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Abstract

When an appropriate model for data is not completely known,
the data is often used to select a model. Very often inference
is then made from the selected model assuming that it had
been known from the beginning. Estimates of the error of
predictions or other quantities associated with that model take
account of the uncertainty about the parameters of the model,
but not the uncertainty about the model itself. Such error es-
timates tend to be too small, especially when the model un-
certainty dominates the parametric uncertainty. Models are
usually selected on the basis of fit, so typically the data fit
the selected model rather well thus making the error seem
small. In data splitting, one part of the data is used solely for
model selection and the other part for inference thus hope-
fully avoiding the over-optimism induced by using the same
data to both select and estimate the parameters of a model.
Data splitting is easy to implement and thus is an attractive
alternative to complex methods of adjusting for the effect of
model selection on inference.

Three tasks need to be performed - model selection, pre-
diction and error assessment. We investigate different strate-
gies for allotting the two parts of the data between these three
tasks. We devise a new graphical method for jointly assess-
ing prediction accuracy and error estimates called an honesty
plot. The plot can be used to show actual coverage of con-
fidence intervals of any given nominal level. Variable selec-
tion, Box-Cox transformation and more complex simulation
experiments are used to compare the various strategies. The
performance of data-splitting is found to be no better than us-
ing all the data for both selection and inference.

Keywords: Model uncertainty, cross-validation, model
building, prediction, subset selection.

1 Introduction

When the same data are used to select both the model and
estimate the parameters of that model, there is a danger that
the predictions made by that model will be more optimistic
than they should be. To expand on this, consider that in many

cases a suitable model for the data is not completely known,
and various data-analytic techniques will be used to try to find
a satisfactory model. Even in cases where a good model is
supposedly known a priori, it is considered good practice to
check that the data do indeed fit that model, which raises the
possibility that we may change the model. It is common prac-
tice, once a good model has been found, to pretend that this
had been known all along, and to conduct the inference allow-
ing for the uncertainty about the parameters but not that about
the model. This means that the assessed variability tends to
be lower than it really should be because the effects of model
uncertainty have not been taken account of. Chatfield (1995)
provides a good overview of the effects of model uncertainty
on statistical inference.

Usually, it is not through ignorance or lethargy that the ef-
fects of model uncertainty on inference are not accounted for
– it is quite difficult to do it honestly. Almost all the the-
ory of statistical inference rests on the model being known,
whereas in practice the model is often not known and is in-
stead selected using both the data and prior and/or contextual
knowledge. Within the frequentist paradigm, one possible
approach is to embed the model selection process within a
larger model and thereby view model selection as the esti-
mation of nuisance parameters. For example, the selection
of the index of transformation in the Box-Cox transformation
could be regarded as the estimation of an additional parame-
ter which could then be allowed for using standard inferential
techniques. When the model selection amounts to selecting
the order or form of the model, this program becomes more
difficult to apply though not impossible. Another idea is to
bootstrap the whole data analysis. If we view the data anal-
ysis itself as part of the estimation then we may have some
hope of getting honest estimates of variability using the boot-
strap technique; see Faraway (1992)

One possible Bayesian approach is similar to the one de-
scribed first above. The model selection process is embed-
ded within some larger model determined by the selection
procedures being used, and the standard Bayesian techniques
are then applied. By using a hierarchical framework, the
Bayesian approach is generally less cumbersome than the
equivalent frequentist method. One problem is the large class



of models that must usually be considered, which poses diffi-
culties in assigning meaningful priors as well as a substantial
computational burden.

The disadvantages are generally shared between both ap-
proaches. Most of the methods proposed are rather compli-
cated and require specialised software for each different kind
of model and model selection method. Glance through the
manual for a standard statistical package and imagine each
procedure generalised to take account of the effects of model
uncertainty. The size and complexity of such packages would
be increased by an order of magnitude. Note that the methods
for model uncertainty assessment are generally complex and
could not be readily implemented by the general user, unlike
ideas such as the bootstrap.

There is another more important defect in these methods.
They generally require that the model selection procedure be
fully specified in advance. Much data analysis is iterative
in nature — the next action often depends on the results of
the previous action. Furthermore, graphics form an impor-
tant part of data analysis and such techniques are extremely
difficult to characterise exactly. So in practice, data analy-
sis used for model selection is quite complex and yet cannot
be precisely specified in advance. For the type of methods
described above to really work we would need to be able to
pre-specify our data analysis — that is essentially write a pro-
gram that does data analysis reliably. Nobody is at all close
to doing this. So in effect we do not escape the pre-specified
model paradigm — all we might achieve is the use of a more
flexible model.

Draper (1995) (and to some extent Hill (1990)) tries to get
round this problem of having to prespecify the model by sug-
gesting that we follow the usual data-analytic techniques, and
then when we have found a good model (or models) we ex-
pand this model, embedding it in a richer family. We then
assign priors to the bigger family of models and proceed in
the usual Bayesian manner. The frequentist could also take
a model expansion approach. The main problem is in know-
ing in which direction to expand the model. Hopefully, the
data analysis will be suggestive, but it is no small difficulty to
decide how to do this.

Given these difficulties, it is natural to return to the origin
of the problem, namely that the data are being used twice, to
find the model and then to make inference from that model.
The pessimist claims that this is trying to do too much with
the data and that, having used the data to find a good model,
we should await the arrival of fresh data and use that to do the
inference using the model we found with the original data.
Of course, fresh data are not always immediately available,
so the idea of data splitting is to divide the data into two parts
(not necessarily of equal size), using the first to select the
model and the second to do the inference. Since model selec-
tion and statistical inference from a known model are well un-

derstood and can now be done in isolation from one another,
we seem to avoid the complexities of the model uncertainty
approaches discussed above. We do not have to prespecify
our data-analytic method or worry about what we were think-
ing about when we selected the model, all provided that we
keep the second part of the data in a sealed box and do not
look at it until we have selected the model using the first part.
We are free to use the whole range of exploratory data ana-
lytic techniques without needing to characterize them exactly.
Thus data splitting seems to be a simple and attractive alter-
native to the above.

It is not always possible to do data splitting. We need to
be able to divide the data into two samples which can be
regarded as independent or exchangeable samples from the
same population. For example, if we suspect correlated er-
rors in regression data, then data splitting would be difficult
if not impossible. Time series can be split on time but this is
a different situation from that discussed below – time series
cannot be split randomly and the motivation for splitting may
be the assessment of time homogeneity. In other cases, split-
ting the data may not leave enough data in either or both parts
to find and estimate the parameters of the model. This would
happen when the number of variables is large relative to the
number of cases.

Splitting is also not always necessary or appropriate. Some
statistical investigations involve the search for a model which
represents some underlying truth. In this case, model selec-
tion is the end in itself and splitting may not be needed. I
shall use my models as a means to making predictions of
future observables. The truth or correctness of the particu-
lar model selected need not be considered, only its predictive
performance.

Splitting the data is intended to give the effect of having
new data, but one should realize that this is less than true.
The real test of a model comes when it is applied to truly
new data, collected at a different time under perhaps differ-
ent conditions. The second part of the split data set cannot
reveal biases in the sampling process used to collect the orig-
inal data. Only new data collected under different conditions
can hope to do this - see Hirsch (1991). When truly new data
do become available, an assessment of exchangeability with
the original data needs to be made before proceeding. In the
split sample case, this assessment is not needed.

I discuss the history and various forms of data splitting in
Section 2. The performance of these data splitting strategies
is compared in Section 3 and the conclusions are in Section 5.

2 Data Splitting Strategies
A history of data splitting can be found in Stone (1974). The
dangers of using the same data to both select and fit the model
have been known for many years and data splitting is a simple



technique for dealing with it that was practical to use when
computational costs were high. These same high computa-
tional costs also meant that the amount of exploratory data
analysis to find good models was much lower in the past. Be-
cause less data analysis was possible, models would tend to
fit the data less well, and so the data splitting would tend to
reveal the bias in the chosen model rather than the variabil-
ity due to the model selection process. Detecting bias might
lead one to modify the model thus invalidating the indepen-
dence of the second sample thereby effectively abandoning
data splitting. Hence there was less incentive to split the data
in the past. Nowadays, extensive data analysis is easy and
commonplace, and so the tendency is to overfit, making vari-
ance, not bias, more of a concern. However, detecting a larger
variance using data splitting, than the selected model would
suggest, is expected and would not tempt one to change the
chosen model. Thus data splitting seems more relevant and
useful now than in the past.

Stone’s main interest was in the use of cross-validation to
select models. Data splitting could be regarded as a rather
crude form of cross-validation but that is certainly not our
purpose here. We scrupulously wish to hold out a sample of
the data that will not be used for model selection in any way.
Mosteller and Tukey (1977, p. 37) also discuss data splitting
as a form of cross-validation, but focus on it as form of model
selection which we wish to avoid here.

There are three different tasks we need to perform:

1. Selection of the model.

2. Estimation of the parameters of the selected model.
Point predictions can then be made.

3. Assessment of the variability in the predictions.

Conceivably we could split the data three ways and use
a different part for each of the above tasks. This has been
suggested in passing by Miller (1990, p. 13) and is, perhaps,
what Mosteller and Tukey (1977) meant by double cross-
validation. I investigated this strategy and found it clearly
inferior to any of those discussed below, so henceforth I re-
strict attention to splitting the data into two parts.

Which parts of the data should be used to perform the three
tasks above? Most previous authors have used the first sample
(sometimes called the estimation sample) to select the model
and also estimate the parameters of that model. The second
sample, called the validation sample is then used to assess
the performance of the selected model. Call this strategy A
and the naive strategy where the same data is used for all
tasks, strategy N. Validation is not, as Stone (1974) says, a
good descriptive word, since the second sample is not used
to determine the validity or correctness of the selected model,
merely to assess its predictive performance. Picard and Cook
(1984), Picard and Berk (1990) and Roecker (1991) make

this division of labour. These authors focus on the estima-
tion of an average (over a subset of the predictor space) mean
squared error of prediction. Certainly, sample splitting in this
manner might enable a better estimate of this quantity, al-
though it seems that in practice one would want assessments
of variability in particular predictions, and the overall sum-
mary measure might be a number without context or use. An-
other common thread is that all three articles concentrate on
variable selection in regression models, whereas (as these au-
thors admit) the applicability of data splitting is much wider.
Special techniques can be used to estimate the mean squared
error of prediction when attention is restricted to just variable
selection in regression. However, in general we cannot expect
such techniques to be available, so we avoid them when using
strategy A in the comparisons to follow.

Data splitting can be viewed as artificially providing new
data. If one really did have new data, one might well use
the model selected by past experience and fit the data to that
model. This suggests a second data splitting strategy (B),
where the first sample is used only to select the model and
the second sample is used both to estimate the parameters of
the model leading to predictions and to assess the variabil-
ity in those predictions. This is the approach mentioned by
Miller (1990, p. 13) and Hurvich and Tsai (1990) and actu-
ally implemented by Faraway (1992). Interestingly, none of
the proponents of these two approaches seems to have con-
sidered the other.

A third strategy (C) can also be motivated by the arrival of
new data. One might retain the originally selected model, but
merge the new data with the old and re-estimate the parame-
ters. Thus the first sample would be used to select the model,
and the combined sample would be used to estimate the pa-
rameters and to assess variability. Note that the independence
of the model selection and model assessment has now been
lost, which might be expected to cause some over-optimism
in our assessment of model performance. The advantage is
that all the data are being used to estimate the parameters
thus hopefully reducing the variability in those parameter es-
timates.

Strategy Model Estimation Variance
Selection Assessment

A Part 1 Part 1 Part 2
B Part 1 Part 2 Part 2
C Part 1 All All
N All All All

Table 1: Division of Labour for Data Splitting Strategies

One aspect of model performance is accuracy of predic-
tion, which we might measure by mean square error (MSE),
for example. Strategies A, B and C do not use all the data



for selecting the model, so that we cannot expect them to find
as good a model as if we had used all the data. Similarly, A
and B only use a portion of the data for the estimation of the
parameters, which would lead to greater variability (although
maybe less bias) than if all the data were used. Thus, it is un-
reasonable to expect strategy A or B to outperform strategy N
in terms of predictive MSE.

Indeed, the purpose of data splitting is to obtain better esti-
mates of the variability of predictions, and the price one pays
is that the actual variability (which one is trying to estimate)
of the predictions will tend to be higher. Thus we need to
measure not just the performance of point prediction but also
the variance assessment.

Let the prediction of the future response Y0 for a given
value of the covariates x0 be Ŷ0(x0) and its estimated stan-
dard error be se(Ŷ0(x0)). We can measure the point perfor-
mance of our methodology by looking, for example, at the
values of Ŷ0(x0)− Y0 in the long run, but this does not mea-
sure the accuracy of our variability assessment. Confidence
intervals for the predictive values can be constructed and we
can assess how the actual coverage of the intervals compares
with the nominal levels. We can simply record the proportion
of future observed values that fall in the, say, 95% confidence
intervals. However, it would be more instructive to see the
actual coverage for a whole range of nominal levels. To this
end define the predictive z-statistic

z = (Ŷ0(x0)− Y0)/se(Ŷ0(x0)).

We might hope that, in the long run, z is centered around 0,
but this in itself is not enough. If Var z is much greater than
1, this would indicate general underestimation of variability,
whereas Var z much less than one indicates overestimation
of error. If normality holds, then we can compare the ob-
served z’s to the standard normal to assess what I shall term
the honesty of our predictions. In other words, Φ(z) should
then be Uniform(0,1). The actual coverage of the confidence
intervals for predictions can be assessed by comparing the
empirical distribution of the Φ(z) to the standard uniform. In
particular, given a set of m observed zj , j = 1, . . . ,m, we
can plot lj = j/(m + 1) against Φ(z(j)) − lj . In Figure 1,
I show several such curves for z’s randomly generated from
different distributions. I call these honesty plots. In practice
where one might be assessing the performance of predictions
against the observed values, one would usually just plot the
points, but since m = 1, 000 here is large, lines are better.

I have smoothed the curves a small amount due to the in-
herent roughness of the empirical processes. This would not
be necessary for just one curve but it does make it possible to
distinguish several curves on the same plot. Looking at the
case where the variance of the prediction is underestimated
and taking the worst case, we observe that at a probability of
0.2 the discrepancy is about -0.15. So if the predictions were
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Figure 1: Honesty plots for known z: N(0, 1) (well-
calibrated predictions) — solid, N(−0.5, 1) (true value un-
derestimated) — dotted, N(0, 4) (variance underestimated)
— short dashes, N(0, 1/4) (variance overestimated) — long
dashes.

well-calibrated, i.e. the mean and variance were on average
correct, we would expect about 20% of the observed Φ(z)’s
to be less than 0.2 but in this case about 35% are. So for
a central confidence interval with 100 − 2 × 20=60% nomi-
nal confidence, there would be only about 60− 2× 15=30%
actual coverage. If distributions other than normal were ex-
pected, this could all be suitably adjusted. Another approach
to the assessment of predictive variability is the log-scoring
method of Good (1952)

I have focussed on prediction here since predictions can
be made in the original scale of the response and are thus
directly interpretable. The meaning and existence of parame-
ters may change from model to model and so it is not easy or
even necessarily meaningful to assess variability in parameter
estimates except in relation to the particular model chosen. A
good example of this occurs with the Box-Cox transformation
— see Hinkley and Runger (1984)

3 Simple Model Selection
In this section, I consider a two simple examples where the
model that is used to make a prediction is first selected using
some data-dependent procedure. In both cases, I would not
recommend using data splitting in practice since the model
selection procedures are relatively simple and well defined
and there is the possibility of applying various whole-data



methods for adjusting the inference for the model selection
effect. Data splitting would be more appropriate where the
model selection procedure is either complex or dependent
on graphical methods which are difficult to precisely define.
Nevertheless, if data splitting cannot work well in these sim-
ple circumstances, then we can have little confidence in its
value in more complicated situations.

3.1 Regression Variable Selection
Let Xi ∼ U(0, 1) and εi be independent and identically dis-
tributed N(0, σ2) for i = 1, . . . n. Let Yi = α + βXi + εi.
Suppose we wish to predict Y , given some x0, but suspect
that there may be no linear relationship betweenX and Y and
so test the hypothesis that β = 0. The test we use is based on
the usual least squares based t-statistic t = |β̂|/se(β̂). Thus
our predicted value is

Ŷ (x0) =

{
α̂+ β̂x0 if t > c
Ȳ if t ≤ c ,

where c is some specified critical value.
We consider the prediction of the mean response — i.e. the

average value of future observed values of Y for given x0.
This means that we can compare our prediction to a known
true value, and it also amplifies the model selection effects
over what we would observe if the problem were to predict
a single future value. Of course, the prediction of a single
future value is more often the objective, but my primary aim
is to compare data splitting strategies and the prediction of
the mean response is more convenient for this purpose.

Thus the naive estimated variance of Ŷ (x0) is

V̂ar Ŷ (x0) =

 σ̂2

(
1
n + (x0−X̄)2∑

(Xi−X̄)2

)
if t > c∑

(Yi−Ȳ )2

n(n−1) if t ≤ c
,

where σ̂2 is the usual least squares regression estimate of σ2.
This is a mere cartoon of a real statistical analysis. In prac-

tice, residuals would be examined for evidence of departure
from assumptions and the possibility of transformations of
the variables investigated. Various graphical examinations of
the data would also be made. Thus even in this simple re-
gression setting, most statisticians would carry out a rather
complex and difficult to characterize procedure to select their
model. Furthermore, in this case where we suspect that β
is close to 0, then the procedure above is not to be recom-
mended - a shrinkage type estimator or Bayesian approach
could be used according to taste.

Several authors have worked on the variable selection ef-
fect on regression inference, including Freedman, Navidi, and
Peters (1988), Kipnis (1991), Pötscher (1991) and Raftery,
Madigan, and Hoeting (1993), and it would seem that as long
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Figure 2: Honesty plot of against
where for data splitting strategies N— solid,
A — dotted, B — short dashes, C — long dashes.

that as long as one is prepared to confine one's model selec-
tion purely to the inclusion or exclusion of a single variable
then there is some hope of reasonably adjusting the inference
for the model selection effect without resort to data splitting.
The general problem of how to adjust the inference for vari-
able selection still awaits a completely satisfactory solution.
Data splitting strategies A,B & C require the data to be

split into two parts of size and . Snee (1977) discusses
ways in which the data can be split in a balanced manner,
but Roecker (1991) found that this was only a small improve-
ment over random splitting in the variable selection setting.
In more complex situations it may be difficult to be clever
about splitting the data in a balanced way, so we will use ran-
dom splitting for convenience and versatility.
We use the subscripts 1 and 2 to distinguish the regression

estimates derived from the first and the second sample. Thus

where in all cases I choose the first definition when
and the second otherwise. The estimated variances are

Figure 2: Honesty plot of lj = j/1001 against Φ(z(j)) − lj
where j = 1, . . . , 1000 for data splitting strategies N — solid,
A — dotted, B — short dashes, C — long dashes.

as one is prepared to confine one’s model selection purely
to the inclusion or exclusion of a single variable then there
is some hope of reasonably adjusting the inference for the
model selection effect without resort to data splitting. The
general problem of how to adjust the inference for variable
selection still awaits a completely satisfactory solution.

Data splitting strategies A,B & C require the data to be
split into two parts of size n1 and n2. Snee (1977) discusses
ways in which the data can be split in a balanced manner,
but Roecker (1991) found that this was only a small improve-
ment over random splitting in the variable selection setting.
In more complex situations it may be difficult to be clever
about splitting the data in a balanced way, so we will use ran-
dom splitting for convenience and versatility.

We use the subscripts 1 and 2 to distinguish the regression
estimates derived from the first and the second sample. Thus

ŶA(x0) = α̂1 + β̂1x0 or Ȳ1

ŶB(x0) = α̂2 + β̂2x0 or Ȳ2

ŶC(x0) = α̂+ β̂x0 or Ȳ

where in all cases I choose the first definition when t1 > c
and the second otherwise. The estimated variances are

A : σ̂2
2

(
1

n1
+

(x0 − X̄1)2∑
1(Xi − X̄1)2

)
or

∑
2(Yi − Ȳ2)2

n1(n2 − 1)

B : σ̂2
2

(
1

n2
+

(x0 − X̄2)2∑
2(Xi − X̄2)2

)
or

∑
2(Yi − Ȳ2)2

n2(n2 − 1)



C : σ̂2

(
1

n
+

(x0 − X̄)2∑
(Xi − X̄)2

)
or

∑
(Yi − Ȳ)2

n(n− 1)
,

where
∑

1 and
∑

2 indicate sums over the first and second
parts of the data respectively.
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Figure 3: Maximum discrepancy(x100) for strategies N —
solid, A — dotted, B — short dashes, C — long dashes with
β varying. f = 0.5 in top pane and f = 0.75 in bottom pane

The properties of Ŷ (x0), ŶA(x0), ŶB(x0), ŶC(x0) can be
accurately investigated by simulation. Note that even with
a simple set-up like this, it is very difficult to determine the
exact distributions of the estimators. Asymptotic approxima-
tions are not much help since the model selection effect van-
ishes with increasing sample size.

First I investigated the point performance for all four
strategies. Not surprisingly, I found that the whole data strate-
gies, C and N, performed significantly better. These results
are expected — we do not split the data with the objective of
getting better point estimates.

To investigate the assessment of uncertainty computed the
values

zj = (Ŷj(x0)− α− βx0)/

√
V̂ar Ŷj(x0), j = 1 . . .m,
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Figure 4: Maximum discrepancy(x100) for strategies N —
solid, A — dotted, B — short dashes, C — long dashes with
f varying. β = 0 in the top pane and β = 0.5 in the bottom

and plotted lj = j/(m+1) against Φ(z(j))−lj in Figure 2 for
the case m = 1, 000 replications, with n = 20, α = 0, σ =
1, c = 1, x0 = 1, β = 0.5, f = 0.5. For each replication, a
new set of X’s are generated. A fixed value of c was used for
all four strategies. The test for β = 0 should be regarded as a
rudimentary variable selection method rather than a hypothe-
sis test, so levels of significance are not of concern here. The
normal distribution is not quite appropriate here, but it is dif-
ficult to determine what is. I have smoothed the plot a small
amount again.

That the bulk of all curves lie below the line is indicative of
the general underestimation of both the true value and the true
variance of prediction in all strategies. In particular, one can
see that the actual coverage of the confidence intervals will be
far less than the nominal. In this example the naive strategy
is performing almost as well as any of the other strategies, if
not better than B and C particularly.

Is this true in general? Using a summary of performance



in the honesty plots such as the maximum distance between
the curve and the zero line we can see how this summary
varies as β (Figure 3) and and f (Figure 4) are varied, using
m = 40, 000 replications, with n = 20, α = 0, σ = 1, c =
1, x0 = 1, in Figures 3. As can be seen there are no clear
winners or losers. I also tried varying other parameters but
the general message was the same. Given the better point
performance of the naive strategy, it seems that data splitting
pays a price without delivering the reward.

3.2 Box-Cox transformation

Let Xi ∼ U(0, 1) and εi be i.i.d. N(0, σ2) for i = 1, . . . n.
Let

Y λi = α+ βXi + εi

We observeX and Y but not λ (λ = 0 is equivalent to log Y ),
which we will determine using the Box-Cox method. In keep-
ing with common practice, we select λ from a finite set of
interpretable values, in this case {-2.0, -1.5, -1.0, -0.5, -0.25,
0.0, 0.25, 0.5, 1.0, 1.5, 2.0}. We simply pick the value in this
set that gives the highest value of the likelihood. Then α and
β are then estimated using least squares, without testing β as
in the previous example.

So in this example, the model selection is just the deter-
mination of λ, and again additional data analysis would nor-
mally be done in practice. The model selection effects were
investigated by Bickel and Doksum (1981). Some contro-
versy was engendered over the interpretation of β when λ is
variable – see Box and Cox (1982) and Hinkley and Runger
(1984). Since we focus on prediction and not parameter es-
timation, these interpretational issues do not arise as long
as one accepts that the estimation of λ using the Box-Cox
method does potentially inject extra variability into the pre-
diction. The prediction and variance estimates usually need to
be transformed back to the scale of observation. The variance
estimates are transformed using the delta method.

RMSE error for this example are much the same as for
the variable selection. Naive and C dominate and the per-
formance of A and B varies according to the parameter set-
tings. In the plots of the maximum discrepancy in Fig-
ure 5, as β is varied, using m = 40, 000 replications, with
λ = 0, n = 20, α = 0, σ = 1, x0 = 0.5. We see that the
naive strategy does a lot better than the rest, because all of the
data are used to determine λ, which is the crucial aspect of
this scenario. The use of the wrong λ leads to biased predic-
tions. C dominates both A and B.

This example demonstrates one major danger of splitting
the data — the model selection may be seriously damaged if
only a fraction of the data are used for this purpose.
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Figure 5: Maximum discrepancy using the Box-Cox transfor-
mation for data splitting strategies N — solid, A — dotted, B
— short dashes, C — long dashes as β varies, f = 0.5 in top
pane and f = 0.75 in bottom pane.

4 Complex Model Selection

As the data analysis becomes more complex, the number of
models considered becomes much greater along with the pos-
sibility of substantial model uncertainty. Given that both fre-
quentist and Bayes approaches to adjusting for model uncer-
tainty become impractical as soon as more than one or two
data analytic procedures are used, we might hope that data
splitting would provide at least a crude assessment of true
variability. We consider a regression problem where the data



are generated from the model

g(Yi) = β0 +

p∑
j=1

βjfj(Xij) + wiεi

where Xij are independently distributed Fx, εi is distributed
Fε with β0 = 0 and βi = 1, i 6= 0.

Let us try to predict the mean response Y at the point
(0.2, 0.2, ..., 0.2). We will consider four scenarios which will
be represented as modifications of the following default val-
ues: n = 50, p = 5, g & fj identity functions, Fx & Fε
standard normal, wi = 1.

Model Label Description
Vanilla Default values
Outlier Fε ∼ 2

3N(0, 1) + 1
3N(0, 32)

Nonlinear Fx ∼ U(0, 0.2), g−1(x) = ex/5

Hetero Fx ∼ U(0, 0.2), wi =
∑p
j=1 βjfj(Xij)

Now in the previous example, the variable selection pro-
cedure was precisely specified so it was straightforward to
simulate. In contrast, a regression analysis carried out by a
Statistician will be quite complex. Several procedures will be
used. Some procedures, typically diagnostic, involve the as-
sessment of graphical figures. The ordering of the procedures
is often not independent — the choice of the next action may
depend on the outcome of the last. Such a regression analysis
is almost impossible to specify precisely in a completely re-
alistic manner. Nonetheless, since it will be impractical and
unrepeatable to do a large number of data analyses by hand,
I have attempted to program a somewhat realistic regression
analysis. I did this in Faraway (1992) which should be con-
sulted for more details but I will outline the procedures below.

I completely specify a regression data analytic action R()
so that µ′ = R(µ) where µ′, µ are regression models/data
and µ is arbitrary. The functions I have implemented func-
tions are

1. Outlier check

2. Influential points check

3. Check for non-constant variance

4. Box-Cox transformation

5. Check for transformation on predictors

6. Variable selection by backward elimination

7. Variable selection by forward selection

8. Outlier/Influential Point restoration

The regression analysis consisted of these actions applied
in the stated order. Ten thousand replications were used with
a fraction f = 0.5 in every case. The results are shown in
Figures 6, 7, 8, 9.
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Figure 6: Scenario: Vanilla. Maximum discrepancy for
strategies N — solid, A — dotted, B — short dashes, C —
long dashes
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Figure 7: Scenario: Outlier. Maximum discrepancy for
strategies N — solid, A — dotted, B — short dashes, C —
long dashes
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Figure 8: Scenario: Hetero. Maximum discrepancy for strate-
gies N — solid, A — dotted, B — short dashes, C — long
dashes
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Figure 9: Scenario: Non-Linear. Maximum discrepancy for
strategies N — solid, A — dotted, B — short dashes, C —
long dashes

In the “Vanilla” case, where no data analysis was really
necessary, we see that the naive strategy is best although the
discrepancies are not substantial for any of the strategies. In
the “Outlier” case, we see that strategy A was best with B
beating C but the assessment of the naive strategy depends
on how the discrepancy is judged. In the “Hetero” case, we
see generally large discrepancies with the Naive strategy be-
ing the worst. However, the performance of the other three is
in no way good considering that point accuracy has been sac-
rificed to obtain better variability assessment. In the “Non-
linear” case, we again see poor performance for all strategies
with A and the naive being the worst.

In other simulations not shown here, the best strategy var-
ied according to the situation. I do not believe it is possible
to say that one strategy is better than another as far as as-
sessing variability goes. On the other hand, point accuracy is
surely degraded by data splitting. Even for given data, I do
not think it is possible to determine the best strategy without
access unknowable information like the “true” model and its
parameters.

Throughout, I tried to see if there was some universally
recommendable value of f . Without quite substantial knowl-
edge of the true model and even its parameters, it is impossi-
ble to pick f optimally. Furthermore, the best f varies sub-
stantially from case to case.

5 Conclusion
Data splitting strategies A, B & C cannot be distinguished
from one another in the sense of honesty of prediction, al-
though C does tend to give better point performance. We
see that data splitting sacrifices some accuracy in point es-
timates without the reward of greater honesty in prediction.
In some cases the results (see the Box-Cox case) are sig-
nificantly worse when data splitting is used. The situations
we have directly investigated are relatively simple and not
entirely realistic, but we cannot feel any confidence that it
would work any better in more complex and realistic situa-
tions. Given that data splitting will most assuredly cost some-
thing in terms of predictive accuracy, without any guarantee
of a return in predictive honesty, it seems difficult to recom-
mend.

So it seems one is stuck with the complex approaches de-
scribed in the introduction. For cases where the data-analytic
process is well specified and not artificially limited — Madi-
gan and Raftery (1994) would be a good example — then the
“big model” approach can be used, utilising either frequentist
or Bayesian methodology according to religious preference.

When the data analytic process is too complex or vague
to specify completely, then one can use a posteriori model
expansion as in Draper (1995) and try to do an honest job
in choosing the direction of such expansion. An alternative



is Faraway (1992)’s bootstrap-based approach. This may be
workable for preprogrammed data-analytic actions, but gen-
eral application awaits more sophisticated data-analytic envi-
ronments than are currently available.

These findings also have implications for a succession of
data analyses. Strategies B and C can be compared to the
situation where new data become available after a model has
been discovered using the original data. Both B and C do
not reselect the model, but given their performance above it
seems that it would be better to start from scratch – pool all
the data and reselect the model.
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