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ABSTRACT

This article describes a method for predicting human
motion where some part of the body, such as the pelvis
or foot does not move. The posture at any given time can
be approximated using a linkage of articulated segments.
The angles between the segments describe the posture.
During the reach, these angles will vary describing a
function that varies over time. Data may be collected on
individuals reaching to a variety of targets. We describe a
functional regression model for predicting the angles as
they change with time as a function of the target being
reached, the anthropometry and other characteristics of
the individual. The model may be used to predict the
motion of new individuals reaching to new targets not
contained within the data. The model can also be used to
describe the effects of factors such as age on reaching
motions.

Although the main purpose of this article is to describe
the methodology, we demonstrate its use on a large
database of reaching motions collected by HuMoSim at
the University of Michigan. We discuss the accuracy of
the predictions and the difficulties ensuring that the hand
reaches the intended target.

INTRODUCTION

The reaching motions of humans are dependent on many
factors. Reach locations, seat type, anthropometry, age
and gender, to name a few, are all factors that can affect
dynamic reach postures. It is important to under-stand
how reaches vary according to these factors when
designing workplaces and vehicle interiors. One design
approach is to build prototypes and test them using real
human subjects. This approach is reliable but expensive
and time consuming. Design is often an iterative process
so several prototypes may need to be tested. An
alternative approach is to construct a virtual prototype
using CAD software. Virtual humans may be placed in
the software and we may observe how they reach various
locations ac-cording to their height, age, gender and
other factors. In this paper | describe a statistical model
for animating the reaches of these virtual humans.
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The primary objective of this article is to describe the
methodology, but we shall also illustrate the effectiveness
of the tools we provide on some data. This data is de-
scribed in the next section. The linkage can be described
in terms of the angles formed by the segments of that
link-age. In the following section, we show how to model
these angles as they change over time using functional
regression analysis. In the next section, we look at how
well these models can be expected to fit and some
difficulties with prediction.

DATA

In 1998, the Human Motion Simulation Laboratory (HU-
MOSIM) at the University of Michigan conducted a set of
experiments concentrated on the motions of seated
people performing right handed reaches to a spatially,
well dispersed set of targets. The hand motion began
from either in front of the person on a small table, or in
the 2 o’clock position on a steering wheel, and proceeded
to a specified target locations, paused for a few seconds,
and returned to the initial position. The reaches to the
target and the return reaches were modeled separately.
A total of about 8000 motions were performed by a group
of 20 subjects.

The subjects were selected to provide a means to assess
the effects of anthropometry (height in particular),
gender, and age on the motions. The subjects ranged
from very short to very tall and from 20 to 60 years of
age. Three different seating environments were
examined: a car seat with medium side bolsters, a bus/
light truck seat, and an industrial seat with a narrow
backrest. During the industrial seated reaches, motions
were performed with and with-out a light hand load
(which was set to load the shoulder at between 6% to
15% of extended arm shoulder strengths).

Two different motion capture systems were
simultaneously used to estimate joint angle changes
throughout the motions: an optical reflective marker
system (Qualysis MacReflex) and an electromagnetic
(Ascension Flock-of-Birds). A seven-link kinematic model
was created with joint centers estimated from the



captured motion data. Joint angles were computed by
processing the motion data through a version of
JACK(tm) software configured to estimate 19 global and
11 local angles.

The first step of the data analysis is to extract the
portions of the recorded motion where the subject was
reaching. It is not easy to precisely define the beginning
and end of a reach. The subjects are moving slightly even
when they are at rest and some motion, in particular the
head, sometimes occurs before the hand leaves its rest
position and after it reaches the target. Nevertheless, a
precise and consistent definition is required if we are to
compare reaches across different subjects and targets.
Our procedure for chopping the data is based on the
finger position. We computed the distance of the finger
from its rest position and used this to determine the
beginning and end of the reach. There is a pause when
the target is reached, the duration of which is random and
may be different at different times. We have no particular
interest in this so we removed these periods also. We
divide the motion into reaching and returning parts.

We emphasize that the methodology presented here
could be applied to data collected in different ways for
different linkages. We have provided some details of the
data collection to allow the reader to follow the examples
below but the data and the conclusions drawn from this
data are not the focus of this article.

FUNCTIONAL REGRESSION MODEL

After extracting the data, for any selected angle and
specified motion, we have a sequence of angles from the
start to the end. These sequences are of different lengths
because some targets are further away than others and
people reach at different speeds. Plots of the right elbow
included angle of 20 subjects reaching to a location
somewhat to the right and front and about the same
height as the initial position of the hand are shown in
Figure 1. We need to standardize the lengths of the
curves if we are to compare different reaches. We define
t = 0 to be the start of the motion and t = 1 to be the end
of the motion. We record and save the sequence length
as the actual time that the motion took. We can analyze
these actual times independently. For now we
concentrate on the shape of the motion without regard to
the actual amount of time taken. We can put the time
scaling back in later. We show the same curves rescaled
to a common length in Figure 2.
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Figure 1. Right elbow included angle for 20 subjects
reaching to the right and forward of the initial
hand position
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Figure 2. The same angle curves as in Figure 1 but
scaled so that the horizontal axis is the
proportion of time taken for the reach

Suppose the rescaled angle functions are given by y(t) =
1), . .. y(1). These angle functions might be expected
to depend on certain covariates such as the location of
the target being reached, the age and anthropometry of
the subject and other factors. For the ith subject, we
collect these predictors in a vector x;. Typically, the first
term in this vector is one. We then propose a functional

linear model for the angle functions:

yit) = z{ B(t) + ()



Notice that this is comparable to a standard regression
model but the response is now a function as is the error
term [ji(t). The regression coefficients B(t) are now a
vector of functions. A general introduction to the area of
functional data analysis may be found in [5]. The
particular coefficient function for a given covariate will
now represent the effect on the response of that
covariate over the duration of the reach. We can now
estimate B(t) using the method of least squares applied
across the whole time period. The estimator takes a
familiar form:

Blt) = (XTX)'XTy(1)

where X is the matrix whose rows are given by the x;’s.

Although this is conceptually illuminating, it is not
practical since we cannot observe a y;(t) at all possible t.
One approach is to approximate the functions on a grid of
values. This was done in [2] with further developments in
[6]. The major drawback is that a fine grid of values is
necessary for accurate representation and so large
matrices of values are required. These can be
burdensome to manipulate and store.

For the current data, we have taken a basis function
approach. We use standard cubic B-splines. We
represent the angle curves as linear combinations of
these basis functions, ¢(t). An angle curve y(1) is
represented as

yilt) = D i (1) + €t)

i=1

where the coefficients yj are found by minimizing
1 m
/ (wilt) = Y yayip; (1))t
) =

We observe y(f) at some set of time points and so the
coefficients yj; can be estimated using least squares. It is
not uncommon for some parts of the curve to be missing
due to data collection problems. This method can tolerate
a certain amount of missing data. Furthermore, if
measurement or processing systems are prone to
produc-ing outliers, a robust fitting method may be
substituted for least squares. Given that human motion is
usually quite smooth, it is not necessary to have a large
number of basis functions. In this particular application,
we found that eight basis functions were adequate. Note
that eight grid points would not have been adequate for
the approach mentioned above so this allows for a large
reduction in the data needed for fitting these models and
in the representation of the predictive models.

Using more than eight basis functions did not improve the
fit significantly and, furthermore, restricting the number of
coefficients has the advantage of smoothing out any s-
mall irregularities due to measurement error. We chose
cubic B-splines for the basis because of their well-known

stability for numerical calculations in contrast to
polynomials. The cubic degree also allows for continuous
first and second derivatives which is important if velocity
and acceleration are needed.

Thus we can write the model in the approximate form
Ynxmwmxl(t) = anpoxm¢mx1(t) + 6n><1(1f)

or factoring out the (%), we can write it in the simpler
form:

Yosxm = anpoXm + €axm

which is now a multivariate multiple regression model
where the coefficient matrix B may be simply estimated
using least squares. We may estimate B by least squares
asin

B=(XTx)"'xTy

We may use the standard methods of statistical inference
such as testing using this model. Details of such methods
may be found in texts such as [4]. For prediction and
interpretation purposes, it is necessary to transform back
from this basis function representation to the original

form. For example, for a particular ZZ(t) we would need
to take a linear combination of cubic splines represented

by the appropriate row of B. Explicitly, we may recover
the original coefficient functions by

Bpxl (t) = Bpxm"/}mxl(t)

and predict future responses given a predictor value Xy
by

]Jo(t) = mlepoxmwmxl(t)
We estimate the variance of the prediction by

var(jo(t)) = 97 (8)E9(t)zg (X7 X) " ao

where

1
Il

, ¢=Y - XB

The pointwise variance of the coefficient functions may
be obtained from

varBi(t) = yT (O)SPE(XTX);!

We may also compute the R? statistic and the F-statistic
at each point in time using the standard regression
formulae.

We must decide which predictors to include in the model.
How we make that choice depends somewhat on our



objectives. If the main purpose of the investigation are
scientific questions concerning the effect of various
predictors such as age on motion, then we can use the
inferential tools concerning the statistical significance of
the predictors. For example, Figure 3, shows the effect of
stature over time on the right elbow included angle. The
model was restricted to 16 targets on the left side of the
body when reached with the right hand. Predictors
included were the target coordinates, the stature, the
age, the gender and the time taken to complete the
reach. We can see that the effect of stature varies across
the duration of the reach. We see that taller persons do
not open their elbows as much as shorter people earlier
in the reach, but there is little difference towards the end
of the reach. We can see that the magnitude of the effect
could be as much as about 4 degrees for each 10cm
difference in height. We see that the effect is statistically
significant during the initial part of the motion because
zero is not included in the interval. Towards the end of the
reach, there is no statistically significant difference
between taller and shorter persons. The 95% pointwise
confidence bands are useful for judging the statistical
significance of the effect. Simultaneous confidence
intervals are also useful — these are described in [7]. Of
course, there is much interest in discerning the effect of
stature, age and sex and other factors on motion. For
more on this, see [1].
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Figure 3. The solid line shows effect of stature on the
right elbow included angle per cm of height
over time. 95% pointwise confidence bands
are shown as dashed lines

If we are more interested in prediction, then predictive
accuracy becomes the main concern. For the industrial
data mentioned above, we built a model that included
age, gender, load, stature, 3D coordinates of the target.
We used certain interactions of these terms. We found no
significant improvement in fit by including other
anthropometric terms. This is because such measures
are usually strongly correlated with stature and so there
is no significant advantage in including such terms in the
model. We describe the accuracy of this model in the
next section.

MODEL FIT

No model is perfect — we can only aim for an accept-able
approximation to reality. We may predict the angles for
the motion of a given individual, but we might expect that
when that person actually makes the reach, the reality
will be somewhat different. How much error can be
expected for our predictions? Remember that the same
person will vary in their motions to the same location and
that persons with the same anthropometry, age and
gender will not reach in exactly the same way. This kind
of variation cannot be overcome, so there is a lower
bound on the error below which we could never expect to
go. We designed the experiments to have replicates for
certain targets so that we could study this variability.
Each subject was asked to reach 10 prechosen targets
twice in the industrial setting. These replicates help us to
understand the natural variation existing in human
motion. We identify two types of variation. A single
individual will vary in his motions - this is termed variation
within a subject. Different individuals will vary in their
motions, even after we adjust for significant factors, such
as stature. This is termed variation between subjects.
Table 1 the standard deviations in the industrial
experiment along with a measure of the predictive
precision of our particular model:

Table 1. Estimated standard deviation for between
subject and within subject variability for
selected angles averaged across subjects and
time. Residual standard error for the functional
regression model is also shown

Angle Between  Within  Model

trunk flexion 6.32 2.13 5.45
trunk lateral 4.38 2.06 4.93
trunk axial 9.88 5.39 9.22
upper arm horizontal 19.64 8.65 20.08
upper arm vertical 7.84 4.39 8.58
forearm horizontal 11.13 6.35 12.84
forearm vertical 7.86 3.28 9.20

The results from this analysis reveal that within-individual
variation is relatively smaller as might be expected. The
between-individual variation is an estimate of the lower
bound on how well any prediction model might be expect-
ed to perform when representing a well defined group of
people. Notice that the model variation is not far from this
estimated lower bound — in some cases it even goes
below the bound. Remember that the between-individual
variation is only an estimate. It uses only the ten targets
at which replicates were made and we may not be
completely removing the effects of age, stature and
gender in computing this variation. Nevertheless, we can
feel confident that our model cannot be significantly
improved up-on beyond the between-individual variation
values. The results for the car and truck data are
qualitatively similar.



If prediction is the final objective, the angles predicted by
the model must be used to construct a dynamic linkage
representing the motion. When this is done, the position
of the hand at the end of the motion may not match with
the specified target. In the example above, the
discrepancy was around 5cm on average. There are
several reasons for this. Variability in the predicted or
specified link lengths will cause some error. Even though
the model appears to approach the upper limit in
effectiveness as demonstrated in Table 1, there will still
be some variation. However, there is a more fundamental
reason for the error. The final hand position is a nonlinear
function of the angles. This means that even if we
considered data for a subject reaching to the same
target, but using different postures and then averaged the
angles for those postures, the predicted hand position
using those averaged angles would likely be different
from that seen in all the reaches. This means that any
method that seeks to predict angles individually and then
uses them to make predictions will suffer this problem.

One solution would be to impose a constraint on the
estimation of the coefficients in the functional regression
models for the angles that ensures that the hand hits the
target. Such a constraint would also need to use the link
lengths. This is very complicated and appears
inconceivable for all except very simple linkages. An
alternative is to correct the predicted linkage so that it
does meet the endpoint constraints. One solution is
described in [3].

CONCLUSION

The functional regression method is effective in
predicting the angle profiles that describe a reaching
motion. Successful implementation requires that a
suitable linkage be specified. There is a great amount of
choice in defining the angles describing this linkage. In
particular, one must choose between global and local
definitions of angles. For the example, the right elbow
included angle is locally defined by the upper and lower
arms whereas the angle of elevation of the lower arm
might be defined with respect to a global coordinate
system. If the functional regression model is to be used
for explanatory purposes, it is usually better to use local
angles since these are easy to interpret. However, if the
model is to be used for predictive purposes, the choice of
angles will be driven by the nature of the digital human
software being used.

Functional regression methods exist for modeling a curve
in terms of another curve and perhaps other variables —
see [5] or [7]. Such models would be useful for
investigating, say, the relationship between shoulder and
elbow angles. They are typically not useful for predicting
motion using static inputs of the type described above
since all the angles must be simultaneously predicted —
we do not have an angle curve available to help predict
the others.

Functional regression models can also be used to predict
the trajectories of body markers such as the hand. Work
on this is in progress.
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