Topics in Applied Dynamical Systems

2015-16, Semester 2

Problem Sheet 1

Send comments and queries to J.H.P.Dawes@bath.ac.uk.
This sheet was distributed on Thursday 11 February 2016.

1. Identify the bifurcations in the following systems and sketch the bifurcation diagrams. Co-ordinate changes to move bifurcation points to the origin may be useful in order to explicitly demonstrate the normal forms for the bifurcations.
(a) $\dot{x}=\mu-2 x-2 x^{2}$
(b) $\dot{x}=2 \mu-(2+\mu) x+x^{2}$
(c) $\dot{x}=(\mu-2)+\mu x+3 x^{2}+x^{3}$
(d)

$$
\begin{aligned}
& \dot{x}=(\mu+2) x+2 y-\left(2 x^{2}+2 x y+y^{2}\right) x \\
& \dot{y}=-4 x+(\mu-2) y-\left(2 x^{2}+2 x y+y^{2}\right) y
\end{aligned}
$$

In (d), first make the linear change of co-ordinates that brings the equation into normal form, then sketch phase portraits for μ above and below the bifurcation point.
2. Identify the bifurcation in the following system and sketch the bifurcation diagram and phase portraits:

$$
\begin{aligned}
& \dot{x}=\mu y-x-2 x^{3} \\
& \dot{y}=x-y-y^{3}
\end{aligned}
$$

Compute the extended centre manifold near the bifurcation point to determine the nature of the bifurcation. Remember to shift the bifurcation parameter so that the bifurcation occurs when it is zero. Hint: if you wish you can make a linear change of co-ordinates to diagonalise the linear part of the problem first (so that \mathbb{E}^{c} is an axis). Otherwise, just start by constructing $W_{l o c}^{c}$ to be tangent to \mathbb{E}^{c} in the original co-ordinates.
3. (a) The Lorenz equations

$$
\begin{aligned}
\dot{a} & =\sigma(-a+r b) \\
\dot{b} & =a-b-a c, \\
\dot{c} & =\varpi(-c+a b),
\end{aligned}
$$

clearly have an equilibrium point at the origin (the 'trivial' equilibrium). For what range of values of the parameters r, σ and ϖ (all positive) do other (non-trivial) equilibria exist? At what parameter values are there local bifurcations? Compute the centre manifold at $r=1$ and hence determine whether the bifurcation is subcritical or supercritical.
(b) Now analyse the bifurcation at $r=1$ using adiabatic elimination, as follows. Write $r=1+\mu$. Since c decays fast at $r=1$ (so $\dot{c} \approx 0$), scale $a=\varepsilon a^{\prime}, b=\varepsilon b^{\prime}$ but $c=\varepsilon^{2} c^{\prime}$ to balance $c^{\prime} \sim a^{\prime} b^{\prime}$ in the third equation. Then also substitute

$$
\frac{d}{d t}=\varepsilon^{\alpha} \frac{d}{d t^{\prime}}, \quad \quad \mu=\varepsilon^{\beta} \mu^{\prime},
$$

for some (as yet undetermined) positive constants α, β. Hence, re-arranging the c and b equations and substituting them into themselves we get, dropping the primes:

$$
\begin{aligned}
c & =a b-\varepsilon^{\alpha} \dot{c} / \varpi \\
b & =a-\varepsilon^{\alpha} \dot{a}-\varepsilon^{2} a^{3}+O\left(\varepsilon^{\alpha+2}, \varepsilon^{4}\right) .
\end{aligned}
$$

Substitute these into the scaled \dot{a} equation and choose appropriate values for α and β to balance terms and obtain

$$
\dot{a}=\frac{\sigma}{1+\sigma}\left(\mu a-a^{3}\right)+O\left(\varepsilon^{2}\right)
$$

which should agree with your answer to part (a).
4. Find choices of the coefficients α_{1} etc for the near-identity transformation

$$
\begin{aligned}
& x=\xi+\alpha_{1} \xi^{2}+\beta_{1} \xi \eta+\gamma_{1} \eta^{2}, \\
& y=\eta+\alpha_{2} \xi^{2}+\beta_{2} \xi \eta+\gamma_{2} \eta^{2},
\end{aligned}
$$

which reduce the equations

$$
\begin{aligned}
\dot{x} & =y+a_{1} x^{2}+b_{1} x y+c_{1} y^{2}, \\
\dot{y} & =a_{2} x^{2}+b_{2} x y+c_{2} y^{2},
\end{aligned}
$$

(where the coefficients a_{1}, \ldots, c_{2} are given constants) to each of the simpler forms that follow:
(a) The version used by Takens:

$$
\begin{aligned}
\dot{\xi} & =\eta+A \xi^{2}+O(3) \\
\dot{\eta} & =B \xi^{2}+O(3)
\end{aligned}
$$

where A, B are constants, in fact linear combinations of the coefficients a_{1}, \ldots, c_{2} and $O(3)$ denotes third and higher-order terms.
(b) The version used by Bogdanov:

$$
\begin{aligned}
\dot{\xi} & =\eta+O(3) \\
\dot{\eta} & =C \xi^{2}+D \xi \eta+O(3)
\end{aligned}
$$

where C, D are again linear combinations of a_{1}, \ldots, c_{2}.
Check that (a) is transformed into (b) with coefficients $C=D=1$ by the (nonlinear) co-ordinate transformation

$$
\begin{aligned}
\xi^{\prime} & =\frac{4 A^{2}}{B} \xi \\
\eta^{\prime} & =\frac{8 A^{3}}{B^{2}}\left(\eta+A \xi^{2}\right) \\
t^{\prime} & =\frac{B}{2 A} t, \text { hence } \frac{d}{d t}=\frac{B}{2 A} \frac{d}{d t^{\prime}}
\end{aligned}
$$

which involves reversing the direction of time if $A B<0$. This demonstrates the topological equivalence of (a) and (b).
(c) The equivariant normal form. From the theorem at the end of section 1.5 in the notes there must exist a version of the normal form which commutes with $\exp \left(s L^{T}\right)$ where $L=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is the linearisation of the original ODEs for (x, y), hence $\exp \left(s L^{T}\right)=\left(\begin{array}{ll}1 & 0 \\ s & 1\end{array}\right)$ (check). This normal form is

$$
\begin{aligned}
\dot{\xi} & =\eta+A \xi^{2}+O(3) \\
\dot{\eta} & =A \xi \eta+B \xi^{2}+O(3)
\end{aligned}
$$

where A, B are linear combinations of a_{1}, \ldots, c_{2}. Find choices of the coefficients $\alpha_{1}, \ldots, \gamma_{2}$ which produce this normal form and verify the equivariance condition

$$
\mathbf{f}\left(\left(\begin{array}{ll}
1 & 0 \\
s & 1
\end{array}\right)\binom{\xi}{\eta}\right)=\left(\begin{array}{ll}
1 & 0 \\
s & 1
\end{array}\right) \mathbf{f}\binom{\xi}{\eta}
$$

where

$$
\mathbf{f}\binom{\xi}{\eta}=A\binom{\xi^{2}}{\xi \eta}+B\binom{0}{\xi^{2}}
$$

Note that in this example, unfortunately, the linear term is not equivariant and so the entire normal form is not $\exp \left(s L^{T}\right)$-equivariant.

