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Density Estimation

A bootstrap-based choice of bandwidth for kernel density estimation is introduced. The method works by estimating the
integrated mean squared error (IMSE) for any given bandwidth and then minimizing over all bandwidths. A straightforward
application of the bootstrap method to estimate the IMSE fails because it does not capture the bias component. A smoothed
bootstrap method based on an initial density estimate is described that solves this problem. It is possible to construct pointwise
and simultaneous confidence intervals for the density. The simulation study compares cross-validation and the bootstrap method
over a wide range of densities—a long-tailed, a short-tailed, an asymmetric, and a bimodal, among others. The bootstrap
method uniformly outperforms cross-validation. The accuracy of the constructed confidence bands improves as the sample size

increases.
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1. INTRODUCTION

Let X, . . ., X, be independent observations from a
density f. Consider kernel density estimates of the form

fulxs B) = ()™ 2 K((x = X)/R),  (1.1)
i=1

where h is the bandwidth and K is the kernel with

Jr K(x) dx = 1.

Appropriate selection of 4 is essential to achieving good
estimates. Numerous methods have been proposed to
choose k. Silverman (1986) provides a good introduction
for readers unfamiliar with these techniques.

A commonly used criterion for judging the efficacy of

these techniques is the integrated mean squared error
(IMSE) for bandwidth A.

IMSE(k) = J E(fx: h) — f)Pde.  (1.2)

For this criterion, least squares cross-validation is a pop-
ular way to select the bandwidth. Large-sample theory for
this method was given by Hall (1983), Stone (1984), and
Burman (1985). Bowman (1985) conducted a simulation
study to compare some of the competing bandwidth se-
lection procedures and concluded that cross-validation was
best. Scott and Terrell (1987) discussed some variations
on cross-validation.

In this article, we propose a bootstrap-based choice
of bandwidth. The idea is to estimate IMSE using the
bootstrap and then minimize over 4. However, a direct
application of the bootstrap fails. The IMSE may be
decomposed into bias and variance terms. The regular
bootstrap may adequately estimate the variance, but it is
not able to estimate the bias. Therefore, we use a different
approach. We obtain an initial estimate of the density with
the bandwidth chosen by some other procedure and re-
sample from that. Thus we are able to construct an esti-
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mate of the IMSE that captures the bias term as well. This
smoothed bootstrap procedure tends to improve upon that
initial estimate of the density. Pointwise and simultaneous
confidence intervals for the density may also be obtained.
Another advantage of our method is that it is easily adapt-
able to criteria other than the IMSE, such as the integrated
mean absolute error or even other functionals of the
density.

Hall (1990) described a different bootstrap-based band-
width selection method. During the review of this article,
we also discovered a paper by Taylor (1989) that describes
a method similar to ours and points out that, with the use
of a Gaussian kernel, the bootstrap estimate of the IMSE
may be calculated without resampling. The additional
computational cost of our method appears to result in
better bandwidth selection and confidence intervals, which
is a worthwhile advance over mere bandwidth selection.

In Section 2, we describe the implementation of the
estimator, and, in Section 3, we describe a simulation study

“to illustrate the small-sample properties. In Section 4, we

discuss the results of the study. Our main conclusion is
that our bootstrap method produces superior estimates of
the density compared with the cross-validated method and
that plausible confidence bands may be constructed.

2. IMPLEMENTATION

The straightforward approach to using the bootstrap
method to estimate the IMSE for a given bandwidth would
be to resample X7, ..., X from the empirical distri-
bution F, and then construct bootstrap estimates

falxs h) = (nk)™' X K((x = X2)/h)  (2.1)
i=1
forj =1, ..., B, where B is the number of bootstrap

samples to be taken. Our bootstrapped estimate of the
variance of f,(x; h) would then be

B Y j (F3x; B) — Tl b)Y dx,
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Table 1. Sample Size = 50

Sample
Relative efficiency comparisons

Confidence

Distribution Fixed cv b1 b2 b1-CV b2-b1 level (80%)
Normal 1.09 2.05 1.69 1.50 58-14 33-10 65
Bimodal 1.04 1.39 1.34 1.38 37-46 24-46 59
Contaminated normal 1.06 1.69 1.51 1.47 38-29 24-29 54
Lognormal 1.07 1.45 1.37 1.38 36-47 25-47 29
Cauchy 1.06 1.57 1.41 1.35 39-31 25-25 47
Beta 1.11 1.84 1.50 1.38 62-18 33-19 64

where
_ B
fa(xs B) = B™' Y fulx; h).
j=1

However, the usual bootstrap estimate of the bias, f,(x;
h) — fx(x; h), vanishes. Since the component of bias
increases with 4 and can be substantial, this naive boot-
strap method will fail.

This phenomenon was observed in another context in
bootstrap selection of bandwidth for quantile estimates
under censoring in Padgett and Thombs (1986). Romano
(1988) observed the same effect for kernel density esti-
mates of the mode.

We construct an initial estimate of the density f,,(x; hy)
and then resample from that. This can be accomplished
by adding a random amount k¢ to each resampled X},
where ¢ is distributed with density K(-). So X — X +
hee. This is an example of the smoothed bootstrap where
smoothing is not only desirable but necessary [see Silver-
man and Young (1987) for more on this]. We may then
construct f(x; h) as before, estimating the bias by Falx;
hy) — fn(x; h), and estimate the IMSE(h) as variance +
(bias)? by

BIMSE(h, hy) = B 3 | (fi(x; h) = f.(x; ho))? dx.

(2.2)

We obtain the bootstrap choice of bandwidth %, by min-
imizing BIMSE(h, hy) over .

The L, norm has been the most popular criterion for
the choice of bandwidth, but the L, norm has its advan-

Table 2. Sample Size

tages [see Devroye and Gyorfi (1985) for more on the L,
norm]. One advantage of the bootstrap method is that it
can easily be adapted to this criterion by using

B
BIMAE(h, hy) = B~' X | |fu(x; h) = fu(x; hy)| dx.
j=1

(2.3)

We require some way of selecting /,. The better this
selection is, the better our bootstrap method will be. Of
course, we hope that the application of the bootstrap will
improve upon this initial choice or it will hardly be worth
our trouble. The method we have used to make this initial
choice is least squares cross-validation, where A, is chosen
by minimizing

V) = [ futxs b dx 2n-éfn.-,-(x,« B, (.4

where f, _; is the density estimate based on all of the data
except X;. It is possible to iterate this method, that is, use
the bootstrap choice of bandwidth as the new initial choice
and apply the bootstrap method again. This choice appears
to work well for the sample sizes we consider here, al-
though for much larger sample sizes theory suggests some
upward adjustment of 4, might be required.
Construction of pointwise or simultaneous confidence
bands is a nice by-product of using the bootstrap method. -
A pointwise confidence interval for f(x) may be con-
structed from the appropriate quantiles of f(x; h,)..Si-
multaneous bands involve more computation: For each
bootstrap sample compute b; = sup,|f(x; k) — Fa(x | ko).

= 50: Bandwidths

Bootstrap Bootstrap
ISE Cross-validated one-step two-step
Fixed Standard Standard Standard Standard
Distribution Bandwidth  Bandwidth  deviation = Bandwidth  deviation Bandwidth  deviation  Bandwidth  deviation
Normal 1.1 1.07 .20 1.11 .40 1.13 .31 1.18 .25
Bimodal .64 .64 .09 .68 22 77 .22 .84 .24
Contaminated normal .79 .76 14 .82 .33 91 .31 .98 .29
Lognormal .49 46 12 .51 22 .59 .22 .66 22
Cauchy 1.22 1.19 21 1.27 48 1.40 .43 1.49 .39
Beta 1.20 1.15 .24 1.10 .39 1.17 .29 1.24 .23
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Table 3. Sample Size = 400
Sample
Relative efficiency comparisons

Confidence

Distribution Fixed cv b1 b2 b1-CV b2-b1 level (80%)
Normal 1.06 1.51 1.29 1.22 64-16 33-14 80
Bimodal 1.06 1.24 1.13 1.10 59-17 24-12 81
Contaminated normal 1.07 1.49 1.28 1.20 52-16 28-10 72
Lognormal 1.04 1.29 1.17 1.16 52-36 27-44 53
Cauchy 1.05 1.40 1.24 1.19 55-20 28-13 66
Beta 1.10 1.48 1.28 1.20 62-17 34-14 72

Now sort the b/’s and select b,(a) = b|,5. The 100(1 —
a)% confldence band is then f,(x | k) = b,().

3. SIMULATION

For reasons of computational efficiency, we use the Epa-
nechnikov kernel.

K(x)

5(1 — x%),

0 otherwise.

if x| < 1,

We consider six test distributions: standard normal; bi-
modal normal, $N(—1, %) + 3N(1, 1); contaminated nor-
mal, 3N(0, 4) + 3N(0, 1); standard lognormal; Cauchy;
and beta(2, 2).

The sample sizes used were 50 and 400. B = 100 boot-
strap samples were used. This is rather low, but the pro-
cedure is somewhat expensive computationally and some
economy was required. The numerical integration neces-
sary for the computation of integrated squared errors was
done using a grid of 100 points. ISE(4), BIMSE(h), and
CV(h) were computed for 20 values of & evenly spaced
on an appropriately wide log-scale. A more efficient search
for the minimum of these functions is not possible because
they are not always perfectly convex. Results were based
on 400 replications. Uniform random numbers were gen-
erated using a standard linear congruential algorithm and
were then transformed to the test distributions using
widely available algorithms.

Results of the simulation study are given in Tables 1-
4. By “fixed” we mean that fixed choice of bandwidth that
minimizes the estimated IMSE. This was empirically cho-
sen. Some previous authors have determined this fixed
bandwidth based on asymptotics. Experience has shown
that the asymptotics may be misleading as well as unnec-

Table 4. Sample Size =

essary for our present purposes [see Dodge (1986) for
further discussion of this].

By “ISE” we mean that the bandwidth is chosen for any
given sample to minimize the integrated squared error,
where we presume knowledge of the true underlying den-
sity. Hence this estimator is the best one could possibly
do with a kernel density estimator given complete knowl-
edge. Thus this estimator is a good benchmark with which
to measure the performance of our proposed methods.

We give the ratio of the estimated IMSE of a method
to that of IMSE of the ISE choice under the heading
“relative efficiency.” Estimated error here is around 2%.
The bootstrap method based on the cross-validated (CV)
initial choice is denoted by “b1,” and “b2” is the iterated
bootstrap choice.

We also give some statistics to answer the question: “For
my sample, will the bootstrap improve my estimate?”” The
percentage of samples where the method produced a lower
ISE than the other is given under “sample comparisons.”
Note that these percentages do not sum to 100% because
we are using a grid of bandwidths and hence the remainder
represents that percentage of samples where the two meth-
ods produced the same bandwidth choice.

We also computed confidence bands as described in the
preceding section. The estimated actual confidence of
nominally 80% confidence bands are given. Of course, the
discretizations we used previously may cause some addi-
tional inaccuracy here. Sample averages and standard de-
viations for the bandwidths chosen are also given.

4. DISCUSSION

We see that the bootstrap performs almost uniformly
better than cross-validation, both in term of relative IMSE
and sample comparison. Iterating the method produces

400: Bandwidths

Bootstrap Bootstrap
ISE Cross-validated one-step two-step
Fixed Standard Standard Standard Standard
Distribution Bandwidth  Bandwidth  deviation Bandwidth  deviation Bandwidth  deviation = Bandwidth  deviation
Normal .70 .71 13 .69 18 .69 11 71 .08
Bimodal 41 .40 .06 .40 .09 41 .05 42 .03
Contaminated normal .49 .48 .08 .45 14 .48 10 .50 .07
Lognormal 22 .23 .04 .21 .07 .25 .05 .28 .04
Cauchy 74 .73 12 .69 .20 .74 14 77 Bh
Beta .70 .71 14 .67 .20 .70 13 .73 10




122

some further improvement, especially for the larger sam-
ple size. Note that the method performs well for the Cau-
chy density, in contrast to the method of Taylor (1989).

The bootstrap method chooses generally larger band-
widths than cross-validation, but the choice has smaller
variation. This smaller variation explains the superior
performance. This trend continues when the bootstrap
method is iterated. :

The actual confidence levels fall somewhat short of the
nominal 80%, particularly for the smaller sample size. The
intervals, however, are much more accurate for the larger
sample size.

A negative correlation was observed between the band-
width of the ISE choice and the bootstrap choice, larger
than that between the ISE choice and the cross-validated
choice, as was observed by Scott and Terrell (1987).

We conclude that the bootstrap method is superior to
the cross-validated method. Of course, the bootstrap
method is computationally more expensive, but this will
become less of a disadvantage in time. Confidence bands
are an added bonus.

[Received February 1988. Revised May 1990.]
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