s ratio, mass density and thickness are random fields of the form

EðxÞ ¼ Eð1þEEf 1ðxÞÞ, mðxÞ ¼ mð1þEmf 2ðxÞÞ, (47)

mðxÞ ¼mð1þEmf 3ðxÞÞ and tðxÞ ¼ tð1þEtf 4ðxÞÞ: (48)

The two dimensional vector x denotes the spatial coordinates. The strength parameters are assumed to be EE ¼ 0:10, Em ¼ 0:10,
Em ¼ 0:08 and Et ¼ 0:12. The random fields f iðxÞ, i¼ 1, . . . ,4 are assumed to be correlated homogeneous Gaussian random
fields. The autocorrelation function of each random fields in each direction is assumed to be an exponentially decaying function

Cf i
ðx1,x2Þ ¼ e�ð9x1�x29Þ=mxi : (49)

It is assumed that the correlation length mxi
is 0.2 times the lengths in each direction. The exponential decay in the correlation

function in Eq. (49) arises from the practical fact that the statistical correlation in the value of a particular property is expected to
decrease the further the points become. The random fields are simulated by using the Karhunen–Lo�eve expansion [1,53] involving
uncorrelated standard normal variables. A 5000-sample Monte Carlo simulation is performed to obtain the eigenvalues of the
system. The quantities EðxÞ, rðxÞ and tðxÞ are positive while �1rnðxÞr1=2 for all x. Due to the bounded nature of these
quantities, the Gaussian random field is not an ideal model for these quantities. However, due to small variability considered for
these parameters, the probability that any of these quantities become non-physical is small. We have explicitly verified that all
the realizations of these four random fields are physical in nature in our Monte Carlo simulation. In Fig. 2, 100 samples of the
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density of first 40 and 600 eigenvalues are shown, alongside the fitted MP density and density obtained from the baseline model.
The numerical results shown here confirm theoretical results derived in the previous section. A small part of the density
corresponding to the random samples have been zoomed for illustration. The proximity of the curves arising from the random
sample corresponds to the self-averaging property proved in Section 3.2. Recall that the variance of the density of the eigenvalues
around the mean decays in Oðn�2Þ. We observe that the self-averaging property manifests itself even for 40 eigenvalues. The
validity of the simple MP density (38) is also confirmed by Fig. 2. We can observe that for the bulk of the spectrum, the densities
of the random system are fairly close to the MP density. From these results we conclude that MP density can represent
the eigenvalue density of stochastically perturbed dynamical system considered here. Next we investigate this using an
experiential study.
4.2. Plate with randomly attached spring–mass oscillators: experimental study

We consider the dynamics of a steel cantilever plate with homogeneous geometric (i.e., uniform thickness) and
constitutive properties (i.e., uniform Young’s modulus and Poisson’s ratio) described in the previous section. This uniform
plate defines (as considered in the numerical studies in the previous section) the baseline system. The baseline model is
perturbed by a set of spring–mass oscillators with different natural frequencies and attached randomly along the plate.
The details of this experiment have been described in [54]. Here we give a very brief overview. The overall arrangement of
the test-rig is shown in Fig. 3(a).

The plate is clamped along one edge using a clamping device. The clamping device is attached on the top of a heavy concrete
block and the whole assembly is placed on a steel table. The plate weights about 12.28 kg and special care has been taken to
ensure its stability and minimizing the vibration transmission. In total 10 oscillators are used to simulate uncertainty in the
system. The spring is glue-welded with a magnet at the top and a mass at the bottom. The magnet at the top of the assembly
helps to attach the oscillators at the bottom of the plate repeatedly without much difficulty. The stiffness of the 10 springs used
in the experiment are 16.800, 09.100, 17.030, 24.000, 15.670, 22.880, 17.030, 22.880, 21.360 and 19.800 kN/m. The oscillating
mass of each of the 10 oscillators is 121.4 g. Therefore the total oscillating mass is 1.214 kg, which is 9.8 percent of the mass of
the plate. The natural frequencies of the 10 oscillators are obtained as 59.2060, 43.5744, 59.6099, 70.7647, 57.1801, 69.0938,
59.6099, 69.0938, 66.7592 and 64.2752 Hz. The springs are attached to the plate at the pre-generated nodal locations using the
small magnets located at the top of the assembly. The small magnets (weighting 2 g) are found to be strong enough to hold the
121.4 g mass attached to the spring below over the frequency range considered. One hundred realizations of the oscillators are
created (by hanging the oscillators at random locations) and tested individually in this experiment. A 32 channel LMSTM [55]
system and a shaker is employed to perform the modal analysis [56–58]. We used the shaker to act as an impulse hammer. The
shaker was driven by a signal from a SimulinkTM and dSpaceTM system via a power amplifier. It generated impulses at a pulse
rate of 20 s and a pulse width of 0.01 s. As seen in Fig. 3(a), 6 accelerometers are used as the response sensors. The signal from
the force transducer is amplified using an amplifier while the signals from the accelerometers are directly input into the LMS
system. For the data acquisition and processing, LMS Test Lab 5.0 is used. In the Impact Scope, we have set the bandwidth to
8192 Hz with 8192 spectral lines (i.e., 1.00 Hz resolution). Five averages are taken for each frequency response function (FRF)
measurement. The amplitude of the driving-point FRF of the baseline system, FRFs corresponding to 100 realizations of the
random system and the mean FRF amplitude is shown in Fig. 3(b).
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The natural frequencies have been extracted [36] from the baseline FRF and each of the 100 measured FRFs shown in
Fig. 3(b). The FRF corresponding to the bare plate (the baseline model) and the ensemble mean obtained from the 100
measured FRF are also shown in the paper. However, in this paper we do not consider the problem of calculating FRF
statistics from the density of the eigenvalues. Every attempt was made to minimize damping in the plate during the
experiment. It allowed us to reliably extract [36] upto first 40 natural frequencies of the baseline model as well as all the
100 random realizations.

The density of the first 40 eigenvalues (natural frequency squared) of the baseline model is shown in Fig. 4(a). Note that
the experiential density matches perfectly with the analytical expression (45) derived before. This in turn validates the
numerical model used in the previous section. In Fig. 4(b), the eigenvalue densities obtained from 100 experiments
simulating the random system are shown. A small part of the density curves corresponding to the random samples have
been zoomed for illustration. The proximity of the curves arising from the experiential samples verifies the self-averaging
property proved in Section 3.2. We observe that the self-averaging property is acceptable even for 40 experimentally
extracted eigenvalues. The validity of MP density (38) is also examined in Fig. 4(b). We observe that experimental densities
of the random system are close to the MP density. From these results we conclude that MP density can represent the
eigenvalue density for the experiential case study considered here. Next we consider numerical example of a complex
system to further investigate the generality of these conclusions.
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5. Numerical study of a complex system: a helicopter tail boom

To investigate the generality of the results derived in this paper, we consider the tail boom of a Lynx helicopter.
A finite element model of the tail boom is created, consisting of 1142 beam elements and 2373 shell elements. Detailed
models of the tail rotor and gearboxes are not available but these components are included as point masses, with
rigid constraints to distribute the inertial loads. The resultant model is comprised of 2186 nodes, corresponding
to 13,116 DOFs.

The tail boom model is then constrained at the root, using rigid constraints between the tail boom attachment points
and a single central node, and applying the absolute constraint at the central node. Eight regions are chosen for
parametrisation, seven of which are depicted in Fig. 5. They broadly cover: the top and bottom of the main tail cone;
the back, right and left sides of the tail fin; and the tailplane, comprised of two distinct regions, one covering most of the
tailplane and one small reinforced section. The final region chosen for parametrisation is a bulkhead located midway alone
the tail cone. The shells from these eight regions are subject to thickness variations, with standard deviations ranging
between seven percent and nine percent of the nominal deterministic values, as listed in Table 1. The vast majority of the
structure is aluminium, with a density of 3728 kg/m3 and Young’s modulus of 72 GPa.

A Monte Carlo simulation is performed and the first 100 eigenvalues are calculated for each sample. Fig. 6 shows 150
samples of the eigenvalue densities from the Monte Carlo results alongside the density curve from the baseline model. The
first 40 and 100 eigenvalues are considered for illustration. The fitted MP density is also plotted. Again a small part of the
density corresponding to the random samples has been zoomed for illustration for both cases. The proximity of the curves
arising from the random samples verifies the self-averaging property in Eq. (22). The validity of the simple MP density (38)
is also verified in Fig. 6. We observe that the MP density is not as close as in the previous examples, although the general
trend is similar.

Numerical results obtained in this paper show that the density of eigenvalues effectively ‘converges’ to a non-random
quantity for a random dynamical system when the dimension of the system n is sufficiently large. When finite element
modeling used, the dimension n is also related to the discretization of underlying continuum boundary value problem.
The convergence of the numerical values of the finite element results with respect to n is a very different topic compared
to the ‘convergence’ of the density of the eigenvalues discussed here. Eq. (22) states that the variance of the density of the
eigenvalues about the mean density vanishes for large n. The variance given by (22) is the property of the underlying
Fig. 5. The finite element model of the Lynx tail boom, showing the regions used for parametrisation. The model consists of 1142 beam elements, 2373

shell elements, 2186 nodes and 13,116 DOFs. (a) View from above, front, right, (b) view from below, back, left.

Table 1
Thickness variations of the eight regions in the Lynx tail boom for the Monte Carlo simulation.

Label (as used in Fig. 5) Description Mean thickness (mm) Standard deviation (mm)

1 Cone: top 1.6 0.128

2 Cone: bottom 1.8 0.162

3 Fin: right 1.0 0.080

4 Fin: left 1.0 0.070

5 Fin: back 1.0 0.090

6 Tailplane: main 1.0 0.070

7 Tailplane: reinforced section 2.0 0.160

8 Mid-section bulkhead 1.4 0.098
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random ensemble of dimension n, whereas the convergence of the numerical results of a finite element model is related to a
particular system realization of dimension n.
6. Conclusions

The density of eigenvalues of linear structural dynamical systems with uncertainty is considered. Due to the positive
definiteness nature of a real system, a Wishart random matrix model is considered. The parameters of the Wishart matrix
are explicitly obtained form the baseline model and the dispersion parameters corresponding to the mass and stiffness
matrices of the system. The main contributions of the paper are the following:
1.
 For large random systems, the density of eigenvalues reaches a non-random limit (the self-averaging property). In
particular, it was rigorously proved that for a n-dimensional system, the variance associated with a linear statistic of the
eigenvalues is in the order Oðn�2Þ. Mathematically this is similar to the law of large numbers in the probability theory
which says that the density of the sum of a large number of i.i.d. random variables is independent of the distribution of
the random variables.
2.
 The eigenvalue density of a random dynamical system can be obtained from the eigenvalue density of the baseline
model using an expression involving the Stieltjes transform of certain functionals.
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3.
 Under certain restrictive assumptions, the Stieltjes transform expression can be simplified and the density of the
eigenvalues can be represented by a closed-form expression known as the MP density function. This is a simple
expression and all its parameters have been explicitly derived.

These results have been validated using limited number of numerical and experimental studies. Two numerical examples
involving a cantilever plate (4650 DOF) with parametric uncertainty modeled by random fields and a helicopter tail boom
(13,116 DOF) with parametric uncertainty modeled by random variables have been used to investigate the validity of the
theoretical results. Using direct Monte Carlo simulations, it was indeed observed that eigenvalue-densities of nominally
identical systems are close to each other. It was shown that the MP density is a reasonable approximation to the
eigenvalue density function of the random systems considered.

The validity of the results derived in the paper has also been investigated using experimental data. Random eigenvalues
in a vibrating plate due to disorderly attached spring–mass oscillators with random natural frequencies are considered.
One hundred nominally identical dynamical systems were physically generated and individually tested in a laboratory
setup. From the measured frequency response functions, 40 natural frequencies have been extracted for each of the 100
realizations. Eigenvalue densities were calculated for all 100 realizations and their proximity was observed. Like the
numerical results, the MP density provides a reasonable approximation to the density function.
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Appendix A. The details of the mathematical derivations in Section 3

We outline here the derivation of expressions (19) and (32). For technical simplicity we consider the hermitian analog
of the Wishart matrices, called often the Laguerre Ensemble. The result for the real symmetric, i.e., genuine Wishart
matrices (27), can be obtained analogously. Consider random matrices (cf. (27)) of the form

N¼ p�1R1=2XXnR1=2, (A.1)

where R is an n�n hermitian positive definite matrix, X¼ fXjag
n,p
j,a ¼ 1 is the n� p matrix, whose entries are the standard

complex Gaussian random variables, i.e.,

EfXjag ¼ EfXj1a1
Xj2a2
g ¼ 0, EfXj1a1

Xj2a2
g ¼ dj1j2

da1a2
, (A.2)

Xja is the complex conjugate of Xja, and Xn is the hermitian conjugate of X.

Proof of (19) for b¼ 2. The proof can be given by following the steps:
(i) Given the standard complex Gaussian random variables fzlg

q
l ¼ 1

Efzlg ¼ Efzlzmg ¼ 0, Efzlzm g ¼ dlm (A.3)

and a differentiable function F of 2q complex variables, consider the random variable

C¼Fðz1, . . . ,zq, z1 , . . . ,zq Þ:

Then its variance admits the bound

VfCg :¼ Ef9C92
g�9EfCg92

gr
Xq

l ¼ 1

E
qF
qzl

����
����2þ qF

qzl

�����
�����
2

8<
:

9=
;, (A.4)

known as the Poincaré inequality (see e.g. [59]).
(ii) Given hermitian matrix AðtÞ depending on a parameter t and a function j : R-C, consider the matrix function

jðAðtÞÞ. Then we have

d

dt
Tr jðAðtÞÞ ¼ Tr j0ðAðtÞÞA0ðtÞ: (A.5)

It follows from (A.1) that the entries fNjkg
n
j,k ¼ 1 of N are

Xjk ¼ p�1
Xn

l,m ¼ 1

Xp

a ¼ 1

RjlXlaXmaRmk, (A.6)

where R¼R1=2. Besides, it follows from the spectral theorem for hermitian matrices and (16) that

Nn½j� ¼ n�1 Tr jðNÞ:
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Take in (A.4) n�1 Tr jðNÞ as C and fXajg
p,n
a,j ¼ 1 as fzlg

q
l ¼ 1, hence, q¼np. This yields

VfNn½j�grn�2
Xp

a ¼ 1

Xn

j ¼ 1

E
q Tr jðNÞ

qXja

����
����
2

þ
q Tr jðNÞ

qXja

�����
�����
2

8<
:

9=
;: (A.7)

Take now in (A.5) Xja as t, p�1RXXnR as A and use the formulas (see (A.6))

q
qXja
ðRXXnRÞlm ¼ RljðX

nRÞam,
q

qXja
ðRXXnRÞlm ¼ RjmðRXÞla: (A.8)

This yields after a simple algebraic manipulation

VfNn½j�gr
2

n2p
EfTr Nj0ðNÞRj0 ðNÞg ¼ 2

n2p
EfTr j0 ðNÞj0ðNÞR1=2NR1=2

g:

(iii) Now we use the inequality 9Tr AB9rJAJTr B, valid for any matrix A (JAJ is the Euclidian norm of A) and a positive
definite B. Choosing A¼j0 ðNÞj0ðNÞ and B¼R1=2NR1=2 we obtain

9Tr Nj0ðNÞRj0 ðNÞ9rJj0ðNÞJ2Tr NR:

(iv) The inequality JcðNÞJrmaxx2R9cðxÞ9, valid a hermitian N and any function c and implying that

VfNn½j�gr
2

n2p
max
x2R

9j0ðxÞ9
� �2

EfTr NRg: (A.9)

It follows now from (A.2) that

EfTr NRg ¼ Tr R2:

Plugging this in (A.9) and using (20), we obtain (19) with b¼ 2. The case b¼ 1 is similar. &

Proof of (29)–(38). Let Nn be the Normalized Counting measure of eigenvalues flðnÞl g
n
l ¼ 1, defined for any interval D of

spectral axis as

NnðDÞ ¼ ]fl¼ 1, . . . ,n : lðnÞl 2 Dg=n: (A.10)

The measure Nn has rn of (11) as its density. It follows from the spectral theorem for hermitian matrices that the Stieltjes
transform of Nn is

gnðzÞ :¼

Z
dNnðlÞ
l�z

¼
1

n

Xn

l ¼ 1

1

lðnÞl �z
¼

1

n
TrðN�zInÞ

�1, Iza0:

Our goal is to prove that the limit

f ðzÞ :¼ lim
p,n-1,p=n-c2½1,1Þ

EfgnðzÞg

satisfies (32). Indeed, this and the general properties of the Stieltjes transform (see e.g. [60], Section 59) imply (29) and
(38).

By using the identity

ðA�zInÞ
�1
¼�z�1þz�1ðA�zInÞ

�1

and (A.1), we write

f nðzÞ :¼ EfgnðzÞg ¼ �z�1þðnzÞ�1EfTr NðN�zInÞ
�1
g ¼�z�1þðpnzÞ�1EfTr XnRXðp�1XnRX�zInÞ

�1
g

¼ �z�1þðnzÞ�1EfTr Kg, (A.11)

where we used the cyclicity of trace (Tr ABC¼ Tr BCA) and denoted

Q ¼ p�1RXGXn, G¼ ðp�1XnRX�zInÞ
�1: (A.12)

We need now the formula, valid for the standard Gaussian complex variables ðz1, . . . ,zq, z1 , . . . ,zq Þ

EfzlFðz1, . . . ,zq, z1 , . . . ,zq Þg ¼ E
q

qzl

Fðz1, . . . ,zq, z1 , . . . ,zq Þ

( )
, (A.13)

which can be proved by integration by parts, and the formula (A.8)

qGab

qXla
¼ p�1GaaðRXGÞlb
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for G of (A.12), which follows from the first-order perturbation formula

dG¼ p�1GdXnRXGþOððdXn
Þ
2
Þ

and (A.8) (note that we treat X and Xn as independent quantities, according to (A.2) and (A.13)).
Now, writing

EfQjkg ¼ p�1
Xp

a,b ¼ 1

Xn

l ¼ 1

EfSjlXlaGabXkb g

and taking Xla as zl and GabXkb as F in (A.13), we obtain the matrix relation

EfQ g ¼ hnðzÞR�hnðzÞREfQ g�REfs
J

nðzÞQ g,

where

snðzÞ ¼ p�1 Tr G, hnðzÞ ¼ EfsnðzÞg, s
J

nðzÞ ¼ snðzÞ�hnðzÞ:

The relation implies

EfQ g ¼ hnðzÞRð1þhnðzÞRÞ�1
�Rð1þhnðzÞRÞ�1Efs

J

nðzÞQ g: (A.14)

Substituting this into (A.11), we obtain that

f nðzÞ ¼�z�1þðnzÞ�1hnðzÞTr Rð1þhnðzÞRÞ�1
�z�1Efs

J

nðzÞn
�1 Tr Rð1þhnðzÞRÞ�1Q g: (A.15)

It follows from (19) with jðlÞ ¼ ðl�zÞ�1, Iza0, that

VfsnðzÞg :¼ Ef9s
J

nðzÞ9
2
gr

2C

pn9Iz92
,

where C is defined in (20).
This allows one to prove that the third term on the r.h.s. of (A.15) is Oðn�1Þ (even Oðn�2Þ). This and the spectral theorem

for the positive definite correlation matrix R yield

f nðzÞ ¼�z�1þðnzÞ�1hnðzÞ
X sl

1þhnðzÞsl
þOðn�1Þ,

where fslg
n
l ¼ 1 are eigenvalues of R. Thus, assuming that there exists the limiting distribution n of s’s, we obtain in the limit

(18)

f ðzÞ ¼�
1

z
þ

hðzÞ

z

Z snðsÞ ds
1þhðzÞs : (A.16)

Note now that for pZn the p� p matrix XnRX has p�n zero eigenvalues and the rest of them coincide with those of
R1=2XXnR1=2. This implies

hnðzÞ ¼�
1

z

p�n

p
þ

n

p
f nðzÞ,

hence, the limiting relation

hðzÞ ¼�
1

z
1�

1

c

� �
þ

1

c
f ðzÞ: (A.17)

Now it is easy to find that (A.16) and (A.17) imply (32). &
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