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Abstract

A complete scheme for motion prediction based on mo-
tion capture data is presented. The scheme rests on three
main components: a special posture representation, a di-
verse motion capture database and prediction method.

Most prior motion prediction schemes have been based
on posture representations based on well-known local or
global angles. Difficulties have arisen when trying to sat-
isfy constraints, such as placing a hand on a target or
scaling the posture for a subject of different stature. In-
verse kinematic methods based on such angles require
optimization that become increasingly complex and com-
putationally intensive for longer linkages. A different rep-
resentation called stretch pivot coordinates is presented
that avoids these difficulties. The representation allows for
easy rescaling for stature and other linkage length varia-
tions and satisfaction of endpoint constraints, all without
optimization allowing for rapid real time use.

The validity of this scheme also rests on the availability of
motion capture data. There are two situations - in one
case the user has access to a larger database of mo-
tions relevant to the particular problem while in the second
case, the user collects a small amount of motion capture
data concerning the task of interest. At the Human Mo-
tion Simulation Laboratory (HuMoSim) at the University of
Michigan, we have collected several large databases on
various types of automobile and materials handling mo-
tions. A prediction models based on these databases is
presented.

Two contrasting prediction methods are demonstrated.
One is parametric and uses functional regression analysis
to predict the stretch pivot coordinates used in the postu-
ral representation as they vary over the time of the mo-
tion. This regression-type model allows the use of subject-
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based variables such as stature and age and task based
variables such as target location and object weight to in-
fluence the predicted motion. This also allows the scien-
tific study of the effect of such factors using statistical sig-
nificance testing. The second type of prediction method
is based on the idea of nearest neighbor nonparametric
regression. A small number (perhaps even just one) of
motions is selected that have characteristics similar to the
motion we wish to predict. These motions are then aver-
aged in a special way using the stretch pivot coordinates
to produce the predicted motion with the required features
such as stature, target location etc. This method lends
itself to the prediction of motion based on small special
purpose motion capture databases collected by the user
for some specific problem.

Keywords: Ergonomics, Motion Warping, Trajectory Mod-
eling, Inverse Kinematics.

INTRODUCTION

Accurate predictions of human motion are valuable in
many industrial applications. See [3] for a discussion of
the utility of models for motion prediction. Many vehicle
interiors and workplaces are first designed using a CAD
system. Physical prototypes are useful for evaluating the
ergonomic characteristics of the design, but these are ex-
pensive and time consuming especially when a design
must proceed through several iterations. The ability to
place an authentically moving virtual human within soft-
ware such as Jack ([2]) helps the designer detect prob-
lems with the layout that can be rapidly corrected, thus
speeding the design process. In some other applications,
it is sufficient to produce motions that appear to be cor-
rect, but this application demands that the predicted mo-
tions be close to how people really move. Such demands
impose greater costs in terms of the quantity of motion
capture data required. Even so, the methodology pre-



sented below is generalizable and would be useful across
a wide range of applications.

There is a huge amount of research on human motion.
Some predictive models for human motion rely heavily on
theories of human physiology and psychology. For ex-
ample, see recent presentations at Digital Human Model-
ing Conferences, [10] and [1]. However, in recent years,
motion capture technology has allowed us to collect large
databases of human motion that make the construction of
empirical models of motion feasible. The type of models
we present here use relatively little knowledge of biome-
chanics, but rely on observations of real people from
which they draw their validity.

In animation applications, when a particular motion is re-
quired, a common approach is to employ an actor to
perform the desired motion, recording the trajectories of
markers attached to the body. The motion is then mapped
onto the animated character. Sometimes, the motion
needs to be edited because the animated character has
a different anthropometry than the actor or the motion
needs to be retargetted, for example, a hand needs to
reach to a somewhat different location. Techniques exist
for doing this — for example see [21] who describe mo-
tion warping or retargetting, see [9], or motion editing, see
[14]. See also [20].

It is expensive and impractical in many applications to em-
ploy an actor every time a new motion is needed. Instead
one might assemble a database of motions that could be
used to predict new motions when they are needed. In
the example presented below, one wishes to predict how
a worker will move a box to a shelf — one wants to know
the positions of all parts of the body as the motion oc-
curs. We collected a database of people moving boxes
to shelves at a range of locations. We used this data to
construct a model that takes the anthropometry and other
features of the subject along with the desired position of
the shelf as inputs and outputs the predicted motion. One
of these models uses the notion of local averaging. The
motions selected in the database, that are most similar to
the one we want to predict, are then averaged to make
the prediction. The advantage of averaging several mo-
tions compared to just a single motion is that the effect of
individual variability is reduced and the user can be sure
that a more typical motion is being viewed. Of course, the
individual variability is still interesting and can be modeled
— see [7].

An alternative to local averaging of motions is to regress
the motion on the inputs. In this manner, all motions rela-
tively similar to the desired motion can contribute informa-
tion to the prediction according to the closeness of their
inputs. This functional regression style of modeling is ex-
plained below.

The difficult part of this is to construct an appropriate
method for averaging that satisfies constraints such as the
fixed segment lengths of the human frame or placing the

box exactly on the shelf. In the sections below, the heart
of the problem, the methodology and an application are
described and a comparison to existing methods is made.

DATA

In this section, the data to which the methods were ap-
plied is described. The methodology presented here
could be applied to data collected in different ways for dif-
ferent linkages, so this data serves as an example and not
a boundary to what can be achieved.

In 1999, the Human Motion Simulation Laboratory (HU-
MOSIM) at the University of Michigan conducted a set
of experiments concentrated on the motions of standing
people performing reaches to a dispersed set of targets.
In one experiment, subjects were required to move a small
box with both hands from a position in front of the body at
waist height to a shelf at the specified target. The subject
then released the box and returned to the rest position,
then reached back to the box, grasped it and returned it to
the rest position. The left foot was held fixed, but the rest
of the body was free to move.

A total of about 3000 motions were performed by a group
of 20 subjects reaching to 30 targets where the four parts
of the motion described above are counted separately.
The subjects were selected to provide a means to assess
the effects of anthropometry (height in particular), gender,
and age on the motions. The subjects ranged from very
short to very tall and from 20 to 60 years of age. Two dif-
ferent motion capture systems were simultaneously used
to estimate joint center locations throughout the motions:
an optical reflective marker system and an electromag-
netic one. The observed markers were external to the
body but were projected to joint centers within the body.
The whole posture was described by 23 joint center lo-
cations located at the left and right feet, ankles, knees,
hips, shoulders, elbows, wrist, front and back of hand to-
gether with the L5/S1 (small of the back), the C7/T1 (back
of the neck), the sternoclavicular joint (supersternale), the
tragion (center of the head) and the nasion (between the
eyes).

The portions of the recorded motion where the subject
was reaching were extracted based on the motion of the
right hand. Because the data was collected at 20Hz and
each motion lasted around 1 second on average, each
motion was represented by the 3D coordinates of the 23
markers at around 20 timepoints on average. Due to oc-
clusion or other data collection problems, some markers
are missing during some parts of some motions. Where
the amount of missing data was not substantial, the gaps
were interpolated, otherwise the motion was discarded.

INVERSE KINEMATICS AND THE STRETCH PIVOT
Consider a chain of | jointed links in three dimensions as

depicted in Figure 1. Suppose that one end of the chain
is fixed at the origin, that the joints have full flexibility and



that the segments are of known lengths. One wishes to
position the other end of the chain at some target T. For
example, the chain might represent the arm and torso of a
person who must reach to some target. The inverse kine-
matics problem is to position the rest of the chain to satisfy
this endpoint constraint. There is no unique solution and
so the challenge is to select the “best” solution.

Target

Fixed

/

Figure 1: Inverse kinematics: Chain must be positioned to
meet endpoint constraints

Many authors have proposed different criteria by which
the solutions should be judged — see for example, [22] or
[11]. Measures of comfort, effort, stress, etc. have been
developed. Finding such solutions involves optimization
subject to non-linear constraints. Such problems can be
difficult and time consuming to solve. Furthermore, it
seems doubtful that any complex human behavior can be
encapsulated by the optimization of any single criterion.
Other approaches, like motion warping, are based on data
showing a posture (or postures) similar to the desired one.
The task is then to modify the observed posture as little as
possible to meet the constraints of desired target and seg-
ment lengths. This again involves a constrained optimiza-
tion with the same practical problems with computation.

The key advance in this paper is to present a parame-
terization of the posture such that the constraints are al-
ways implicitly satisfied. This allows for rapid and sim-
ple computation of postures. We call this parameteri-
zation,Stretch Pivot coordinates. Alternative approaches
that model the posture using the joint coordinates or an-
gles describing the orientation of the links of the chain,
will require further conditions to meet the link length and
endpoint constraints and thus cannot be conveniently av-
eraged.

The stretch pivot coordinates introduced here have the
advantage that they can be averaged and still produce
a valid configuration of the chain for any segment lengths
and endpoints (provided the total segment length exceeds
the distance between the endpoints). This allows the di-
rect application of statistical methods.

Only 2| — 3 parameters are necessary to describe a closed
(i.e. endpoints fixed) I-link kinematic chain (two parame-
ters for each segment minus three for the endpoint con-
straint). The key to success is selecting these parameters
in a suitable way. Consider first a closed 2-link chain in
three dimensions, like the shoulder, elbow and wrist link-
age, where the endpoints, the shoulder and wrist, are in

fixed positions. Only one parameter is need to describe
this linkage, since the midpoint (the elbow) of the chain is
constrained to lie on a circle whose center lies on and is
orthogonal to an axis joining the endpoints. One needs
only to specify the angle on this circle. We call this mid-
point the pivot and we call this angle the pivot angle. Such
an angle was used by [13], [18] and [19]. The angle is il-
lustrated in Figure 2.

midpoint
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Figure 2: The pivot angle describes the location of the
midpoint on the circle of its possible positions (3D view)

Now consider an | link chain and pick a marker in the mid-
dle of this chain. The selected marker does not need to
be the middle in the sense of median, but assume, for
now, that there are at least two links on each side of the
selected marker. Let us arbitrarily call the two endpoint
markers the proximal and the distal and the selected mid-
point, the medial. Let |, and lg be the distances between
the proximal and the medial and the distal and the me-
dial respectively. If I, and |4 are considered fixed, then
the position of the medial relative to the proximal and dis-
tal may be described in terms of a pivot angle, 6, lying
on the circle orthogonal to, and whose center lies on, the
axis joining the proximal and distal.

Let mp and my respectively represent the total length of all
the links joining the proximal and the medial and the distal
and the medial. So

0<lp<my and 0<lg<my

Define pp = lp/mp and pg = lg/my. We call the p's the
stretch parameters. The position of the medial may be
described in terms of the three parameters (8m, pp, Pd).
Hence the name stretch pivot. See Figure 3.

Once the position of the pivot has been determined, the
problem is reduced to two smaller problems. The same
procedure may be repeated on the two halves of the chain
recursively until the problem is reduced to a collection of
two or three link chains. For the two link chains, only a
pivot angle is needed to describe the middle marker. For
a three link chain, the position of one of the midpoints
may be described in terms of one pivot angle and one
stretch parameter thereby reducing the problem to a two
link chain requiring only one more pivot angle for descrip-
tion. This parameterization uses exactly 2| — 3 parameters
equal to the number of degrees of freedom in the chain.

endpoint



proximal

Figure 3: Stretch parameters illustrated. The distance be-
tween the proximal and medial if that part of the chain
were fully extended is mp while the corresponding dis-
tance for the medial to the distal is my. We define pp =
Ip/mp and pg = lg/my.

Depending on the particular configuration, further restric-
tions will apply to the pair (pp, pa) because the two halves
of the chain must neither be too stretched or not stretched
enough so that the halves might not join in the middle.
Let mpg be the distance from the proximal to the distal.
The triangle inequality and being proportions means that
(Pp, Pa) Must satisfy the following constraints:

PdMg+pPpMp > Mpg
PdMg+Mpd > PpMp
Mpd + PpMp 2> PdMy
0<pp<1 0<pi<1

Depending on the relative values of (mp, Mg, Myq), this re-
sults in a range of potential values for (pp, pq) some of
which are depicted in Figure 4.
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Figure 4: Allowable range for (pp, pqg) lies within the unit
square further restricted by the triangle inequality con-
straints shown as dotted lines. In all three panels, the
proximal is at (0,0,0) and the distal is at (1,1,1). In the first
panel, mp =4,mg = 4, in the second mp =5,mq =4 and in
the third mp =6, my = 4. The points in all three plots are the
values of (pp, pg) corresponding to four different values of
(0s,94¢): (0.1,0.9), (0.1,0.1), (0.9,0.1) and (0.9,0.9).

One needs to model a bivariate response, (pp,pd), but
the irregular shape of the domain being dependent on
the relative values of (mp,mg,Myq), Makes it difficult to
build a prediction equation that will always produce valid
values. The following solution is proposed — work with
(Pp+ Pd, Pd — Pp) Where the first parameter measures how
stretched out the configuration is while the second mea-

sures the extent to which the midpoint is towards the prox-
imal or distal.

For any given (mp,my,mpq), one may determine the max-
imum, Qsmax, and the minimum, gsmin, values that can be
taken by the sum, s= py+ pg. We then define a new pa-
rameter gs as

Os = (S— Gsmin) / (Gsmax — Qsmin)

So (s is a number between 0 and 1 representing the
sum of the stretch parameters scaled within its allowable
range.

Now treating, s= pp+ pqg as fixed, we compute the range
of the difference d = pg — pp as (Qdmin, ddmax), and define
da as
0d = (d — Gdmin) / (Qdmax — Qdmin)

So qgq is again a number between 0 and 1 representing the
difference of the stretch parameters conditional on their
sum, scaled within its allowable range. So any combina-
tion of (gs,qq) within the unit square may be mapped to a
(Pp, Pa) for any (mp,my, myq) combination.

Importantly, the predicted configurations for a given
(Gs,0q) for different (mp,mg,mpq) combinations will be
roughly homologous in the sense of placing the medial
in about the same location to the extent possible given
the values of (mp,my4,myq). This feature is important if one
is to use (gs,qq) as responses that can be sensibly aver-
aged.

The values of Qgnin, Gsmax; Gdmin, Admax for given (mp, My, Mpq)
are given in the Appendix. The stretch parameters must
lie between 0 and 1 so it is simpler to model logq/(1—
g) as the response so that the predicted g will always lie
between 0 and 1.

There remains the problem of the three link chains which
require only one stretch parameter to describe. Again the
specific configuration of (mp,my,mpg) will determine the
range of this stretch parameter which will be a subset of
[0,1]. The problem is just a simpler version of the one
solved above. One may compute the range of this stretch
parameter and the compute an appropriate q € [0,1] as
above.

In describing a pivot angle, two problems may occur.
Firstly, when mp +my = mpq, i.e. the two links are collinear,
the angle cannot be defined at all. When this condition
is close to occurring, there will be some instability in the
pivot angle in that small changes in the midpoint may re-
sult in large changes in the pivot angle. However, given
that the ultimate aim is to predict the midpoint and not the
pivot angle, this problem is not serious.

The second problem lies in defining an origin for the pivot
angle and is more troublesome. One way to define zero
is to pick a direction, say the vertical, and project this di-
rection onto the circle formed by the range of the pivot
angle to define a zero. However, if the circle lies in the



horizontal plane, the zero will be undefined. Of course,
this is unlikely to occur exactly in practice, but more seri-
ously, there will be much instability in the pivot angle when
the motion is such that the axis joining proximal and dis-
tal passes close to vertical. (Zero could also be defined
using a plane, but the same problems will arise).

Of course, one could just choose a different polar direc-
tion but this will simply move the problem elsewhere. For
some combinations of body markers, it is possible to pick
a good polar direction since one might know that any axis
that is likely to occur will not be close to the polar direc-
tion. However, some combinations, such as the wrist, el-
bow and shoulder, can clearly have axes in all directions.
Some adaptive choice is necessary.

The approach taken is to avoid this zero problem entirely
by defining the angle in terms of the normal vector to the
plane passing through the pivot and the two endpoints.
The three coordinates of the normal vector are then mod-
eled. Admittedly, three parameters are introduced where
only one appears to be needed but the polar instabilities
are avoided and the normal vector does contain relevant
information about the orientation of the endpoints and the
pivot which can be usefully modeled.

MODELING DYNAMIC POSTURE

We want to compute averages (and other statistics) of mo-
tion and use these to make predictions of motion that sat-
isfy endpoint constraints such as placing a box on a shelf
for a subject of specified anthropometry. We have already
shown how to model the interior joints of a chain. We now
describe how to scale and represent these parameters as
they change over time during a motion. We also present
a parameterization of the motion of the endpoint conve-
nient for modeling motion to and from specified targets.
The complete posture will represented by a conjunction of
chains as described later in the application section.

TIME SCALING AND B-SPLINE REPRESENTATION
Many individual components of the motion, such as an-
gles between body segments as they change over time,
can be described as functions. For example, consider an
axis joining the initial and final location of the hand. We
can compute the orthogonal distance of the hand from this
axis during motion, which we will call the radial deviation.
Because we observe the data only at discrete timepoints,
we have a sequence of observed values from the start to
the end of the motion. These sequences are of different
lengths because some targets are further away than oth-
ers and people reach at different speeds. We rescale all
these motions so that t = 0 is the start of the motion and t
=1 is the end of the motion. We can save the actual time
taken as a possible predictor of the motion and, perhaps,
to be predicted itself.

Plots of this distance for 20 subjects reaching with the
right hand to a location somewhat to the left and front of

the body and about the same height as the initial position
of the hand are shown in Figure 5. Since there are 30
targets and some reaches were replicated, a plot of the
complete data for this measure would show considerably
more curves. It would be reasonable to average (or take

| |
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Figure 5. The radial deviation of the hand from a straight
line path when reaching with the right hand to a location
on the left for 20 subjects

averages of subsets of) the curves in Figure 5.

For reasons of compactness and ease of manipulation,
we represent the curves as linear combinations of m cu-
bic B-spline basis functions, Y;j(t). A curve y;(t) is repre-
sented as YL, yijyj(t) where the coefficients y;; are esti-
mated using least squares over the points at which y;(t) is
observed.

Given that human motion is usually quite smooth, it is not
necessary to have a large number of basis functions. In
this particular application, we found that eight basis func-
tions were sufficient. Any approximation error is dwarfed
by the variation within and between individuals repeating
the same motion so there is little value in using more basis
functions. Using fewer basis functions is desirable espe-
cially when motion databases may be large. So each ob-
served curve is represented by eight coefficients and the
functional response is thereby converted into a multivari-
ate response which is easier to work with. A parametric
approach to modeling such functions in terms of the pre-
dictors may be found in [5].

TRAJECTORY REPRESENTATION In addition to pre-
dicting univariate functions, such as the radial deviation,
one needs to predict the 3D curves formed by the tra-
jectory of the hand or other body markers. One could
simply model each of the three Cartesian coordinates of
the trajectory, but this is unsatisfactory as it is not invari-
ant to rotations of the coordinate system which one may
well wish to make. A different parameterization has been
chosen that has more interpretable components and as-
sumes that one has specified the beginning and end of the
trajectory (as would be the case for predicting the move-



ment of the hand for specified tasks).

We define r(t) as the radial deviation at time t describ-
ing the orthogonal distance from the axis joining the end-
points, p(t) € [0,1] as the proportionate progress along the
axis at time t and v(t) = p'(t) as the relative axial veloc-
ity. See the left panel of Figure 6 for a depiction of these
guantities.
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Figure 6: On the left, a side view of the reach is shown
with the axis drawn as a straight line connecting the start
and end of the reach. On the right, the view is down the
axis, looking from the start towards the end.

Let ¢(t) be the angle describing the position of the hand
at time t on the circle orthogonal to the axis of the reach
and whose center lies on this axis. We define ¢(t) =0 to
be the projection of the unit vertical vector onto this circle.

The trajectory is modeled using the triplet

(V(t),r (1), @(t)).

Since v(0) = v(1) =r(0) =r(1) = 0 by definition, one can
accommodate this by omitting the first and last cubic B-
spline basis function in the representation which, since
these are, respectively, the only non-zero basis functions
att =0 and t = 1, will ensure the desired property. Fur-
thermore, one should not directly model ¢(t) because it
is an angle. Angles 2im— € and ¢ are only 2¢ apart but
averaging their numerical values produces 1 which is di-
ametrically opposite. For this reason, one models the
responses cos@(t) and sin@(t) and then use the relation
@ = tan~Y(sing/ cos ) to predict @ which does respect the
appropriate continuity properties of an angle.

Note that this representation contains no explicit infor-
mation about the endpoints. This is convenient because
when one predicts the hand motion one expects that the
endpoints will specified by the requirements of the appli-
cation. One can directly impose these endpoints and then
use the representation to reconstruct the rest of the tra-
jectory.

A parametric approach to trajectory prediction may be
found in [6].

So one is now able to describe the dynamic posture in
terms of endpoint trajectories, pivot angles and trans-
formed stretch parameters, which can each take any

value within their allowable range independent of the
value of any of the other parameters. This crucial prop-
erty allows us to independently average each parameter.
Given any predicted posture parameters, one can con-
struct a motion for any choice of link lengths long enough
to reach the target.

MOTION WARPING OR RETARGETTING Suppose
one observes a motion by one individual moving or reach-
ing to some target and want to map it into a predicted
motion for another individual moving or reaching to some
other target. We describe the observed motion by

(e, v(t),r(t),0(t),6(t),a(t),a(t))

where e represents the endpoint information such as
where the hand should begin and end, v,r,@ represents
the trajectory information 0,q represent the stretch pivot
coordinates and a represents the unconstrained angular
information (used to model the head motion — see later).
All these elements have been written in bold to indicate
that they may be vector quantities. For example, one
may wish to model the trajectories of both hands indepen-
dently. One may have more than one closed kinematic
chain modeled by stretch pivot coordinates. There are
a wealth of different possibilities that might be included
within this framework. The individual for whom the mo-
tion was collected also has set of segment lengths | or I(t)
since some segment lengths (such as the torso) might be
allowed to vary in time.

Now consider a new individual with segment lengths I’
with specified endpoints €. One may now take the
v,r,¢,0,9,a from the original individual and use them to
predict the motion for the new individual. Because of the
properties of stretch pivot coordinates, one can be sure
that such a motion will exist provided the segment lengths
I” of

the new individual are sufficiently long to stretch between
the required endpoints €. The quality of the prediction will
depend on how close € is to e and how close I’ is to |.

NEAREST NEIGHBOR METHODS

There is no reason to restrict ourselves to using a sin-
gle motion for constructing the prediction. Suppose one
has motion data with various endpoints, segment lengths
and other characteristics which are similar to the case one
wishes to predict. One may average the stretch pivot and
trajectory parameters describing these motions to con-
struct the prediction. This prediction will tend to be supe-
rior to the prediction based on a single motion for the usual
reason that averages possess lower variances. One can
consider more than just simple local averages — many of
the well known ideas of nonparametric regression can be
employed. See [16] for a review.

There is also the question of which motions in a database
should be considered comparable in the sense of having



characteristics similar to those required for the prediction.
For example, one may wish to predict the motion of a 48-
year old, 50kg, 170cm tall woman of average strength lift-
ing a box from specified shelf position. What character-
istics should be used to judge similarity and how should
they be combined? How many neighbors should be used
or more generally how should the smoothing parameters
be selected? Clearly there are a multitude of plausible
schemes that could be used. Fortunately, one may eval-
uate any candidate scheme with respect to its predictive
ability using crossvalidation. We will describe how this
was done in practice below.

FUNCTIONAL REGRESSION ANALYSIS

An alternative approach to simply averaging motions is to
use regression modeling. The motions are described a
collection of functions over time. These can be modeled
using functional regression analysis. The potential advan-
tage of this method over the nearest neighbor method is
that it is possible to model the marginal contribution of
subject factors such as age and gender in a transparent
manner and test their statistical significance.

Suppose the rescaled functions for some chosen quan-
tity are given by y(t) = (ya(t),-...yn(t)) where the subscript
runs over the n collected motions. These functions might
be expected to depend on certain covariates such as the
location of the target being reached, the age and anthro-
pometry of the subject and other factors. For the it" curve,
these predictors are collected in a vector x;. Typically, the
first term in this vector is one. We then propose a func-
tional linear model:

yit) = x'B(t) +&i(t)

Notice that this is similar to a standard regression model
but the response is now a function as is the error term
&i(t). The regression coefficients B(t) are now a vector of
functions. A general introduction to the area of functional
data analysis may be found in [15]. The particular co-
efficient function for a given covariate will now represent
the effect on the response of that covariate over the dura-
tion of the reach. One can now estimate B(t) using least
squares by A
B(®) = (X"X) 7 XTy(t)

where X is the matrix whose rows are given by the x;'s.

This formula cannot be directly applied since one can-
not observe a y;(t) at all possible t. One approach is to
approximate the functions on a grid of values. This was
done in [4]. A fine grid of values is necessary for accurate
representation which is somewhat inefficient. So instead,
the curves are represented as linear combinations of m
cubic B-spline basis functions, @j(t). A curve yi(t) is rep-
resented as i(t) ~ |1, yijWj(t) where the coefficients y;;
are estimated using least squares over the points at which
yi(t) is observed.

Given that human motion is usually quite smooth, it is not
necessary to have a large number of basis functions. In
this particular application, one finds that eight basis func-
tions were sufficient. So each observed curve is repre-
sented by eight coefficients and the functional response
is thereby converted into a multivariate response

Thus the model can be written in the form

Ynxmll-’mxl(t) = Xnx poxqumxl(t) + Snxl(t)

or factoring out the (t), one can write it in the simpler
form:
Ynxm = Xnx pBpxm+ €nxm

which is now a multivariate multiple regression model
where the coefficient matrix B may be estimated using
least squares:
B=(X"X)"IXTy
One may then use the standard methods of statistical in-
ference using this modeling approach. Details of such
methods may be found in texts such as [12]. For prediction
and interpretation purposes, it is necessary to transform
back from this basis function representation to the original
form by R .
Bpxl(t) = Bpxmwmxl(t)

One can predict future responses given a new predictor
value xp by A
Yo(t) = Xo1x poxmwmxl(t)

More details on this approach may be found in [5].
IMPLEMENTATION

In this section, we describe the particular implementation
used for modeling the data described above and how well
the models performed. These choices would need to be
reconsidered and recombined for other types of motion
but it is worth describing the choices here to understand
the considerations involved.

We identified a chain stretching from the left foot to the
right hand and containing 10 links. Other linkages branch
off this chain. In this example, these would be the right
leg, left arm and the head. The main linkage is modeled
first. These secondary linkages are then modeled in a
similar fashion once the main linkage has been predicted.
See Figure 7.

The selection of pivots is essential to the implementation
of the stretch pivot coordinates. First consider the primary
kinematic chain linking the left ball of foot to the right hand.
The pivots selected were the c7/t1, the left hip, the right
shoulder, the right elbow and the left knee where the order
indicates the order of precedence. The remaining mark-
ers on this chain required only a pivot angle to describe.

The right ball of foot was free to move in this experiment.
We modeled the Cartesian coordinates (x(t),y(t),z(t)) di-
rectly for this marker. Once the position of the right foot
was determined, the right knee was used as a pivot with
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Figure 7: Schematic of human figure. The critical kine-
matic chain linking the endpoints at the left ball of foot
which, in this example, does not move and the right grip,
which moves along a trajectory that we have already pre-
dicted. One needs to predict the locations of the nine inte-
rior markers of the ten link chain as labeled in the diagram.
When this is done, the three smaller chains consisting of
the right leg, left arm and head can be predicted.

the remaining markers on this chain required only a pivot
angle to describe.

When the left hand was holding the box, the angles de-
scribing the orientation of the box were modeled. Thus
the position of the left grip was derived from the right grip
together with the predicted box angles. For the motions
were the left grip was empty (returning to the rest position
or reaching to grasp the box on the shelf), the trajectory
of the left hand was independently modeled in the same
way as the right hand.

The two link head chain did not have a fixed endpoint
so that the angles describing the orientation were simply
modeled using local angles.

In order to make a prediction, it is necessary to provide the
segment lengths (the distances between adjacent mark-
ers). Various studies have been made concerning these
lengths and how they vary as a function of anthropometry.
In this case, we fit simple regression models to describe
these lengths as a linear function of stature. For this small
number of subjects, there was no evidence that more than
stature alone would be helpful in predicting these lengths.
Other segment length specifications can easily be used.

Various schemes for selecting the nearest neighbors were
contemplated and then evaluated using crossvalidation.
Each motion in the database was left out in turn. We pre-
dicted this left out motion using all the other motions and
compared this prediction to the motion derived from the
parameters of the left out motion. Because link lengths

based on those predicted for a person of that height and
the B-spline based representation of the parameters was
used, the comparison was not exactly between prediction
and observed motion data. Such a comparison would be
possible but it would require using the actual link lengths
which would typically not be known in the usual predictive
scenario.

One obstacle to constructing a scheme for measuring
similarity is that the characteristics such as the target lo-
cation and age of the subject are on quite different scales.
For this reason, we considered only information based
on the ranks of ||Xgata — Xpredict|| Where the norm || -|| is
the absolute value for univariate quantities like height and
Euclidean distance for the target coordinates. The par-
ticular scheme that gave the lowest crossvalidated error
was based on the rank of sum of the target ranks and
the stature ranks. When k nearest neighbors were con-
sidered, the nearest neighbor was given weight k in the
average, the second nearest weight k—1 i.e. triangular
weights. Other schemes that used age, gender, weight,
strength, time taken for the move and various weighting
schemes for the average were inferior to that chosen. For
the data considered here, 5 neighbors gave the best re-
sults. It's likely that the best scheme may differ for other
databases but it would be possible to evaluate a variety
of schemes in new settings to find the best choice. For
this data, for the optimal scheme and number of neigh-
bors, the median of the average difference between the
predicted and observed motions over the markers and the
complete motion was 8.1cm.

There were 100 duplicated motions in the database where
the same subject reached to the same target. The median
distance between these pairs of motions averaged over
the markers and the complete motion was 6.8cm. This fig-
ure represents the natural variation in reaching motions —
it would not be reasonable to expect any prediction model
to predict with greater accuracy than this. This suggests it
would not be possible to make substantial improvements
on the method we have described above for this dataset.
Clearly, one can't say how well the method will perform
for other datasets, but this does give some cause for opti-
mism.

One important advantage of using stretch pivot coordi-
nates over other methods that require optimization is that
it is fast. To predict all four phases of the motion required
only 0.01 seconds on an 850Mhz Pentium Ill PC. The al-
gorithm was implemented in C but without any special ef-
forts at optimization. This speed makes it practical for ap-
plications where rapid animation is important.

We have also applied the functional regression method
to model the functions that describe the dynamic posture.
We have found that it is impractical to fit models to the en-
tire target region. The patterns of motion change with the
target and it is difficult to devise a single functional form to
describe this. Instead, we subdivide the target area into
regions determined by proximity to an experimental target



and fit a regression model to the data within this region.
When a new prediction is needed, the sub-model corre-
sponding to the nearest experimental target will be used.

Motion capture technology is far from perfect. Problems
with the data collection occasionally result in damage to
the data. This includes missing and improper measure-
ments. With a large database such as this, it is diffi-
cult to detect all such problems. Movements which are
clearly incorrect are easily detected but those that have
milder problems can be hard to find particularly by auto-
matic screening methods. For these reasons, we used ro-
bust regression methodology in the functional regressions
and used the median rather than the mean in the nearest
neighbor averaging.

COMPARISON

There are many competing methods of human animation.
A large class of such methods is not based directly on
data, but on theories about how people move. Others
are content to directly use motion capture data for ani-
mation, perhaps hand-editing the motion for their require-
ments. However, my method is most reasonably com-
pared to other methods that use motion capture data to
predict motion with specified constraints.

Two recent papers provide a review of the current state of
research in this type of problem. [17] present a parame-
terization of a popular seven degree of freedom model for
the shoulder, elbow and wrist with the hand constrained to
a target as in this case. Many previous approaches to this
problem have specified the angles describing the orien-
tation of the limb segments and then resolved the redun-
dancy caused by the over-parameterization by optimizing
some criterion to fix the position of the arm. In contrast,
the advantage of their approach, and my own, is that the
position of the arm can be explicitly and easily calculated
without optimization. [17] describe the competing meth-
ods and show that their explicit method is typically orders
of magnitude faster than those based on optimization.

My method also allows the explicit computation of posture
without optimization and will thus enjoy a similar speed
advantage over optimization based approaches. Further-
more, it applies to a kinematic chain of any number of links
and the amount of computation is linear in the number of
links. In contrast, the difficulties with optimization based
methods rapidly increase with the number of links — com-
plexity, local minima and sensitivity to initial values all be-
come more problematic. This approach was developed
after failing to find a workable optimization-based inverse
kinematics solution to a full body linkage.

[8] addresses motion prediction rather than just static pos-
ture. He reviews the existing methods for editing a single
motion to meet new objectives or constraints. Problems
arise in editing successive frames of the motion to meet
constraints while maintaining continuity. My method inher-
its the smoothness and characteristics of motion capture

data while adjusting to new constraints. It also does this
much faster than methods that require some optimization.

This representation has some weaknesses. For example,
most joints have mobility restrictions but this method does
not explicitly respect these restrictions. Since the method
is based on empirical data, these limitations will tend to be
exceeded only on larger extrapolations. Nonetheless, the
problem may occur. In such cases, the dynamic posture
predicted by this method may serve as an initial estimate
requiring some correction. For example, this standing fig-
ure occasionally has a predicted ankle position that would
put the heel through the floor. This can be corrected by
moving the ankle upwards to the first valid position while
simultaneously moving the knee outwards in the originally
predicted plane of the ankle, knee and hip. Some other
methods explicitly respect these restrictions, but at sub-
stantial cost in speed of computation and complexity. One
finds it substantially faster and simpler to make local cor-
rections to the posture if they are needed.

Furthermore, more complex constraints may be needed.
In this example of the two-handed box lift, it might hap-
pen that the predicted left hand position is too far for the
left arm to reach. Although this hasn’t been a problem
in practice, one would prefer to have a parameterization
analogous to the stretch pivot for more complex linkages
than simple chains. Such parameterizations that avoid op-
timization should be the topic of future work.

DISCUSSION

Most of the weaknesses in the methodology described
above lie in the fact that it uses no biomechanical knowl-
edge. There are limits on motion imposed by considera-
tions of balance and joint mobility while other considera-
tions such as comfort mean that some postures, while not
forbidden, are discouraged. There are other biomechan-
ical and psychological considerations that affect motion.
Naturally, these topics have been the subject of consid-
erable research and yet it is clear that a complex com-
bination of these considerations would be necessary to
construct a predictive model of any versatility.

Our model is empirical and is only so good as the data
it is based upon. In our case, the predictive performance
declines as one specifies inputs that are far from those
observed in the experiment. For example, if one inputs
a target far to the left of the subject, one cannot expect
a good prediction since all the targets in the experiment
were the right of the saggital plane. Such failings are in-
evitable and can be rectified by collecting more data with
the required input conditions. Alternatively, biomechanical
laws can help by detecting violations and suggesting the
appropriate correction.

The current method also contains no notion of obstacle
avoidance. If the hand must avoid some obstacle then
the trajectory prediction must be suitably modified. This
seems feasible enough but more problematic are obsta-



cles that intersect with other parts of the body. An even
more difficult problem occurs when the predicted posi-
tion of the body intersects with itself. For example, on
reaches to targets near the feet, one needs avoid predic-
tions where the hand passes through the knees.

Another difficulty is that DHM models, such as Jack,
Delmia and others, all use different representation of the
posture. We have used 23 markers to represent the pos-
ture but this ignores various details. Furthermore, differ-
ent posture models use different linkages and impose dif-
ferent constraints. To make practical use of our models re-
quires a mapping to and from the our linkage to the DHM
linkage. There is no straightforward solution to this as it
requires an in depth understanding of the chosen DHM
linkage which differ from vendor to vendor. We have made
such a mapping for Jack and our industrial partners have
made a mapping to the Delmia figure.

So to conclude, our method is not the complete solution to
the problem of human motion prediction. It enables some
extrapolation from a database of motions but will begin
to fail for more extensive extrapolations. The scope of the
method depends on the quality and range of the database
of motions.
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APPENDIX
Range of Sum and Difference of Stretch Parameters
Osmax-

e if Mg —Mp > Mpg S€t Gsmax = (Mpd + Mp + Ma) /My

o if Mp— My > Mpg Set Gsmax = (Mpa + Mp+ My) /Mp
Osmin-

o If myg < my then set a=mpy/my else set a= (Mpg —
My + Mp)/Mp

e If mpg < mp then set b= mpg/my else set b = (Mpg —
Mp + Mg) /My

e Set Qgrin = Min(a, b).

Letx = pp+ Pd-

Qdmax-

10

e Set a=2(Mpg +XmMp)/(Mp+ Mg) — X

e If mp > my set b= x—2(mpyg —xmy)/(mp — My) else set
b=2

e Set ggmax = Min(x,2 — x,a,b)
Odmin:

e Seta=x—2(mpg+Xxmy)/(mp+my)

o Ifmp < my, setb=x—2(mp—xmg)/(mp—my) else set
b=-2.

e Set Qgmin = Min(—x,x—2,a,b)
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