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A bootstrap method is developed to estimate the average squared error of a kernel based 
nonparametric regression estimator for a given bandwidth. This estimated average squared error is then 
minimised over the bandwidth to produce a regression estimate. Locally adaptive smoothing and 
simultaneous confidence bands may be obtained from this bootstrap method. 
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1. INTRODUCTION 

Let x,, . . . , x n  be design points and let e l , .  . . ,en be independent and identically 
distributed with unknown distribution F that has zero mean and variance a2 c a. 
We observe Y, ,  . . . , Y ,  where 

The problem of interest is the estimation of the regression function r(x)  and the 
formation of simultaneous confidence bands for r(x).  Consider kernel regression 
estimates of the form 

where K is a kernel function and h is the bandwidth. Appropriate selection of h is 
essential to the estimation of r (x ) .  The efficacy of the estimate may be judged 
according to various criteria among these being the average absolute error and the 
average squared error which are respectively 

For now we consider only M2(h) ,  although the methods developed are simply 
extensible to Ml(h) .  Various methods of bandwidth selection have been proposed 
among these being cross validation where h is chosen to minimise MC(h)= 
n -  ' ( Yi- i,, - i ( ~ i ) ) 2  where i,, - i  is the regression estimate with ith observation 
omitted. Hardle, Hall and Marron (1988) discuss this and other crossvalidation 
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38 J. J. FARAWAY 

based bandwidth selection methods. It appears that there is not a great deal of 
difference between these methods so the version described above may be taken as 
representative. In Section 2, we describe a bootstrap method for estimating M2(h) 
and explain why this is not as straightforward as it might first appear. The method 
is an extension of work on bootstrap bandwidth selection for density estimates in 
Faraway and Jhun (1988). In contrast, Hall (1990) proposes a bootstrap method 
based on taking smaller resample sizes. We also describe the construction of 
simultaneous confidence bands for r(x) and local adaptive smoothing where the 
bandwidth is allowed to vary with x. Construction of confidence bands is the 
major advantage of the bootstrap method. See Hall and Titterington (1988) for an 
alternative approach to the construction of confidence bands. We demonstrate that 
the bootstrapped process has the same limiting distribution as the actual 
regression estimation process. Hirdle and Bowman (1988) also describe a boot- 
strap method of estimating M,(h). Their approach differs from ours in that they 
require explicit estimation of the second derivative of r (x ) .  They also discuss 
pointwise confidence bands and local adaptive smoothing as we do here. In 
Section 3, we conduct a simulation study to illustrate the application of our 
methods and to test their efficacy. The main conclusions of the study are that the 
bootstrap method of bandwidth selection is superior to crossvalidation, that the 
locally adaptive smoother is even more effective and that reasonably accurate 
simultaneous confidence bands may be obtained. In Section 4, we discuss the 
limitations of this work and describe possible extensions. 

2. THE BOOTSTRAP METHOD 

The prescription for the bootstrap method is as follows: First some residuals are 
required, which means that some initial estimate of r(x) is needed. Cross-validation 
is a good choice here since it is simple to compute. Define the ith residual by 

where h, is the bandwidth selected by the crossvalidation method. Now the 
residuals must be recentred: 

Since varDi<02 it is desirable to reinflate the residuals. This was done in the 
context of linear regression by Stine (1986) and, in this case, simulation shows it to 
be worthwhile. The reinflated residuals are 

Di -+ bi/5"2, where 5 = var Di/az. 

Direct calculation shows that 5 = ( I -  ~ (0 ) lnh ) '  is an adequate approximation here. 
We then draw resampled residuals eT,. . .,e,* from ?,,...,On. Resampled Y* are 
then constructed by 
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BOOTSTRAP SELECTION OF BANDWIDTH 39 

For a given bandwidth h, an i,*(x) may be calculated from the bootstrap sample, 
Y*. We repeat this procedure B times to obtain ?$(x), j = 1,. . . , B. 

M2(h)  may be decomposed into components of bias and variance. The variance 
may be adequately estimated by 

where 

The difference ?,(xi) -%(xi) ,  where 
bandwidth h and the original data, 
note that 

?,(xi) is the estimator calculated from the given 
fails as an estimate of the bias at xi.  To see this 

which is a smoothing of the expected bias of the crossvalidated estimate. This will 
not work since as h increases, this estimate will tend to decrease, contrary to the 
known behaviour of the bias as h increases. This effect is also discussed in the 
context of quantile estimation in Padgett and Thombs (1986). The effect may be 
avoided by not having both terms in the bias estimate depend on h. Thus 
iho(xi)-r;T(xi) is a consistent estimate of the bias at xi (see Appendix for proof) 
and may be combined with the estimate of the variance above to form a bootstrap 
estimate of M2(h):  

The bootstrap choice of bandwidth will then be h, where h, minimises MB(h) over 
h. Note that we may iterate the method, that is use h, for the new initial estimate 
of r(x)  and apply the bootstrap method again. 

2.1 Simultaneous Confidence Bands 

Simultaneous confidence bands for r(x)  may be constructed in the following 
manner: 
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40 J. J. FARAWAY 

Let &j= max, 5 i s , [ i j * , b ( x i ) - i h o ( ~ i ) ]  and b j =  max, s i 6 n [ f h o ( ~ i ) - P j * h b ( ~ i ) l .  
100(1-  x)% confidence bands may then be constructed as [ i h b ( x )  +6(,,, i h b ( x )  - b,,] 
where &(,, and b(,, are the appropriate sample percentile of the ti's and b's 
respectively. 

Note that these confidence bands are not simultaneously accurate for the entire 
domain of x  but just at the design points. Of course, if the design points are 
suitably dense then the band will be approximately accurate for all x .  

2.2 Locally Adaptive Smoothing 

Locally adaptive smoothing may be implemented by using the bootstrap method 
to select a bandwidth for smoothing, hi,  at each of the design points instead of just 
averaging the average squared error over all the design points. Define the locally 
adaptive estimate as 

It is reasonable to expect that the optimal local bandwidths, hi, should be 
somewhat smooth as a function of x .  If the number of bootstrap samples, B, is not 
sufficiently large, some irregularity may be expected in the hi's, so it seems proper 
to smooth the estimated optimal local bandwidths. Some experimentation reveals 
that h,  is a suitable choice for the bandwidth to make this smooth. 

This modified bootstrap procedure may be justified by showing that the boot- 
strapped process has the same limiting distribution as the process representing the 
actual regression estimate. 

Let x , = i / n  and let r (x)  be periodic with period 1 to avoid any problems with 
edge effects. Let r ( x )  be twice differentiable and rt'(x) be continuous. Let the kernel 
K be a probability density with bounded support and S u 2 ~ ( u )  du= 1. Known 
results (see, for example, Gasser and Miiller (1979))  concerning i h ( x )  are 

var (Ph(x)) = ( n h ) - l o 2  f K 2 ( x )  d x  + O ( ( n h ) - I ) .  

The rate at which the average squared error tends to zero is maximised when 
h  = cn-  'I5 where c is some constant depending on r,  f and K .  For fixed c 20,  n  2 1 
and x  consider the process 

Write p(x)  = r1'(x)/2 and T~ = o2 S ~ ~ ( x )  d x .  Then 
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BOOTSTRAP SELECTION OF BANDWIDTH 41 

Let iho be our initial density estimate, such that J" ,(ii0(x) - rl'(x) 1 dx -+ 0. To 
ensure that this condition holds, we must take nhi-+cx, while h,+O, n - +  a. See 
Gasser and Miiller (1984) for details. 

Define the bootstrapped process as 

Z,*(x, c) = n2/5[i,*(x) - iho(x)], where h = cn- ' I 5  

THEOREM Let c be fixed and positive and let x vary over [O,l]. For almost all 
sample sequences Y,, Y2, . . . , the distribution of Z:(x, c) converges weakly to 
N ( c ~ ~ ( x ) ,  T'/c) as n -+ cc. 

Proof See Appendix. 

3. SIMULATION STUDY 

We consider the following four regression functions r(x): 

i) r(x) = sin (2nx) 
ii) r(x) =sin (2741 - x)') 
iii) r(x) = (1 - 4(x - ))')' 
iv) r(x) = sin (4nx). 

Three error distributions are considered: Standard normal, exponential (shifted to 
have mean 0) and a t with 3 degrees of freedom (scaled to have variance 1) and 
two sample sizes 100 and 400. We use a uniform kernel which facilitates rapid 
computation and means that only integer bandwidths need to be considered. Of 
course, other kernels might produce superior results, but the uniform kernel will 
suffice for a relative comparison of performance. We implement the local adaptive 
smoothing described above, trying both smoothing the local bandwidths using h, 
as the bandwidth for this smoothing (LADS) and not smoothing the bandwidths 
(LADu). For each sample the value of h, h, that minimises M2(h) is computed. We 
give the performance relative to this optimal choice of bandwidth as the ratio of 
the estimated expected average squared errors. We estimate the actual level of the 
nominally 80% simultaneous confidence bands computed for both the global and 
the locally smoothed bootstrap regression estimates by recording the percentage of 
the bands that actually cover the true regression curve. Results were based on 
2000 replications and 200 bootstrap samples. Various numerical techniques to 
increase the accuracy of the bootstrap were tried with little discernible effect. See 
Hinkley (1988) for a description of these techniques. 

See Table 1 for results. The estimated standard error of the ratios is no more 
than 5% of the given values and the estimated error in the coverage estimates is 
around 1%. In every case, the bootstrap method outperforms crossvalidation as a 
method of bandwidth choice. Curiously, the relative gap widens as we move from 
sample size 100 to 400. It is clear that it is necessary to smooth the bandwidths for 
local adaptive smoothing and if this is done the results are uniformly superior to 
the global smoothing methods. The computation of the actual level of the 
confidence bands is subject to two kinds of simulation error-that due to the 
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42 J. J. FARAWAY 

Table 1 n = 100 
-- - 

Error Regression Relative performance Confidence level - distribution ,function cr hoot LADS LADu global locals localu 
PA-- 

-- - 
Normal 2 sin (2n.x) 1.48 1.37 1.20 1.35 83.85 86.30 85.75 

sin(2n(1 - x ) ~ )  1.49 1.38 1.19 1.40 69.65 66.75 68.55 
(1 -4x2)= 1.80 1.65 1.34 1.69 76.80 74.45 74.75 
sin (4nx) 1.37 1.27 1.19 1.32 81.35 82.85 82.55 

Exponential 2 sin (2xx) 1.49 1.37 1.21 1.37 79.55 82.35 78.90 
sin(2n(l -x)') 1.54 1.43 1.23 1.47 66.55 62.90 62.05 
(1 - 4 x y  1.80 1.65 1.37 1.70 75.65 72.95 72.30 
sin (4nx) 1.34 1.25 1.19 1.30 74.60 77.85 75.25 

t with 3df's 2 sin (2nx) 1.38 1.28 1.18 1.31 76.50 80.70 80.00 
sin(2x(l -x)') 1.46 1.36 1.22 1.43 67.60 64.25 64.70 
(1 - 4 ~ ' ) ~  1.77 1.63 1.36 1.69 76.10 73.30 72.30 
sin(4nx) 1.33 1.25 1.20 1.31 72.70 76.05 73.35 

-. 

Error Regress~on Relative performance Confidence leuel 
- distribution function cc boot LADS L lDu  global locals localu 

Normal 2 sin (2xx) 1.38 1.26 1.17 1.30 
sin(2n(l -x)') 1.34 1.22 1.12 1.31 
(1 - 4 ~ ' ) ~  1.59 1.42 1.22 1.46 
sin (4nx) 1.30 1.20 1.10 1.23 

Exponential 2 sin (2nx) 1.38 1.26 1.16 1.30 
sin(2n(l -s)') 1.34 1.23 1.14 1.32 
( 1  - 4 ~ ~ ) ~  1.63 1.44 1.23 1.49 
sin (4nx) 1.28 1.19 1.10 1.22 

t with 3df's 2 sin (2nx) 1.34 1.25 1.16 1.29 
s i n (2n ( l - .~ )~ )  1.32 1.24 1.14 1.32 
(1 - 4 ~ ~ ) ~  1.57 1.43 1.23 1.47 
sin (4nx) 1.28 1.20 1.12 1.22 

bootstrap sample size and that due to the overall number of replications. Added to 
this is the error due to evaluating the bands only on a grid of values. Thus it is 
not possible to assess the accuracy of the confidence bands very carefully, but they 
do seem to be around the desired 80%. The confidence levels generally increase 
from sample size 100 to 400. The results are remarkably similar for the three.error 
distributions. 

A negative correlation was observed between h, and h, larger in magnitude than 
that between h, and h,. The observed variances of the bandwidths were smallest 
for h, and largest for h,  with h, falling in between. 

4. DISCUSSION 

Although the fact that the bootstrap selection of bandwidth appears to be superior 
to crossvalidation is interesting, the construction of simultaneous confidence bands 
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BOOTSTRAP SELECTION O F  BANDWIDTH 43 

is the most important objective. The simulation results show that the method 
proposed appears to be at least approximately correct but a rigorous theoretical 
exposition would be required before these bands might be used with complete 
confidence. 

One shortcoming of the method is that it relies on the assumption of constant 
variance in the errors. The bandwidth selection method might not be very sensitive 
to this but the confidence bands certainly would be. If the form of the deviation 
from constant variance were known or could be estimated then appropriate 
adjustments could be made. 

In practice, we may have unequally spaced design points and some allowance 
will have to be made for edge effects. 

The confidence bands for local adaptive estimates have constant width but some 
advantage may be gained by allowing width to vary according to the bandwidth. 
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APPENDIX 

Proof of Theorem 

First we show that 

To see this, note that 
n 

E*i;(x) - jho(x) = (nh) - ' K((x  - xi) /h)fho(xi)  - Pho(x) 
i =  1 
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J. J. FARAWAY 

1 1 

% i h- ' K ( ( x  - z)/h)iho(z) dz - i.,,(x) = j [K(u) iho(x  + hu) - Fh0(x)] du + h-2p(x ) .  
0 0 

Also 

and 

Since (1.) and ( i- i-) hold, by a version of the CLT the theorem is proven. 
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