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Abstract

A regression analysis usually consists of several stages such as variable selection, trans-
formation and residual diagnosis. Inference is often made from the selected model without
regard to the model selection methods that preceeded it. This can result in overoptimistic and
biased inferences. We first characterize data analytic actions as functions acting on regression
models. We investigate the extent of the problem and test bootstrap, jackknife and sample
splitting methods for ameliorating it. We also demonstrate an interactive LISP-STAT system
for assessing the cost of the data analysis while it is taking place.
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1 INTRODUCTION

A statistical model is usually defined by a systematic and a random component. For example, a
linear regression model is specified by a particular linear relationship between the predictors and
the expected response and by the distribution of the errors, often i.i.d normal. Inference might
then proceed based on this knowledge. However, in practice, since the true model is rarely known,
inference is usually preceded by several iterative stages of data analysis to search for a satisfactory
model. At this point, inferences may be made on the basis of this model without conditioning
on the data analytic methods that preceded it. These inferences are inaccurate, tending to err on
the side of overstating the significance of predictors and making predictions with over-optimistic
confidence. There may also be a problem with bias. Of course, this problem is well known to
many statisticians and is mentioned in most good textbooks on regression; for example: “When
the model is chosen through data analysis, the (usual) formula for the standard error of a prediction
is likely to underestimate the prediction errors” in Weisberg(1985, p229). It is a failing that is easy
to note but difficult to rectify. The difficulty applies to any problem which is not trivial and where
the model assumptions are checked in any way. Since few would make inferences from data,
even when the true model is supposedly known, without some kind of model verification, then the
problem is virtually omnipresent. This paper presents general methods for adjusting regression
inference for prior data analysis.

Many previous investigations of this problem have tackled the linear regression model. Bickel
& Doksum(1981) consider the effect of the Box-Cox transformation applied to the response. They
conclude that the cost (in terms of inflating the variance of the slope parameter) of estimating the
index of the transformation can be substantial. There is some controversy regarding the interpre-
tation of the parameters of the model in this situation which was brought up by Box & Cox(1982)
and Hinkley & Runger(1984) with ensuing discussion. See also Doksum & Wong(1983) and Tay-
lor(1989). Carroll & Ruppert(1984) look at predictions from non-linear regression models. Here
there is no parameter interpretation problem and the conclusion was that there is little cost in esti-
mating the correct transformation.

Other papers have focused on the effect of variable selection on inference. Miller (1984) lists
some possible approaches to this problem. The simplest method is to split the data. One part
may be used for finding the regression model and the other part for inference thus avoiding the
conditionality problem. There are a number of concerns with this approach. For example, how
should the data be split and what is the loss in efficiency? Picard & Cook(1984) discuss this.
Another approach is based on resampling methods. Freedman et al.(1988) describe a bootstrap
and a jackknife method for adjusting for the effects of variable selection alone. They find that
the bootstrap works reasonably well for problems where the ratio of predictor variables to cases
is small but begins to break down where this ratio is large. Hurvich & Tsai(1990) discuss some
simulations which indicate the extent of the problem and prescribe sample splitting. Brownstone
(1988) uses a bootstrap-based approach and Kipnis (1991) describes a pseudosample approach to
the problem. A Monte-carlo approach may also be feasible, although this is very much related
to the bootstrap approach. Miller also mentions a maximum-likelihood and a shrunken estimator
method which only apply to the variable selection problem and do not address the general case.

Carroll, Ruppert & Wu (1988) discuss the effect of estimating the weights when using weighted
least squares. They describe a bootstrap method for adjusting for this effect. Carroll & Rup-
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pert(1991) expand on this to include allowance for transformation. Freedman & Peters(1984) give
some empirical results in a generalized least squares situation.

Gong (1986) and Taylor(1988) looked at the effect of variable selection and estimating addi-
tional shape parameters respectively in a logistic regression setting. Dabrowska & Doksum (1988)
look at similar problems in survival analysis. Hill(1985-86) gives a Bayesian viewpoint.

The aforementioned papers have a common characteristic in that they consider only one or two
data analytic procedures at a time and assume that otherwise the model is correct. However, there
are many stages in a regression analysis. Regression diagnostics may suggest various transforma-
tions or the exclusion or down-weighting of outlying or influential points. Variable selection may
be used to produce a more parsimonious model. Many regression analyses consist of several passes
so that some procedures may be repeated many times in any one analysis. In short, the whole anal-
ysis is rather complex and may take several paths, some of which may depend on the subjective
assessment of the statistician. This makes any formal (in a mathematical sense) assessment and
adjustment for the effect of the model selection virtually impossible.

In section 2, we describe a tool for the investigation of these problems. In section 3, we
investigate possible solutions to these difficulties - the bootstrap, jackknife and sample splitting.
In section 4, we use simulations to demonstrate the extent of the problem and the efficacy of the
solutions proposed. In section 5, we demonstrate the use of the method on some real data and also
propose a method for continuously evaluating the effects of the data analysis in progress. Section
6 is the conclusion.

2 REGRESSION ANALYSIS TOOL

Regression analysis is an inexact procedure: competing methods are available for the same task,
some methods depend on the visual perception of the analyst and the choice of methods may
depend on the physical nature of the problem. However, any empirical investigation to compare
and assess the proposed methods for adjusting the inference for the data analysis will require a
device for repetitive analysis of regression data. Given the large number of analyses necessary,
particularly when resampling methods are used, and the inconsistency of human data analysts, a
computer program to aid regression data analysis has been developed.

A regression analysis might be viewed as the application of a succession of procedures which
suggest if or how the current “best” model may be changed. We will characterize regression
analytic procedures as functions acting on regression models and returning regression models. For
some procedures such as variable selection and transformation, this is relatively straightforward,
because these methods are usually completely specified and need not require human judgment.
However, for other diagnostic based methods, it is not so easy. We may have some method for
detecting outliers but we also must specify what we will do with these outliers - for example,
exclude or down-weight them. For the detection of heteroscedascity, the analyst may plot the
residuals against the fitted values and then take action based on the visual assessment of this plot.
We, however, require an exact specification and so our methods cannot be graphical and hence
are less flexible. We must test for somespecificform of deviation from non-constant variance
and then say what we will do (transform or reweight) in response to this. So we may miss some
gross deviation visible in a plot, although graphical methods are not perfect in that we are forced
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to assess the significance of a graphical feature which may be problematic. Also the physical
context of the data can be included to some extent by restricting the procedures from transforming
or eliminating certain variables or points, but it is difficult to include knowledge concerning which
functional forms are more appropriate than others. Thus the proposed data analytic functions can
only approximate the behavior of a human data analyst.

Although this program could be one part of an expert system to do regression analysis, it lacks
an interface to translate the real-world problem to and from the appropriate format. Furthermore,
the analyst still needs to choose which methods are appropriate, what order they should be per-
formed in, and when to stop the analysis. In short, the statistician should perform the analysis in
the usual way except that the procedures are restricted to those that can be completely and exactly
specified. To assist in this, a prototype regression analysis tool(RAT) has been developed using the
LISP-STAT language - a statistical computing environment based on the Lisp language. (Tierney
(1990)). Source code is available from Statlib.

Suppose we have data(Xi j ,Yi) with i = 1, ...,n and j = 1, ..., p. We aim to find a model of the
form

g(Yi) = β0 +
p′

∑
j=1

β j f j(X′i j )+wiεi

where the primes indicate that some initial predictors may be excluded or additional predictors like
squared or interaction terms may be introduced. Sop′ may be greater than, less than, or equal to p.
Thewi are weights, which could be set to zero if we wish to exclude a point from the model. Theg
and f j are transformations. Thus a regression model, in our sense, is specified by the original data,
the transformations, and the weights.

The following data analytic functions have been built into RAT:
• Check for skewness of the variables and transform if necessary. The rule is if X is strictly

positive andmax(x)/min(x) > c (where c is some specified critical value, defaulting to 100) then
X 7→ log(X).

• Check and remove outliers. The rule is to compute the jackknife residuals and check if any
residuals exceed a critical value computed using the Bonferroni inequality. Points so identified
have weights set to zero.

• Check and remove influential points. The rule is to compute the Cook statistics and check for
those exceeding 1. Points so identified have weights set to zero.

• Check for non-constant variance and reweight if necessary. The squared residuals are re-
gressed on the fitted values and the fitted values squared. If the regression is significant, then
weights are computed by iteration using a method explained in Davidian & Carroll (1987).

• Check for a Box-Cox transform on the response. The profile log-likelihood is maximized
and the index rounded to the nearest half between -2 and 2.

• Check for transformations of the predictors by testing the significance of addingXα
i to the

model, using the method described in Weisberg p153, add new predictor if appropriate.
• Perform variable selection using the backward elimination method.
•Restore previously excluded points: Check for outliers using the method described above and

reinclude all points that are not outliers but were previously excluded.
A P-value of 0.05 is used in all tests but this may be changed by the user. This list is obviously

not exhaustive but is representative of the sort of data-analytic actions that may occur in practice.
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Furthermore, I do not wish to imply that these are the best methods to use all the time. Note that I
have used least-squares estimation but robust estimates could also be used although some methods
like backward elimination would have to be modified appropriately.

These functions have been programmed to take any regression model as input and output a
(possibly changed) regression model. The flexibility of the object-oriented programming system
that comes with LISP-STAT makes it easier to program these functions in full generality to keep
track of the numeric (the data and weights) and non-numeric (the transformations and variable
names) components of the regression model. Additional data-analytic functions may be added
easily without disturbing the operation of RAT.

If we write the regression model, as specified by the data, weights and transformations, as
m, and the data analytic functions asa1,a2, ..., then a typical data analysis for sequence of data
analytic actionsai ,a j , ...,ak (whereak is done first) in our sense, could be written as

mf inal = ai(a j(....(ak(minitial )))) = (ai ◦a j ◦ ...◦ak)(minitial )

We consider two particular problems in adjusting the inference for the effect of data analysis.
The first is prediction and the second is assessing the dependence of the response on a predictor.

3 METHOD

3.1 Bootstrap

To estimate the distribution of complex estimates, the bootstrap is immediately appealing, but
the choice of resampling algorithm is problematic. For regression data there are two methods -
resample the residuals, which is conditional on the model or resample from the rows of the data,
which is independent of the model. If the residual method is chosen, a model must be specified.
We could perform the full data analysis to come up with a model and resample the residuals
conditionally from this model to generate the bootstrap samples. However, the final model is
almost certain to be closely fit to the data and so the bootstrap samples will not capture the full
variation of the data. Freedman et al(1988) in a variable selection setting, and our simulations,
reveal that this method seriously underestimates the variance of the quantities of interest often
performing little better than the naive estimates. Freedman et al(1988) chose to resample residuals
from the full (all predictors, all untransformed and no weights) model prior to variable selection
which implicitly assumes that the full model is structurally correct. We are not willing to assume
the correctness of any initially proposed model since any conditional resampling scheme based on
that model would be suspect. Therefore, we use the unconditional resampling scheme, resampling
from the rows(Xi ,Yi). This has the advantage of simplicity in that no model need be specified
prior to the analysis and intermediate estimates of the distribution of the estimates of interest may
be obtained, but the disadvantage that the bootstrap estimates of variance are biased, although it is
asymptotically equivalent to the conditional method, see Freedman (1981).

Of course, this method will estimate the unconditional variance of the estimates - not the vari-
ance conditional on X. However, except for small or very skew samples these differ hardly at all
and because our analysis is likely to remove leveraged outliers, the difference would reduced. The
unconditional resampling would have to be modified in situations where X truly is fixed or is a
biased sample from the population.
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3.2 Prediction

Suppose we want a distribution for the mean response ofY given someX0. For modelm, write
this prediction aŝY(mX0). Note that this is computed in the original scale of the response. The
proposed method is

a) Perform the data analysis using only completely specified data analytic functions like those
described in Section 2. The initial model, order and number of times each function is used will be
at the discretion of the data analyst. Record the order in which these functions were performed.
Thus, for sequence of actionsai ,a j , ...,ak, the prediction is

Ŷ ≡ Ŷ((ai ◦a j ◦ ...◦ak(minitial ))X0)

b) Generate bootstrap samples(X∗i ,Y∗i ) by sampling unconditionally from the original data and
form m∗initial . Perform the data analysis in the same order as for the original data. It is quite possible
that the bootstrapped final models may have different weights, transformations and predictors from
the model for the original data, nevertheless a prediction at the pointX0 may still be computed:

Ŷ∗ ≡ Ŷ((ai ◦a j ◦ ...◦ak(m∗initial ))X0)

c) Form the predictive distribution as the empirical distribution of the bootstrap predictions,Ŷ∗.
A predictive distribution for a new observation atX0 could be obtained by adding resampled

residuals to thêY∗’s assuming no heteroscedascity was detected, otherwise more complex modifi-
cations would be necessary. From now on we consider only predictive distributions for the mean
response.

Note that the prediction is a function of the sequence of actions as well asX0, so that a valid
bootstrap predictive distribution may only be obtained by applying the same sequence of actions to
the resampled datasets. Hence, at any given stage of the analysis, we cannot just start resampling
from the current data to construct a valid predictive distribution as this will not reflect the effect
of the prior data analysis. Therefore, it is advisable that the analyst resolve upon our procedure at
the outset. In this way, a current estimate of the predictive distribution may be obtained that takes
account of the whole analysis up to that point.

Since analytic adjustments are available for some actions, you might wonder if it is really nec-
essary to apply such an action to all the resampled datasets as some computational expense might
be saved by using the analytic adjustment. Unfortunately, this is not possible because the available
analytic adjustments can only supply the marginal variance inflation of a particular action. Thus
there is no way to coherently combine such information with that obtained using our resampling
method. To clarify this point, consider a regression analysis consisting of just two actions for which
analytic adjustments exist. Marginal variance inflation could be computed for each action but there
is no obvious way to combine the two to assess the variance inflation due to the combination of
both actions. Furthermore, bias and other distributional quantities may also be of interest.

3.3 Parameter Estimates

Estimating the distribution of a parameter estimate is more difficult than prediction. One major
problem is that in some bootstrap samples, variables may be transformed in different ways making
meaningful comparison of estimates from the different samples difficult. It is overly restrictive
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to use only data-analytic functions that avoid transforming the relevant variables. One approach
would be to determine some model-free measure of the physical meaning of the relevant parameter
so that meaningful comparisons would be possible. There are a number of ways of doing this. See,
for example, Hinkley & Runger(1984). Another possibility is to assess the change in the response
as the relevant predictor is changed (both in the original scale) at a specific point in the range of
X,X0 that is

Effect(βj) =
d

dxj
g−1[β0 +

p

∑
i=1

βi f i(xi)] |X=X0

If g, f j are identity functions then theEffect(βj) is just the usualβ j . Effect(βj) can be estimated
by using the samplêβ’s.

It might be argued that this turns parameter interpretation into something like prediction. How-
ever, if the parameters have some intrinsic meaning, it is likely that the “true” model is known and
so little if any data analysis will be needed and the usual estimates of error will apply. Certainly
transformation will not be considered without abandoning the model that gave the parameters
meaning in the first place. Otherwise, when the parameters have no intrinsic meaning, it is no loss
to translate them into effects, as described above, which do have a definite physical interpretation.
Note that when a particular parameter effect is of particular interest, the analyst needs to restrict
the variable selection methods from eliminating the relevant predictor. RAT can do this.

Collinearity is a problem in parameter interpretation and the methods we propose do not avoid
it. Nevertheless, the bootstrap distribution will tend to be wider to reflect the additional uncertainty.
Of course, it is advantageous to try to remove the collinearity using the usual methods, provided
they are completely specified.

Of course, this method has the disadvantage of dependency on the choice ofX0. However, in
practice, we might be interested in the effect of a predictor on the response at a number of points
in the predictor space and we would not be surprised to find that the effect differed from point to
point, so a universal interpretation of an effect would be unwise in any case. Therefore, the analyst
should choose a point or points at which the effects can be calculated according to the physical
context of the problem.

If the qualitative effect of a predictor on the response is the sole subject of interest, then since
the sign ofβi has the same interpretation no matter what the scale, no special adjustments are
necessary.

3.4 Jackknife

The jackknife is a general purpose method that has been used to estimate the bias and variance of
estimators and can be applied here in the same way that the bootstrap estimates are calculated. One
disadvantage that the usual Jackknife method has relative to the bootstrap is that it cannot estimate
the distribution of the quantity of interest. However, there are some variations on the usual leave-
out-one method discussed in Wu(1986). Wu’s leave out many method allows for the estimation of
the distribution. For the leave-out-one method the bias and variance may be calculated in the usual
way. We also try the leave-out-(n+p-1)/2 as described by Wu. Since it is infeasible to consider
all possible sub-samples of size (n+p-1)/2, we merely take a random sample of these. These sub-
samples are then analyzed similarly to the bootstrap resample.
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3.5 Sample Splitting

Another possible approach to the conditionality problem is to split the sample into two (not neces-
sarily equal) parts. One part is used to find a model employing whatever data analytic procedures
are appropriate and the other part to make inferences from the chosen model. Miller (1984) and
Hurvich C. & Tsai C-L. (1990) recommend this approach. The main drawback is that because only
part of the data is used for model selection, the choice of final model is not likely to be as good as if
all the data were used. Furthermore, only part of the data is used for estimation introducing further
inaccuracy. There is also the technical problem of exactly how the data should be split. Snee(1977)
and Picard & Cook(1984) describe ways in which the data may be split into two suitable parts. The
relative size of the two parts depends on how accurate we want the estimate to be and how well
we wish to assess the error in that estimate, but it is difficult to quantify these competing concerns.
We have simply chosen to split the data randomly into two equal parts in our simulations.

A technical difficulty may arise using the sample splitting approach if some of the data is
negative but the part chosen for the data analysis is all positive. It is possible that a model may be
chosen for this half data that cannot be used for the other half. For example, a log transform might
be chosen for the response but this could not be applied to the second half of the data. In situations
such as these we shall avoid the use of inappropriate transformations.

4 SIMULATION

First we shall do some simulations to demonstrate the effectiveness of this method. We generate
data from the model

g(Yi) = β0 +
p

∑
j=1

β j f j(Xi j )+wiεi

whereXi j is distributedFx, and theεi , Fε with β0 = 0 andβi = 1, i 6= 0.
We consider the prediction of Y at a point(0.2,0.2, ...,0.2) and the estimation of the effect of

β1. We fix the variable selection method so thatX1 cannot be removed from the model. Parameters
were interpreted at the point of the medians (X0).

The models considered are given in the table below. The default values are n=50, p=5,g & f j

are identity functions,Fx & Fε are standard normal andwi = 1.

Model Label Description
Vanilla Default values
Outlier Fε ∼ 2

3N(0,1)+ 1
3N(0,32)

Nonlinear Fx∼U(0,0.2), g−1(x) = ex/5

Hetero Fx∼U(0,0.2), wi = ∑p
j=1β j f j(Xi j )

Collinear X1∼ standard normal,X2 andX3 ∼ N(0, .01)−X1

Saturation n=25, p=15

Table 1: Models used in the simulation
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400 replications were made for each model with 100 resamples being used for both the boot-
strap and the jackknife. We used the the leave-out-(n+p-1)/2 method for the jackknife except for
the “saturation” model where the usual leave-out-one method was employed. Starting with an
initial model of all variables included, no transformations and unit weights, data-analytic actions
were performed in the order indicated in Section 2, once only, to produce a final model. For each
replication, the predicted value or estimated parameter effect using regular least squares methodsθ̂
and resampled valuesθ∗1,θ

∗
2, ...,θ

∗
100 for both bootstrap and jackknife and the split sample estimate

θ̃ were calculated. We now focus on how well the R.M.S.E of an estimator may be estimated. The
R.M.S.E of the regular estimatorrmse(θ̂) is estimated from the 400 replications as

r̂mse(θ̂) =

√√√√ 1
400

400

∑
i=1

(θi−θ)2 (†)

and similarly for the split sample estimator.rmse(θ̂) may be estimated from a given replication
in 3 ways: The bootstrap and jackknife estimates of the rmse are given by

r̂mse∗(θ̂) =

√√√√ 1
100

100

∑
i=1

(θ∗i − θ̂)2

The naive method which takes no account of the prior data analysis assumes that the final
model is correct and thus that the bias is zero, so the rmse is estimated using the usual least-
squares estimate of the standard error. The rmse of the split sample estimator is also estimated
using the least-squares estimate of the standard error.

Note that when the model was transformed, the naive estimates of error were also appropri-
ately transformed, that is if̂YT is the prediction and̂se(ŶT) is the estimated standard error in the
transformed scale, then the estimated standard error in the original scale is computed as

lim
δ→0

g−1(ŶT +δŝe(ŶT))−g−1(ŶT)
δ

= (g−1)′(ŶT)ŝe(ŶT).

A similar calculation may be made for the parameter effect using a numerical approximation for
the derivative (letδ be small).

The estimated densities of estimated rmse’s are shown in Figure 1, using a kernel density esti-
mator with a manually chosen bandwidth. The naive estimate of the rmse of the regular estimator
is marked “naive” and the split sample estimate of the rmse of the split sample estimator is marked
“split”. Each has been normalized by subtracting and then dividing the estimate by the estimated
true rmse (from(†)). We should note that the estimated densities are only as good as might be
expected from a sample size of 400, but the estimate of the true rmse used to normalize the scale is
sufficiently good so as not to be noticeable within the resolution of the plot. Four outlying points
were not plotted to avoid compacting the range of interest. Thus a good estimate of the rmse should
have a density tightly centered around zero. Note that the naive estimates of the rmse of the regular
estimate tend to be too small, sometimes substantially so. The bootstrap and jackknife estimates
are superior to the naive estimate, although these also tend to be on the low side. The estimate
of rmse of the split sample estimator falls short in several cases. This is disappointing since half
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the sample has been sacrificed, thereby increasing the true rmse, which is then not even estimated
adequately.

Now some specific comments on the models: In the “Vanilla” model , most of the data-analytic
actions do not change the original model and so the naive estimates work reasonably well. In this
example, where we happen to have the correct model from the outset, splitting the sample is quite
a loss. In the “Outlier” model, the estimators are now non-normal (and in subsequent models) and
the bias corrections of the bootstrap and jackknife are noticeable. The naive estimate of rmse is
clearly too low whereas the resampling methods are better centered even if the variation is quite
high. The split sample method has an estimator with higher variation although this variation is quite
successfully estimated. The results for the “Nonlinear” model and the “Hetero” model are quite
similar - the bias corrections and error estimation of the resampling methods are quite successful.
In the “Collinear” model, the bimodality is due to variable selection and the resampling methods
again perform well. In the “Saturated” model, there is a high ratio of variables to cases. The split
sample method is not applicable here since if the sample is halved there would be more variables
than cases. We must use the leave-out-one jackknife estimate here so the results may be displayed
more succinctly in a table:

Estimator RMSE Estimation
Bias SD True Naive Boot Jack

Effect 0.019 0.582 0.582 0.288 13.5 1.18
Prediction -0.309 0.822 0.877 0.338 15.9 1.50

Table 2: Results for the saturation model

We give the sample bias and SD of the regular estimator, it’s sample RMSE and the average
naive, bootstrap and jackknife estimates of that RMSE. The bootstrap fails, the naive estimate is
too small by about a factor of 2 and the jackknife too large by about a factor of 2.

To summarize, these simulations show that the naive estimates of error can seriously under-
estimate the RMSE of the quantities of interest. The jackknife or bootstrap can provide a more
realistic estimate of the error. These estimates are not perfect but are certainly superior to the naive
ones. Splitting the sample introduces substantially more variation into the estimates without the
certain reward of eliminating the bias and of being able to estimate the variation successfully. The
regular estimates are often biased but the resampling methods can be used to correct this somewhat
and the split sample estimator also has less bias but at the expense of additional variance. The jack-
knife method is cheaper computationally and possibly more robust than the bootstrap although the
delete-many jackknife method we used in the first five models would not apply when the number
of predictors became relatively large.

Of course, it would be rash to base these recommendations on 6 examples. I have carried out
simulations under different conditions and achieved qualitatively similar results. The source code
for the simulations is provided and the user need only write the function that generates the data
(examples provided) to study his or her own models of interest. These simulations were quite time-
consuming (about 2 days on a DECstation 5000/200 each) even though each complete regression
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analysis takes about 2 seconds.

5 EXAMPLE

During a data analysis it would be helpful to have a concurrent assessment of the distribution of
each quantity of interest, be it a parameter effect or a prediction. This would be of assistance in
assessing the effect of an action and, if we have a maximum acceptable amount of variation in an
estimate, in knowing when to stop. Using the bootstrap method (or the jackknife) we can do this.
We take B resamples unconditionally from the original data and from these construct B regression
models. We then analyze the original data as we would normally, except that any action we take
on that original data, even if it results in no change in the current model, is carried out on all the
resampled regression models. So, for example, although the outlier test may indicate that point #7
be excluded from the model for the original data, different points, if any at all, might be excluded
from the resampled models. At each stage in the analysis we can access the quantities of interest,
be it a parameter effect estimate or prediction (or both) in the each of the resampled regression
models and use these to assess the progress of the analysis.

A tool for carrying out a data analysis in this manner has been developed and provided for the
user. The program prompts the user for the choice of resampling method, the number of resamples,
etc. After each data analytic function has been executed the user may view density estimates of the
resampled quantities of interest and other numerical summaries. The state of the current regression
model may be studied to determine the next step. A data analysis in progress is shown in figure 2.
Other features include the ability to view the history of the data analysis, in terms of a description
of the effect of each action and as a change in the estimated density displayed as a succession
of boxplots or as a “density slice”, a 3-D surface plot showing the density changing with the
actions. Although the user is initially prompted for a point of interpretation (X0) and/or points at
which predictions will be made, it is possible to see how the estimated densities of these quantities
change over a range of newly chosen values using boxplots or the density slice.

We will demonstrate this idea on the Chicago Insurance dataset given in Andrews & Herzberg(1985).
We will take volact(≈ insurance policies issued) as the response and percentage minority compo-
sition, fire rate, theft rate, age of housing and median family income as the predictors. A particular
concern with this data is to detect the practice of “redlining”, that is denial of insurance on the
basis of race, so we will assess the dependence of volact on minority composition takingX0 as the
point 10,6.2,29,60.4,11744 (where the order of the predictors is as above) and the prediction of the
mean response at that same point. I do not wish to imply that what follows is a complete or appro-
priate analysis of this data, since clearly other considerations regarding the context and method of
analysis apply. I merely want to show how taking account of the effect of the data analysis changes
the conclusions that otherwise might be made.

We use the bootstrap method with 400 resamples, although we could just as well have used the
jackknife method. The progress of the analysis may be seen in figure 3 and 4 where the percentiles
of the resampled estimates for the estimated parameter effect and the same for the prediction,
respectively, may be seen to change as we progress through the data analytic actions. The estimates
from the original data are marked with a solid line. No initial skewness was found in the original
data and hence none in any of the resamples. The Box-Cox test indicated a square root transform
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on the response and at this point the parameter estimation problem enters. The resamples gave
different transformations (7% log, 89% square root and 4% identity) which shows up as increased
variation for the parameter effect. Attempting to transform the predictors did not alter the model
for the original data and changed the distribution only slightly and variable selection eliminated
income causing some increase again in the variation. No outliers were found but point 24 was
influential and was thus excluded. No heteroscedascity was found in the original data but it must
have been detected in some of the resamples causing a change in the estimated densities. Further
variable selection eliminated theft and point restoration reincluded point 24.

The data analysis was stopped at that point. As for the effect of minority composition on the
response, the RAT analysis indicates that 3.75% of the resampled estimated parameter effects are
greater than zero, whereas the t-statistic from the final model for the test ofβ1 = 0 is -6.71 with
43 degrees of freedom, giving a miniscule P-value. Thus, the standard analysis indicates a very
significant predictor whereas the RAT analysis points leaves the issue in doubt depending on one’s
opinions about P-values. Lest it be thought that this is purely due to an ill-fit model, diagnostic
checks indicated no outstanding problem and bootstrapping the residuals from the final model gave
an estimated se for̂β1 of 0.0023, very similar to the naive estimate of 0.0022. There might be some
concern about our choice ofX0. In figure 5, we show the percentiles of the resampled estimated
effects with the solid line again marking the estimated effect from the original data at the end of
the analysis where we vary the percentage minority composition from 10 up to 100 with values of
the other predictors held constant as given previously. Notice how the size of the effect decreases
as does the variation as the minority composition increases. Turning to the prediction problem, the
RAT estimate of the rmse for prediction is 0.532 larger than the naive estimate of 0.441, with little
bias indicated by the final plot.

Parameter estimation is much more sensitive than prediction to the choice of data analysis.
Changing the order of the data analysis gave different models and hence t-statistics forβ1. How-
ever, the bootstrap analyses were much more consistent giving P-values for the test ofβ1 = 0 not
dissimilar to the one above. Thus, there is a suggestion that using this method might result in
inference less dependent on the order of the data analysis.

In conclusion, we can see that making inference from the final model taking the data analysis
into account may result in quite different qualitative and quantitative conclusions.

6 DISCUSSION

One major obstacle to widespread use of this procedure is the necessity of characterizing data-
analytic actions as functions where the response to every observed condition must be completely
specified. Realistic incorporation of flexible graphically based procedures within this framework
is challenging to say the least. Nevertheless, given that over-optimistic inferences are frequently
made from regression data, RAT points a way towards at least partial solution to the problem.

There remain a number of other outstanding questions. For instance, it might be argued that,
during the course of the data analysis, we might examine a plot and, consciously or otherwise,
decide on some action or lack of action. This informal activity would not be taken into account
by the program and thus not take account of the variation introduced by this activity. So we might
argue that the analysis should be conducted blind or in a completely automated manner to avoid
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this problem but this would seem to impose a crushing inflexibility. The opportunity for abuse
also exists in that the analyst, not obtaining a desirable result in his first analysis, might restart
RAT and change the order of the actions, thus invalidating the whole procedure. The parameter
interpretation problem is not completely resolved and other schemes may be appropriate.
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FIGURES

Figures 1 and Figures 3,4 and 5 appear on the next two pages. Figure 2 is large screen shot of the
software and is not included here.
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Figure 1Effect                                                                   Prediction
V

an
ill

a

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0 Naive

Bootstrap

Jacknife

Split

-1 0 1 2

0.
0

0.
5

1.
0

1.
5

O
ut

lie
r

-1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

-1 0 1 2 3

0.
0

0.
4

0.
8

1.
2

N
on

lin
ea

r

-2 0 2 4

0.
0

0.
2

0.
4

0.
6

-3 -2 -1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

H
et

er
o

-1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

-1.0 -0.5 0.0 0.5 1.0 1.5

0
1

2
3

4

C
ol

lin
ea

r

-1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

-1 0 1 2

0.
0

0.
4

0.
8

1.
2

14



Figure 3 - Analysis history for Minority effect
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Figure 4 - Analysis history for the prediction
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Figure 5 - Effect distribution as point of interpretation varies
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