Simultaneous Confidence Bands for Linear Regression
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With Heteroscedastic Errors

The Scheffé method may be used to construct simultaneous confidence bands for a regression surface for the whole predictor space.
When the bands need only hold for a subset of that space, previous authors have described how the bands can be appropriately
narrowed while still maintaining the desired level of confidence. Data with heteroscedastic errors occur often, and unless some
transformation is feasible, there is no obvious way to construct bands using the current methods. This article shows how to construct
approximate simultaneous confidence bands when the errors are heteroscedastic and symmetric. The method works when the weights
are known or unknown and have to be estimated. The region in which the bands must hold can be quite general and will work for
any linear unbiased estimate of the regression surface. The method can even be extended to linear estimates with a small amount of

bias such as nonparametric kernel regression smoothers.
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1. INTRODUCTION

Consider the linear regression model

V4
Yi=00+ 2 Bix;+ &

i=1,...,n
i=1
= f(xils . '>xip) + &,
where for simplicity the errors, ¢;, are normally distributed
with mean zero and variance ¢? = o2/w;. We may also

express this in the usual matrix form, with X an n X (p
+ 1) matrix, Y = (Y}, ..., Y,) ,and e = (¢ey, ..., ,) 7 as

Y =XB +e.

Scheffé’s (1959) S method may be used to obtain si-
multaneous confidence bands for the regression surface
S(x1, ..., %) forxy, ..., x, €%, when X = R” and when
the variances, o7, are equal. The method may be adapted if
the variances are unequal but known. In practice we will not
need simultaneous confidence bands over all R?, so the
Scheffé bands will be wider than necessary for the desired
level of confidence.

Wynn and Bloomfield (1971) described a straightforward
adjustment of Scheffé’s method that works for simple linear
regression (p = 1) for a finite interval. Wynn (1984) extended
this to the one-dimensional polynomial regression case,
where Uusipaikka (1983) allowed for bands on an arbitrary
finite union of intervals and points. Naiman (1987) described
the construction of bands in the multiple regression case
over convex polyhedral sets. Seber (1977 ) provided a survey
of earlier methods. Sun and Loader (1994 ) generalized fur-
ther to linear estimates over general regions and showed how
to adjust for bias when a nonlinear estimate is used.

This article addresses the heteroscedastic error case where
the form of the weights, w;, is known or unknown. When
the weights are known, we can construct simultaneous con-
fidence bands by using an extension of the method described
by Sun and Loader (1994). But if the weights are unknown
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and are estimated, then we must make further adjustments
to account for the extra variation introduced by the esti-
mation of the weights. We outline the known weights case
by way of introduction. Theoretical justification has been
provided by Sun and Loader (1994).

The least squares estimate of f(x), where x = (1, x{, ...,
x,)7, is

f&x) =3 L(x)Y; =1(x)"Y,
i=1
where
1(x)7 = xT(XTZ"'X) X7z !
and =~!' = diag(w;). Now, because

var f(x) = Zn) li(x)%?

i=1

3

1Y (x)%?,
1

I

where [ (x) = [;(x)/w!/?, reasonable simultaneous confi-
dence bands are of the form

If(x) = f(x)| < call1*x)],
where denotes the L, norm, 62 = »~!||(I - L)Y ||%, L
= X(XTZIX)" XTIz 1=y, ..., )T, and v is the
residual degrees of freedom, computed as
v=tr((I-L)YI-L)7).
Because |f(x) — f(x)| = |1(x)7¢|, for a 1 — « simulta-
neous confidence band, we must choose ¢ such that

a = P(I(x)Te| > ca[1”(x)], for some x € %)

= P(sup <T(x),8—w> >c—"),
XEX [ 2
where T(x) =1"(x)/[[1"(x) ||, {, ) denotes the inner product,

ande, = (e;Vwi, . . ., e.¥w,)T ~ N(0, 02I). Because (T(x),
ew/ o) is a Gaussian random field and independent of 5/,

.
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Sun’s (1993) tube formula-based approximation for the tail
probability may be applied to find ¢. When dim(96) = 1 the
approximation yields

2\—-v/2

a~9(1+—cy—) + E-P(|t,| > ¢),

™

(1)

where ¢, denotes a ¢-distributed random variable with » de-
grees of freedom and xo = [, |7'(x)| dx. The P(|z,]
> ¢) term is a boundary correction. When dim(X6) > 1, a
similar approximation may be obtained using the same tube
formula. When X is a finite interval or rectangular region,
E is 1; each extra disjoint region or point adds 1 to E (for
other X, consult Sun and Loader (1994) for details). An
easier way to compute ko when X = [a, b] is to partition
[a,b]lintoa=zy< +++ <z, = b;then

m z; m
Ko = 2 i IT'(x) |l dx =~ 2 [ T(z:) — T(zi=) .
i=1 YZi-1 i=1
This method can be extended to work with other linear
estimates of f(x) (just define /;(x) appropriately) and for
nonnormal errors (the same approximation for the tail
probability of the maximum of the Gaussian random field
applies). When the weights are unknown and need to be
estimated, some complex adjustments are necessary; these

are detailed in the next section.
2. UNKNOWN WEIGHTS

It would be nice to simply estimate the unknown weights
using any consistent parametric or nonparametric estimator
and then just apply the method described in Section 1. Un-
fortunately, this is insufficient, because the bands obtained
have rather less than the desired level of confidence. Extra
variation is introduced by the estimation of the weights; ad-
justments to account for this are detailed next.

Denote £~ = diag(1¥; ), where W; are consistent estimates
of weights w;. Accordingly, write
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I(x)7=x"(X"2'X)" X2,
Ir(x) = L(x)/w}"2,
L=XX'E'X)X"$1,
and
F=rad-L)Y|>2
Thus in the unknown weights case, f(x) = (I(x), Y ), and
the simultaneous confidence bands are of the form
If(x) = f(x)| < calli*x) I,

where 1¥(x) = (/¥(x), .. ., [¥(x))7. The constant cis chosen
so that the coverage probability for all x simultaneously is a
predetermined level, 1 — a. A (conservative ) approximation
formula for determining ¢ for this coverage probability is

a=~ E-P(|t,| >c¢)

v+1

2\—»/2

+ @{(1 + fy—) + (8 + yYer ')
1/2 —_
2 r( . )

™
2\—(v+1)/2
K
I/ZF— .
)

where E is as in Section 1 and 4’ and ¢ are two constants
that can be estimated by estimates of

X

_ o Kx) = (x), Y|
N A TES]]

Note that 2'2I'[(v + 1)/2]/T(v/2) ~ V;(4u - 1)/(4v).
See the Appendix for details on how formula (2) is obtained.
A simultaneous confidence interval based on ¢ calculated
from (2) should be conservative and close to the nominal
level 1 — @ when # is large and the errors are symmetric.

y=IL-1L)Y[?/0?,
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Figure 1. 99% Simuitaneous Confidence Bands for the Mean Response. Notice how the bands are wider where the response is more variable.
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Table 1. Known Weights

Weights Constant Linear Quadratic Valley ‘
[a, b] [.25, .75] [-1, 2] [.25, .75] [-1, 2] [.25, .75] [-1, 2] [.25, .75] [-1, 2]
n = 25, Normal error
1-a=.9 .901 .921 .896 915 .881 .897 .900 .920
1-a=.95 .950 959 .946 .955 .934 .943 .950 .958
1-—a=.99 .990 .992 .988 .990 .984 .987 .990 .991
n = 50, Normal error
1-a=.9 .901 917 .896 915 .887 .907 .900 915
1-a=.95 .950 .958 .948 .956 .941 .950 .950 .958
1—-a=.99 .990 .991 .989 .991 .987 .989 .990 .991
n = 50, Contaminated normal error
1-a=.9 .902 .919 .898 916 .886 .907 .900 915
1-a=.95 .952 .960 .949 .958 .943 951 .949 957
1—a=.99 991 .993 .991 .992 .989 .990 .990 .991
When the bias is not zero but is sufficiently small, the 3. EXAMPLE

same argument holds approximately. We simply replace ¢’
in (2) by & + b’, where b’ is an estimate of

f(x) = (I(x), )|
a1 '

To make this work in practice, we need to find &', v/, and
possibly b’ (if we are using a biased estimator).

Often, the statistician has no hard information about the
form of the weight function, so parametric methods may be
inapplicable. It is usually reasonable to assume that the
weight function is smooth, and so a nonparametric method
of estimation may be used. We use the one described by
Miiller (1988, p. 153). The “raw variance” at X; is given by

2 1 2
3 Y; _E(Yi——l + Y| -

These 77 are then smoothed using a kernel-based nonpara-
metric estimator, and estimates of the weights can then be
derived. If possible, the statistician is advised to plot these
72 and then choose the bandwidth based on knowledge
of the smoothness of the weight function. Automatic meth-
ods of bandwidth selection, many of which are available,
could also be used. Other methods, such as smoothing the
log 72, were tried, but these were no better.

Regardless of which method of estimating the weights is
chosen, the formula (2) cannot be applied without some
values for ¢ and +'. This in turn requires estimates of 1(x)
and L, called 1 and L, which depend on the unknown true
weights. We use the nonparametric estimator described ear-
lier to estimate these weights solely for the purpose of finding
6 and v. The choice of bandwidth used for this estimation
is problematic. We found, from simulation experience, that
using a bandwidth about two-thirds the size of the one that
we actually use to estimate the weight function produced
acceptable results. So now

b = sup
XEX

72 =

- [{i(x) — 1(x), Y)|
- S TN

XEX

¥ =IL-L)Y|?*/8,

Carroll and Ruppert (1988, p. 48) presented data from
an assay for the concentration of an enzyme esterase. The
observed concentration of esterase is the predictor, and the
number of bindings counted is the response. We estimate
the weight function nonparametrically, choosing the band-
width by eye to produce a smooth weight function. We set
% as the range of the predictor. Figure 1 shows 99% simul-
taneous confidence bands for the mean response.

4. SIMULATION
The design used throughout was
Y =80+ Bixi + e, i=1,...

where e; ~ N(0, wi'!), normal or &; ~ 2N(0, wi') + $ N(O,
32w;!), contaminated normal and x; = (2i — 1)/2n. We
set By = B; = 0 without loss of generality.

First, we investigate the performance of our bands when
the weights are known. We try four weight functions: con-

Sn’

Table 2. Parametrically Estimated Weights

n=0 n=1
Weights
[a, b] [2.25, .75] [-1, 2] [.25, .75] [-1, 2]
n = 25, Normal error
1-a=.9 .909 .936 .904 .933
1-—a=.95 .956 .968 .950 .966
1-—a=.99 .992 .994 .989 .993
n = 50, Normal error
1-a=.9 911 .936 .908 .936
1-—a=.95 .956 .968 .954 .968
1—a=.99 .992 .994 .990 .993
n = 50, Contaminated normal error
1—-a=9 912 .936 .918 942
1—a=.95 .959 970 .962 973
1-—a=.99 .994 .995 .994 .996
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Table 3. Nonparametrically Estimated Weights
Weights Constant Linear Quadratic Valley
[a, b] [.25,.75] [-1, 2] [.25, .75] [-1, 2] [.25, .75] [-1, 2] [.25, .75] [-1, 2]
n = 25, Normal error
1-a=9 .897 .924 .876 .903 .893 .933 .953 .978
1—a=.95 .946 .959 .930 944 .943 .964 979 .991
1-a=.99 .988 .991 .981 .985 .986 .991 .997 .999
n = 50, Normal error
1-a=.9 .896 .921 .886 .907 921 .940 .960 .983
1-—a=.95 .946 .958 .937 .948 .960 .968 .983 .993
1—a=.99 .988 .991 .984 .986 .992 .991 .998 .999
n = 50, Contaminated normal error
1-a=.9 914 .939 .903 .925 .922 944 .963 .983
1-—a=.95 .959 97 .951 .961 .961 .969 .984 .994
1-a=.99 993 .995 .990 .992 .992 .992 .998 .999

stant weights, w; = 1; linear weights, w; = i; quadratic
weights, w; = i%; and valley weights, w; = |(n + 1)/2 — i|
+ .5. The results are shown in Table 1, where the entries are
the estimated true confidence probabilities.

Pseudorandom normal numbers were generated using a
linear congruential generator with large period and the polar
method; 100,000 replications were used throughout. The
entries in Table 1 are the simulated coverage probabilities
of the confidence bands using the formula (1).

Simulation standard error is at most *1 in the third digit.
The performance is better for high confidence levels, because
the tail approximation used is more accurate for smaller «.
The performance is reasonable even for n = 25, and the
presence of outliers in the error distribution has little impact.

When the weight function is of the form w; = (1 + 5i)72,
n may be simply estimated by iteratively regressing the ab-
solute vale of the residuals, ¢;, on x;. Of course there are
many conceivable parametric forms for the weight function
and ways of estimating it (see Carroll and Ruppert 1988, for
example), and because our method demands only the esti-
mated weights, any of these methods could be used in con-
junction with ours to produce the simultaneous confidence
bands. The weights must be estimated well for the confidence
bands to be accurate, so naturally the user must choose an
appropriate method of estimation. The results are shown in
Table 2. The entries in the table are the estimated coverage
probabilities of the confidence bands using the formula (2).

The results tend to the conservative side, which is not
unexpected given the approximations made. The effect of a
contaminated normal error is to give wider confidence in-
tervals. In this circumstance a more robust estimation of the
weights may produce a better result. When n = 25, we found
that our method of estimating the weights had to be modified,
because, in some instances, the estimated weights were too
large. Our solution was to truncate these large weights. Be
clear that this modification involves only the estimation of
the weights and not the construction of the confidence bands
themselves. Furthermore, such truncation is standard prac-
tice in weight estimation (see Carroll and Ruppert 1988).

This merely amplifies our prior point that the bands are only
as good as the estimated weights.

When we are uncertain as to the parametric form of the
weight function, we can always use a nonparametric esti-
mator as described previously. The results are shown in
Table 3.

We used the same bandwidth within each sample size.
Relatively large bandwidths were used, as this gave the best
overall results, although better results could have been ob-
tained had we chosen the bandwidth individually for each
case. In practice, we recommend that the user plot the es-
timated weight function and select the bandwidth using any
ancillary knowledge about the smoothness of the true weight
function. A long-tailed error distribution results in intervals
that are more conservative, although some experimentation
with more robust smoothing methods revealed that this could
be corrected. In any case, it would be better if the data were
examined for outliers before blindly applying this method.

5. CONCLUSION

We have described a practical method for constructing
simultaneous confidence bands for linear regression estimates
when there is heteroscedastic error. We have seen that the
method works well enough for small sample sizes and when
the errors are not necessarily normally distributed. But users
of this method must take responsibility for estimating the
weights sensibly as well as taking all the other precautions
of a prudent regression analyst. Given this, the user will be
rewarded with simultaneous confidence bands narrower than
those obtainable using the previously available Scheffé
method but that still maintain the desired level of confidence.

APPENDIX: DERIVATION

To derive the approximation formula for the simultaneous con-
fidence interval, assume for the moment that the image of T(x)
=1"(x)/[|1"(x) || on % is connected and so no boundary correction
is necessary.
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If welet p = EY, so that Y = pu + ¢, then we have
1/(x) = fo0)| = 1£(x) = (i(x), Y|
= 1/(x) = QA(x), ) = U(x), &)
+(I(x) = 1(x), Y|
< [/(x) = CU(x), )| + [(I(x), e)]
+ [1(x) = 1(x), Y.
We must choose ¢ such that

a = P{|f(x) — f(x)| = c&|1*(x)|, for some x € X}

(A.1)

- P[ ) = ), wy] | K1), &)
h (x| *(x) |
1100 ~ i), Y1 _ . ()| }
ol =co ool , for some x € X%
< P[sup <T(x),e—w> zcza—b— 6}
XEX g g

< 2P[sup <T(x), e—"> > cga —-b—- 5] R
XENX g g

where b is the normalized bias, a is the minimum of the ratio of
estimated 1 and the true 1*, and 6 is the difference in regression
estimate due to the variation in estimating the unknown weights:

_ If(x) = {I(x), )| ol
(- A e e A A OIE
) — i, YD
R T .

Now &/ =&/0—v/Vv,wherey = | (L — L)Y ||/ by the triangle
inequality, so

1/24
gsP{sup <T(x),°—”>z—’f%(u—7)—b—a}.
2 x€X o v g

Hence v is the difference in the variance estimate due to the variation
in estimating the unknown weights. Note that b = 0 if the estimate
of the regression surface is unbiased, as it is in least squares. If a
nonparametric, linear estimator were used, then confidence bands
could be constructed by taking this term into account.

When the estimates of the weights are estimated consistently,

a=1+o0,(1), 0 =0,(1), and Y =0,(1), as n— oo,

so we can bound é and v by two positive constants, ¢ and v/, such
that § < ¢ and v < 4/ probability as # = oo and

1724
< P[sup <T(x), 5¥> =~ (”——" - 7') ~b- 5'] + o(a).
2 XEX 14 v 4

(A2)

When b = 0, the variable »'/%5/ ¢ has a X distribution with degrees

of freedom » with probability density function
r—1
_ y“ -y¥/2
Sy, ») 272y €

Because (T(x), ¢,/0) is a Gaussian random field with mean zero
and variance 1 and is independent of &, Sun’s (1993) approximation
formula gives
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e[ P[E‘E‘E <T(x), ;) =—Cy- d]f(y, vy dy + o(a)

© 1({ ¢ 2
- oo =3 (v -4 Jroman, a3

where d = (¢/v'/?)y' + b + §. By using the Taylor expansion,

1
exp[— % (e(y) - 50)2} = exp[— 3 g(y)z]

1
+ exp[— Eg(y)Z]g(y)Bo +0(80), as 8, —>0
for g(y) = cy/ V;, and the identities
o 2 2\—-»/2
f exp[— c—yz}f(y, v)dy = (1 + C—)
o 2v v
and

1?1
2 F(_Z )

v C2 (v+1)/2 5
r(z|(1+=

we find, after some calculus from (A.3), that

+ 1
pirp( T 1
¢ ( 2 )

2\—(v+1)/2
)y
1/21'\ —_ v
()

Now, if the image of T(x) = 7*(x)/ [ {*(x) || on % has a boundary,
as it usually has when X is a finite interval, then this formula (A.3)
can be corrected as in the case of known weights. So the final ap-
proximation formula is given by (2). Strictly speaking, the formula
(2) gives a conservative confidence band (although narrower than
Schefté’s), because we used upper bounds in the construction. Nev-
ertheless, if the errors are symmetric, & and v' are small, and # is
large, then the upper bounds will be close to the values that they
are bounding and thus the nominal level will be closely approxi-
mated.

o C2
f exp{—2—y2]yf(y, v)dy =
0 v

o, K
bl )
2 2«

(=]

14

2\—-»/2
(1+c—) +d-
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