
Topics in Applied Dynamical Systems

Background material

J.H.P. Dawes

Throughout this summary, definitions are indicated by underlined words. References

(to books on the lists of suggested reading) are given in italics at the beginning of

sections.

Vectors are not underlined - the context should make it clear whether a variable is

one-dimensional or multidimensional. If in doubt, assume multidimensional - most of

the time the notation is the same.

1 Local Bifurcation Theory

1.1 Definitions

References: Kuznetsov, chapters 1–5; Glendinning, chapters 1–4, 8; Guckenheimer &

Holmes, chapters 1–3.

A dynamical system is an object whose state at a future time depends deterministi-

cally on

• its present state, and

• a law that governs its evolution through time.

Phase space (also called state space) is the setX of all possible states x of the system.

There is an evolution operator φ(x, t) which acts on X:

φ : G×X → X

where G is a group that parametrises ‘time’. We will consider only the cases G = R

(continuous time) and G = Z (discrete time). Often we’ll take X = R
n but it could well

be a more general space. The evolution operator φt ≡ φ(t, ·) obeys the composition rule

φt1+t2(x) = φt1(φt2(x)).

Note that φt is not necessarily invertible: the evolution operators φt have a semigroup

structure, and they form a group only if inverses exist.

In continuous time, the solution curve x(t) = φt(x0) is defined indirectly (by inte-

gration) from a vector field ẋ = f(x) (a set of first-order ODEs) and is called a flow.

We assume f does not depend explicitly on time t (i.e. the dynamics are autonomous).

In discrete time we specify the dynamics by a map xn+1 = F (xn), hence φ1(x) =

F (x), φ2(x) = F (F (x)) = F 2(x) (note notation denoting the repeated composition of

F ) and so on.

1



Examples

• Simple pendulum θ̈ = − sin θ, or equivalently

θ̇ = p

ṗ = − sin θ

with X = [0, 2π) × R. Continuous time.

• Predator-prey (Lotka–Volterra) dynamics, X = R
2
+

Ṅ1 = aN1 − bN1N2 (prey)

Ṅ2 = −cN2 + dN1N2 (predators)

where a, b, c, d > 0. Each term has a biological interpretation.

• Logistic map xn+1 = F (xn) ≡ λxn(1− xn). X = [0, 1]

• Reaction-diffusion PDEs, e.g.

∂u

∂t
= f(u) +∇ · (D∇u)

where u = (u1(x, t), u2(x, t), . . . , un(x, t)) gives the concentrations of n species in

the spatial domain Ω = [0, 1]3. Here X is a function space, maybe L2(Ω,Rn) with

norm |u| = (
∫

Ω |u|2dx)1/2. Solutions in this particular function space are called

‘weak’ solutions. We’d actually like something more, for example u ∈ C2(Ω,Rn)

and continuous in time. But this raises the question, if u(x, 0) ∈ C2(Ω,Rn), does

it stay C2 as time evolves, i.e. does u(x, t) even remain in this phase space? We

won’t pursue these infinite-dimensional examples further, except to mention

• Navier-Stokes equations in 3D.

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u+ F

where F is some external forcing. Again our phase space X will be infinite-

dimensional, e.g. X = {u ∈ L2(Ω,R3) : ∇ · u = 0}. General questions about the

existence and uniqueness of solutions, and the possibility of finite-time blowup,

remain open.

For ODEs in R
n there are well-known theorems giving necessary and sufficient con-

ditions for the existence and uniqueness of solutions, and continuity of the solution with

respect to initial conditions.

The trajectory (or orbit) of a point x0 ∈ X is

O(x0) = {φt(x0) for all t ≥ 0}

if φt is invertible then the trajectory includes φt(x0) for all negative t as well.

Special orbits include equilibrium points (in continuous time), fixed points (discrete

time) and periodic orbits. We say x∗ ∈ X is an equilibrium point for the flow ẋ = f(x)

if f(x∗) = 0. x∗ ∈ X is a fixed point for the map xn+1 = F (xn) if F (x∗) = x∗. A

periodic orbit (of least period T ) is a non-equilibrium orbit γ such that each point x ∈ γ
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satisfies φT (x) = x and φt(x) 6= x for any 0 < t < T . In discrete time this implies

F T (x) = x ∀ x ∈ γ, i.e. x is a fixed point of the map F T .

A trajectory which tends towards equilibria x± as t → ±∞ respectively is a heteroclinic

or connecting orbit. If x+ = x− it is a homoclinic orbit.

−x

+x

+x

heteroclinic
homoclinic

Examples in 2D:

γ

γ

2D flow 2D map

An invariant set I ⊂ X is a collection of points with the property that φt(x) ∈ I

whenever x ∈ I and φt is defined. Whole trajectories are invariant sets, and especially

those corresponding to equilibria and periodic orbits. The ‘dynamical systems viewpoint’

is to ignore transient behaviour, asking the question ‘what happens as t → ∞?’ For a

single point this large-time behaviour is given by the ω-limit set:

ω(x) = {y : ∃tn → ∞ such that φtn(x) → y}

Exercise 1 Prove that for a continuous flow φt : R
n → R

n, if φt(x) ⊂ K a compact

set, for all t ≥ 0, then ω(x) is non-empty, closed, invariant and connected.

1.1.1 Stability

Stability turns out to be a slightly tricky issue - in all the cases we will consider it will

be clear cut, but a few subtleties are hidden in the definitions we make below.

An invariant set S is Lyapunov stable (‘start near, stay near’) if, for any sufficiently

small neighbourhood U ⊃ S, ∃ a neighbourhood V ⊃ S such that x ∈ V ⇒ φt(x) ∈ U

∀ t > 0.
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S

V
U

Lyapunov stability

S is quasi-asymptotically stable (‘tend towards’) if ∃ a neighbourhood U ⊃ S such

that φt(x) → S for all x ∈ U as t → ∞.

Note: neither of these definitions implies the other! (A linear centre in 2D is Lya-

punov stable but not quasi-asymptotically stable, a saddle-node equilibrium with a

homoclinic connection is quasi-asymptotically stable but not Lyapunov stable). S is

asymptotically stable if it is both Lyapunov and quasi-asymptotically stable. In such a

case S is an attracting set. But in order to make a good definition of an ‘attractor’ we

need to know slightly more; consider the 2D flow given by

ẋ = x− x3,

ẏ = −y.

Although circles centred on the origin with radius r > 1 are attracting sets, they con-

tain the origin (which is clearly unstable since points of the form (x, 0) move away for

small |x|). This problem is solved by introducing a condition of ‘indecomposability’ -

topological transitivity. A closed invariant set S is topologically transitive if, for any

two open sets U, V ⊂ S: ∃ t ∈ R such that φt(U) ∩ V 6= ∅. Then we define an attractor

to be a topologically transitive attracting set.

The basin of attraction of an invariant set S is B(S) =
⋃

t≤0 φt(S). Asymptoti-

cally stable sets have ‘large’ basins of attraction containing whole neighbourhoods. But

much weaker definitions of attractor exist: possibly the weakest is the idea of a Milnor

attractor. An invariant set M is a Milnor attractor if B(M) has positive (Lebesgue)

measure.

The stability of equilibria and fixed points is usually determined by the eigenvalues

of the Jacobian matrix

J =









∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

· · · ...
... · · · · · · ∂fn

∂xn









≡ Df

evaluated at the equilibrium or fixed point. In more detail:

(a) Continuous time: ẋ = f(x). Near an equilibrium 0 = f(x∗) we write x(t) =

x∗ + δ(t) and use Taylor series:

ẋ = δ̇ = f(x∗ + δ) = f(x∗) +Df |x∗δ +O(|δ|2)
if |δ| ≪ 1 then we have the linearised equation δ̇ = Jδ describing the evolution of initial

conditions close to x = x∗. The solution is δ(t) = eJtδ0 where eA = I + A + 1
2!A

2 +
1
3!A

3 + · · · formally defines the exponential of the matrix A.
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We can guarantee that the point x∗ is asymptotically stable when all the eigenvalues

λ of J satisfy Re(λ) < 0.

(b) Discrete time: xn+1 = F (xn). At a fixed point x∗ = F (x∗). Looking locally, we

write xn = x∗ + δn and Taylor expand as before:

xn+1 = x∗ + δn+1 = F (x∗ + δn) = F (x∗) +DF |x∗δn +O(|δn|2)
⇒ δn+1 = F (x∗)− x∗ + Jδn +O(|δn|2)
⇒ δn+1 = Jδn

which is the linearised equation governing the behaviour of small perturbations δn under

iteration.

Similar to the continuous time case, asymptotic stability of x = x∗ can be guaranteed

if all eigenvalues λ of J satisfy |λ| < 1. In this case the eigenvalues are often called

Floquet multipliers.

Notes:

• We may not always move closer on every iterate.

• These conditions fail in infinite dimensions.

Poincaré sections are an obvious connection between maps and flows; we can use

maps of one dimension lower to understand the original flow. Consider trajectories near

a periodic orbit γ with period t0, for the flow ẋ = f(x) in R
n.

f(0) 0

γ

Σ

Moving coordinates so that γ intersects Σ at the origin 0, we may choose a plane Σ

defined by x ·f(0) = 0 (or more generally any (n−1)-dimensional surface that intersects

γ transversally at x = 0). Then points near x = 0 travel along trajectories close to γ

and hit Σ after times close to t0. This intuitively defines a map F : Σ → Σ which has

a fixed point at x = 0. This is a Poincaré (return) map. To prove the existence of the

map F we use the implicit function theorem (IFT), see the (non-examinable) handout.

1.2 Topological Equivalence and Structural Stability

In this section we discuss the relationship between the linearised flow near an equilib-

rium, and the original nonlinear flow. This leads us to consider the ‘robustness’ of vector
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fields to perturbations and the important ideas of hyperbolicity, structural stability and

bifurcations.

Two flows φ1, φ2 in R
n are topologically equivalent if ∃ a homeomorphism (a contin-

uous map with a continuous inverse) h : Rn → R
n and a continuous time reparametri-

sation function τ(t, x), τ : R × R
n → R which is monotonically increasing in t for each

fixed x, such that

h ◦ φτ(t,x)
1 (x) = φt

2(h(x)).

Topological equivalence preserves information about the number, stability and topology

of invariant sets, but may lose information about transients. Time reparametrisation

deals with continuous changes in the period of a periodic orbit, for example. Topological

equivalence is an equivalence relation on the space of vector fields.

The motivation for this discussion is that we would like to find simpler flows that

are (maybe only locally) topologically equivalent to a given flow. The simplest possible

flow is a linear one ẋ = Df |x∗x ≡ Jx with solution x(t) = eJtx0.

Subspaces for the linear flow

The linear unstable subspace Eu(x∗) for an equilibrium x∗ is defined to be the invariant

subspace of R
n spanned by the (generalised) eigenvectors of Df |x∗ corresponding to

eigenvalues λ with Re(λ) > 0.

Similarly we define the linear stable subspace E
s(x∗) to be the invariant subspace

spanned by the generalised eigenvectors of Df |x∗ corresponding to eigenvalues λ with

Re(λ) < 0. The linear center subspace E
c(x∗) is the subspace corresponding to eigen-

values with Re(λ) = 0. If there are no zero or purely imaginary eigenvalues then x∗ is

said to be a hyperbolic equilibrium point.

Manifolds for the nonlinear flow

Let U be a neighbourhood of x∗, then we define the local unstable manifold W u
loc(x

∗)

and the local stable manifold W s
loc(x

∗):

W u
loc(x

∗) = {y ∈ U : φt(y) → x∗ as t → −∞ and φt(y) ∈ U ∀ t ≤ 0},
W s

loc(x
∗) = {y ∈ U : φt(y) → x∗ as t → ∞ and φt(y) ∈ U ∀ t ≥ 0},

i.e. W s
loc(x

∗) is the set of points that remain within the neighbourhood U for all positive

time, and tend towards x∗ as t → ∞. Removing the requirement that the points remain

within the neighbourhood U leads to the global unstable and stable manifolds:

W u(x∗) = {y : φt(y) → x∗ as t → −∞},
W s(x∗) = {y : φt(y) → x∗ as t → ∞}.

Theorem 1 (Stable Manifold Theorem for flows) Let x∗ be a hyperbolic equilib-

rium for ẋ = f(x) with linear stable and unstable subspaces Es and E
u. Then there exist

local stable and unstable manifolds W s
loc and W u

loc of the same dimensions as E
s and

E
u respectively. These manifolds are tangent to E

s and E
u (respectively) at x∗, are as

smooth as f and are flow-invariant.
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Sketch of proof: [by the graph transform method due to Hadamard.] Take co-ordinates

(x, y) ∈ E
u ⊕ E

s. The local unstable manifold is described as a graph over E
u, of the

form y = h(x). Now consider the evolution of the initial condition (x0, y0) under the

time–t > 0 map φt:

(x0, h(x0)) → (x(t;x0, h(x0)), y(t;x0, h(x0))).

If y = h(x) were the invariant unstable manifold then we would have

y(t;x0, h(x0)) = h(x(t;x0, h(x0)),

for any fixed t, i.e. the image point lies on the unstable manifold. But in general it will

not, so we define the graph transform G which acts on a suitable space S of (Lipschitz)

functions h(x). G is defined as

G(h)(x(t;x0, h(x0))) def
= y(t;x0, h(x0))

The idea now is to use the exponential contraction in the y-direction to show that G is

a contraction mapping on the (complete metric) space S. Then, from the contraction

mapping theorem, it follows that G has a unique fixed point and this fixed point is the

required function h(x).

Exactly the same argument applied to the map φ−t proves the existence of the local

stable manifold. More details can be found in the book by Wiggins, pp45–47.

Theorem 2 (Hartman-Grobman) Let x∗ be a hyperbolic equilibrium for ẋ = f(x),

then there exists a neighbourhood U of x∗ on which the flow is topologically equivalent

to the linearised flow ẋ = Df |x∗x.

Morally, near a hyperbolic equilibrium the nonlinear flow ‘looks like’ the linearised

flow. Moreover, W s,u
loc are tangent to E

s,u at x∗. This information is very useful when

sketching phase portraits: we look at the linear behaviour local to each equilbrium and

then complete the sketch in a sensible way. A further trick is to use dy/dx = ẏ/ẋ to

solve for trajectories explicitly if necessary.

In 2D there are three topologically distinct cases of hyperbolic equibrium points with

distinct eigenvalues:

• λ2 < λ1 < 0: J =

(

λ1 0

0 λ2

)

, stable node

λ1

λ2

λ± iω, with λ < 0: J =

(

λ −ω

ω λ

)

, stable focus
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These two cases are topologically equivalent.

• λ1 < 0 < λ2: J =

(

λ1 0

0 λ2

)

, saddle point

λ1

λ2

• λ± iω, with λ > 0: J =

(

λ −ω

ω λ

)

, unstable focus

λ2 > λ1 > 0: J =

(

λ1 0

0 λ2

)

, unstable node

λ1

λ2

These two cases are also topologically equivalent.

Exercise 2 Sketch trajectories of the linearised systems

( −1 1

0 −1

)

and

( −1 0

1 −1

)

.

[Hint: draw the nullclines ẋ = 0 and ẏ = 0.]

Worked example

Consider the 2D system

ẋ = x(2− y − x)

ẏ = y(4x− x2 − 3)

in x > 0, y > 0. It is easy to compute that there are equilibria only at (0, 0), (2, 0) and

(1, 1). To compute stability we find the Jacobian matrix:

J(x, y) =

(

2− y − 2x −x

y(4− 2x) 4x− x2 − 3

)
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hence

J(0, 0) =

(

2 0

0 −3

)

,

and (0, 0) is a saddle point. Similarly

J(2, 0) =

( −2 −2

0 1

)

and (2, 0) is also a saddle point. Finally,

J(1, 1) =

( −1 −1

2 0

)

and so (1, 1) is a stable focus. The complete phase portrait is

x

y

1

1

2
To interpret this phase portrait, we could imagine that x and y represent populations

of prey and predators, respectively. Note that the behaviour of trajectories near (2, 0)

can be worked out by computing the eigenvector
( 2
−3

)

corresponding to the eigenvalue

1 there:

Eu

sE =W s
loc

Wu
loc

Structural stability

Structural stability concerns the robustness of vector fields to small perturbations: do

the qualitative properties of the flow change under perturbation or not? In full gener-

ality this question turns out to be very delicate. Here we will not present a complete
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discussion, but one that is sufficient for non-chaotic flows. We first make more precise

what we mean by ‘perturbation’.

Let f(x) ∈ C∞(Rn) be a smooth vector field on R
n. Then the vector field v(x) is a

C1
ε perturbation of f(x) if there exists a closed bounded set K ⊂ R

n such that

• f(x) = v(x) on R
n \K, and

• |f − v|+ | ∂f∂x1
− ∂v

∂x1
|+ · · ·+ | ∂f

∂xn

− ∂v
∂xn

| < ε inside K.

That is, f(x) and v(x) agree outsideK, and their first derivatives and function values are

close inside K. Then we can say that a smooth vector field f(x) is structurally stable if

there exists an ε > 0 such that all C1
ε perturbations of f(x) are topologically equivalent

to f .

For ODEs ẋ = f(x, µ) depending on a parameter we can extend the definition above

to require topological equivalence for any sufficiently close value of µ.

To show why the definition takes this slightly cumbersome form, it is instructive to

consider ẋ = f(x) = −x in 1D, which seems to be a natural candidate for a structurally

stable flow, sensibly defined. It is clear that perturbations of the form ε|x|1/2 or ε|x|3/2
give flows that are, however, not topologically equivalent to f(x) and so our definition

must exclude them.

Moreover, and importantly, a vector field in R
n cannot be structurally stable if either

of the two following situations occurs:

1. There exist equilibria or periodic orbits that are not hyperbolic (e.g. consider

ẋ = x3 − εx).

2. There exist saddle points x1, x2 (possibly equal) such that W s(x1) ∩W u(x2) 6= ∅
and dim(W s(x1)) + dim(W u(x2)) ≤ n.

Case 2 means there are homoclinic or heteroclinic orbits that can be ‘broken apart’ by

small perturbations, for example in 2D:

W

Wu

s

x2
x1 x2

x1

On closed bounded subsets of R2 these are also sufficient conditions for structural

stability; this is Peixoto’s theorem (see Glendinning, page 92). In higher dimensions life

is more complicated, but the occurrence of either of 1 and 2 above is always enough to

produce a flow that is not structurally stable.
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Moreover, conditions 1 and 2 enable us to define bifurcations: in a parametrised

family of vector fields, these are parameter values µ = µ0 at which f(x, µ) is not struc-

turally stable. We have a local bifurcation in case 1 (when an equilibrium or periodic

orbit is non-hyperbolic), and a global bifurcation in case 2.

Note that some heteroclinic orbits are structurally stable, when dim(W u(x1)) +

dim(W s(x2)) > n:

W u

Ws

R3

Here, the left-hand equilibrium has a 2D unstable manifold, and the right-hand equilib-

rium has a 2D stable manifold. So there is generically an intersection in a 1D curve, i.e.

a heteroclinic orbit that persists under perturbations.

We will now investigate local bifurcations of equilibria; there are the distinct pos-

sibilities of zero eigenvalues (which give rise to steady-state bifurcations) and pairs of

purely imaginary eigenvalues ±iω (which give rise to oscillatory bifurcations). We’ll deal

with the case of a single zero eigenvalue to start with.

1.3 Local bifurcations in 1D

For a 1D real ODE there is only the possibility of a steady-state bifurcation. The simplest

possible flow is ẋ = f(x, µ) with x ∈ R, µ ∈ R. Assume f(0, 0) = 0 so that x = 0 is an

equilibrium when µ = 0, and assume also that this equilibrium is non-hyperbolic, i.e.

J = fx(0, 0) = 0 where the subscript denotes partial differentiation. Assuming that f is

smooth we can expand using Taylor series, looking locally:

ẋ = fµµ+
1

2
fµµµ

2 + fxµxµ+
1

2
fxxx

2 +O(3),

where all partial derivatives are taken to be evaluated at (0, 0), and O(3) indicates terms

that are third order jointly in x and µ. Finding equilibria of this expression leads to

x =
−µfxµ ±

[

(fxµµ)
2 − 2fxx(fµµµ

2/2 + fµµ)
]1/2

fxx

Taking |µ| ≪ 1 we find

x ≈ ±
√

−2fµ
fxx

µ,

as long as fµ 6= 0, fxx 6= 0. These conditions turn out to be very important. We’ll call

this
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Case 1. Two equilibria exist on one side of the bifurcation point µ = 0, and none on

the other side, with the sides depending on the sign of fµfxx. This is a saddle-node

bifurcation.

Example: ẋ = µ− x2 = f(x, µ)

Equilibria are x± = ±√
µ (exist in µ ≥ 0). Stability given by J = ∂f/∂x = −2x

evaluated at x±:

J(x±) = ∓2
√
µ

so x+ is stable and x− is unstable. The bifurcation diagram is a plot of the location of

solutions x as a function of µ:

x

µ

x

x

+

−

In this diagram and in all that follow, solid lines denote stable solutions and dashed

ones denote unstable ones.

Case 2. What happens if fµ = 0 and fxx 6= 0?

Taking the previous expression, equilibria are expected to be found near

x =
−fxµµ± µ[(fxµ)

2 − fxxfµµ]
1/2

fxx

i.e.

x ≈ −µ

(

fxµ ±∆

fxx

)

where ∆2 = (fxµ)
2−fxxfµµ > 0. In this case we expect to find two branches of equilibria

existing in both µ > 0 and µ < 0. This is a transcritical bifurcation.

Example: ẋ = µx− x2

Equilibria are at x = 0 and x = µ. J = µ− 2x so J(x = 0) = µ and J(x = µ) = −µ.

The bifurcation diagram is

µ

x
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Exercise 3 Sketch the bifurcation diagram for ẋ = µx+ x2.

What happens if fµ 6= 0 and fxx = 0? In this case the Taylor series expansion for

|x| ≪ 1 and |µ| ≪ 1 implies the existence of an equilibrium at x ≈ −fµ/fxµ that does

not come close to the supposed non-hyperbolic equilibrium point at x = µ = 0 as µ is

varied. So there is no branch of equilibria extending from x = 0 in either direction, for

small µ, unless fµ = 0 as well.

Case 3. What happens if fµ = fxx = 0?

Then we take higher-order terms into account in the Taylor series:

ẋ = fxµxµ+
1

2
fµµµ

2 +
1

6
fxxxx

3 +
1

2
fxxµx

2µ+
1

2
fxµµxµ

2 +
1

6
fµµµµ

3 +O(4)

This gives a cubic equation to solve for x in terms of µ when we look for equilibria. The

important leading-order balances are:

• between the first two terms, i.e. x ∼ µ as in case 2. This leads to

x ≈ − fµµ
2fxµ

µ

• between the first and third terms, i.e. x ∼ √
µ as in case 1 (note that in this case

the second term is strictly smaller than the first and third terms). This leads to

x ∼ ±
√

−6fxµ
fxxx

µ.

These equilibria exist as long as fxµ 6= 0 and fxxx 6= 0, and this case is a pitchfork

bifurcation.

Example: ẋ = µx− x3

Equilibria exist at x = 0 and x = ±√
µ. J = µ− 3x2 so the non-trivial branches are

stable, and the bifurcation diagram looks like

x

µ

Because of the stability of the non-trivial branches, this type of pitchfork bifurcation

is called the supercritical case. The other type is a subcritical pitchfork bifurcation,

illustrated by the ODE ẋ = µx+ x3:

x

µ
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These two cases are topologically different, unlike the cases examined above for the

transcritical bifurcation ẋ = µx± x2 which are essentially identical.

These three bifurcations are not all of the same standing - in order to derive tran-

scritical and pitchfork bifurcations we had to assume extra conditions on some of the

partial derivatives of f , and this leads us to suspect that they are not as ‘likely’ to occur

in ‘general’ sets of ODEs as saddle-node bifurcations are. This intuition is correct, and

leads to a discussion of what precisely ‘generic’ means. We will not dwell on this here

for long, although we will return to these ideas when we consider local bifurcations with

symmetry later on. However, a few more definitions will come in useful.

The codimension of a bifurcation is (loosely) the number of independent conditions

that must be fixed for the bifurcation to occur. A (partial) unfolding of a bifurcation

is a family f̃(x, µ, ε) which contains the original bifurcation structure, i.e. f̃(x, µ, 0) ≡
f(x, µ). A universal unfolding contains all possible partial unfoldings while containing

the smallest possible number of parameters.

Name Codimension Conditions

Saddle-node 1 fx = 0

Transcritical 2 fx = 0 = fµ
Pitchfork 3 fx = 0 = fµ = fxx

Equivalently, the codimension of a bifurcation is the smallest number of parameters

that must be introduced to reveal all possible types of behaviour near the bifurcation:

Name Unfolding Parameters

Saddle-node ẋ = µ− x2 µ

Transcritical ẋ = ε+ µx− x2 µ, ε

Pitchfork ẋ = ε1 + µx+ ε2x
2 − x3 µ, ε1, ε2

Example: a perturbed transcritical bifurcation splits into 2 or 0 saddle-node bifur-

cations: ẋ = ε+ µx− x2.

µµ

x

µ

x x

ε<0 ε=0 ε>0

Exercise 4 Consider the partial unfolding of the pitchfork bifurcation ẋ = µx−βx2−x3

similarly. Examine how this partial unfolding fits into the universal unfolding given

below.

Exercise 5 Show that the complete unfolding of the pitchfork bifurcation

ẋ = f(x, µ) = µx− α− βx2 − x3

is summarised by the diagram below (small inset figures are diagrams in the (µ, x) plane).

Find the equation of the cubic curve that forms the boundary between regions 1 and 2

and between regions 3 and 4. [Answer: α = β3/27.]
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β

α
12

4

3

Remarks:

• Transcritical and pitchfork bifurcations become of lower codimension if we have

extra information, e.g. we know that x = 0 is an equilibrium for all parameter

values µ, or we assume there are symmetries in the system.

• Bifurcations of higher codimension occur through extra degeneracies in either the

linear or nonlinear terms, see sections 3.2 and 3.1 respectively for examples (with-

out involving the complications of symmetry).

• For simple bifurcations we can usually tell which of saddle-node, transcritical or

pitchfork occurs by counting equilibria.

What about a bifurcation with a pair of purely imaginary eigenvalues?

Oscillatory (Hopf) bifurcation

Consider the system of ODEs

ẋ = µx− ωy −Ax(x2 + y2)−By(x2 + y2)

ẏ = ωx+ µy −Ay(x2 + y2) +Bx(x2 + y2)

which has an equilibrium at x = y = 0. Take ω > 0. Look at stability:

J =

(

µ− 3Ax2 −Ay2 − 2Bxy −ω − 2Axy −Bx2 − 3By2

ω − 2Axy + 3Bx2 +By2 µ− 3Ay2 −Ax2 + 2Bxy

)

,

hence

J(0, 0) =

(

µ −ω

ω µ

)

Since the eigenvalues at the origin are µ ± iω there is a bifurcation at µ = 0. Change

into polar coordinates r2 = x2 + y2, θ = tan−1(y/x):

ṙ = µr −Ar3

θ̇ = ω +Br2

15



so there is a periodic orbit when r =
√

µ/A since ṙ = 0 here, but θ̇ = ω + µB/A. This

periodic orbit exists in µ > 0 when A > 0 (and is stable), and exists in µ < 0 when

A < 0 (and is unstable). Compare this to the supercritical and subcritical cases of the

pitchfork bifurcation.

r

µ

r

µ

A>0 (supercritical) A<0 (subcritical)

Two theorems on periodic orbits in 2D

Theorem 3 (Poincaré–Bendixson) – see Glendinning, section 5.8. If φt(x0) enters

and doesn’t leave a closed, bounded domain D ⊂ R
2, i.e. φt(x0) ∈ D ∀ t ≥ T for some

time T , and D contains no equilibria, then there is at least one periodic orbit inside D.

This theorem gives conditions for the existence of a p.o. (see Glendinning for the

proof).

Theorem 4 (Dulac’s criterion) – see Glendinning, section 5.6. If there exists a con-

tinously differentiable real-valued function ρ(x) such that ∇ · (ρf) < 0 on some simply-

connected domain D (i.e. a domain with no holes) then the system of ODEs ẋ = f(x)

has no periodic orbits lying entirely within D.

This is a non-existence result, and the proof is a straightforward application of the

divergence theorem, supposing that there were a periodic orbit in D.

The idea of normal forms

Suppose ẋ = f(x, µ), x ∈ R, has an equilibrium point x∗ and J = Df |x=x∗ = 0 when

µ = µ∗ (the bifurcation point). If we also assume, as we have seen, the non-degeneracy

conditions fµ|(x∗,µ∗) 6= 0 6= fxx|(x∗,µ∗) then we expect to see a saddle-node bifurcation.

Near the bifurcation point µ = µ∗ we therefore expect topological conjugacy of the

dynamics with the dynamics of ż = λ± z2 near z = 0, λ = 0 (z is real). Can we change

coordinates (x, µ) → (z, λ) explicitly and so simplify the problem? The coordinate

transformations needed are

• a shift (x∗, µ∗) → (0, 0)

16



• near-identity transformations to remove terms at succesively higher orders. These

don’t really appear in 1D problems, but we’ll go into them in more detail later on.

Possibly we’ll need rescalings of the variables also.

Say

ẋ = aµ+ bµx+ cx2 + dµ2 +O(3).

Write µ̃ = aµ. Let z = x+ g(µ̃), then

ż = µ̃+
b

a
µ̃z − 2cgz − b

a
µ̃g +

d

a2
µ̃2 + cz2 + cg2 +O(3).

We now choose g(µ̃) = b
2ac µ̃+O(µ̃2) in order to eliminate the µ̃z term, so that

ż = µ̃+ µ̃2

(

d

a2
− b2

4a2c

)

+ cz2 +O(3).

Now introduce a (near-identity) change of coordinates to the bifurcation parameter: let

λ = µ̃+ µ̃2

(

d

a2
− b2

4a2c

)

which has inverse

µ̃ = λ− λ2

(

d

a2
− b2

4a2c

)

+O(λ3),

by the IFT. So ż = λ+ cz2 + O(3) has equivalent dynamics to the original ODE for x.

Finally, rescale

d

dt
→ |c| d

dt̃
, λ → |c|λ̃,

then, dropping the tildes,

ż = λ± z2

at leading order (near the bifurcation point (x∗, µ∗)). So by these coordinate transfor-

mations we see that the saddle-node equation given earlier applies to all 1D bifurcation

problems that have this bifurcation. With more work we could have removed (in this

case all) terms at successively higher-orders by repeated use of these ‘near-identity’

transformations, as we’ll see later.

1.4 Centre Manifolds

References: Guckenheimer & Holmes, chapter 3.2; Glendinning, chapter 8; Kuznetsov,

chapter 5.

We treat bifurcations in higher-dimensional systems by separating the fast dynamics

(associated with movement in the directions associated with eigenvalues with non-zero

real parts) from the slow dynamics (evolution of the components in directions tangential

to the eigenvectors with zero real parts). The slow dynamics are important.

Example:

u̇ = µu− uv

v̇ = −v + u2

17



there are equilibria at (u, v) = (0, 0) and (u, v) = (±√
µ, µ).

J =

(

µ− v −u

2u −1

)

,

⇒ J(0, 0) =

(

µ 0

0 −1

)

and

⇒ J(±√
µ, µ) =

(

0 ∓√
µ

±2
√
µ −1

)

.

So there is a steady-state bifurcation at µ = 0. At the bifurcation point we have

u̇ = −uv slow evolution

v̇ = −v + u2 fast decay towards zero

So the linearised picture (sketch it!) is of exponentially fast decay in the v direction,

and slow evolution in the u direction. Es =<
(

0
1

)

>, Ec =<
(

1
0

)

>.

More generally, suppose x = 0 is a non-hyperbolic equilibrium point of ẋ = f(x)

with x ∈ R
n and f smooth; i.e. there are eigenvalues of J with zero real part, and E

c

is the space spanned by the corresponding eigenvectors. For notational convenience, let

dim E
c = n0, dim E

s = n−, dim E
u = n+.

We separate the centre from the stable and unstable directions: write x = (u, v)

where u ∈ R
n0 , v ∈ R

n++n− by performing a linear change of coordinates that block-

diagonalises the linear terms. Then the system of ODEs looks like

u̇ = Au+ f(u, v)

v̇ = Bv + g(u, v)

where the spectrum of A (its set of eigenvalues) lies on the imaginary axis, the spectrum

of B is off the imaginary axis, and f and g contain only nonlinear terms.

The question now is, what can we say about the nonlinear behaviour? It turns

out that there is a centre manifold (analogous in some ways to the stable and unsta-

ble manifolds defined earlier) that determines the dynamics near the non-hyperbolic

equilibrium.

Theorem 5 (The centre manifold theorem for flows) The statement of the theo-

rem falls naturally into two parts.

1. There exists a locally defined centre manifold W c
loc which is tangent to E

c at x = 0

and of the same dimension. It is not necessarily unique. Since E
c is the space

v = 0, locally, the centre manifold can be written as a graph over E
c:

W c
loc = {(u, v) : v = h(u)}

where h : Rn0 → R
n++n− is smooth, and h(u) ∼ O(|u|2).

2. The ODEs

u̇ = Au+ f(u, v)

v̇ = Bv + g(u, v)

18



are locally topologically equivalent to

u̇ = Au+ f(u, h(u))

v̇ = Bv.

These equations are uncoupled, so the dynamics of the structurally unstable system

ẋ = f(x) is essentially determined by the equation

u̇ = Au+ f(u, h(u)).

Remarks

• The u̇ equation is a lower dimensional system, and so should be easier to under-

stand. It describes the dynamics on the centre manifold.

• There is a similar theorem for maps.

• In the case n+ = 0, existence of W c
loc is proved by iterating E

c under the time–

t > 0 map in an analogous way to the proof of the Stable Manifold Theorem.

Various of the estimates required are more tricky than for the proof of the Stable

Manifold Theorem, though. Here in general we do not have uniqueness of the

centre manifold. For example integrate the system

ẋ = x2

ẏ = −y

explicitly. For further details, see J. Carr, Applications of centre manifold theory.

Springer, 1981.

The graph of the centre manifold h(u) is usually calculated by expanding f , g and

h in Taylor series near (u, v) = (0, 0) and by writing

v̇ =
∂h

∂u
u̇ =

∂h

∂u
(Au+ f(u, h(u))) = Bh(u) + g(u, h(u))

and equating powers of u. [Note: this indicates where the non-uniqueness comes from in

the example just above - in applications the non-uniqueness of W c
loc is not a difficulty].

We’ll illustrate this by working through the example we began earlier. We take A = [0]

and B = [−1] (both 1× 1 matrices), and set f(u, v) = −uv and g(u, v) = u2. We write

v = h(u) = Cu2 +Du3 + Eu4 + · · ·

as there is no linear term since Ec is the u-axis (and so we know W c
loc will be tangent to

the u-axis at (u, v) = (0, 0)). Then, using the expressions for v̇ we have

v̇ = (2Cu+ 3Du2 + 4Eu3)u̇ ≡ (2Cu+ 3Du2 + 4Eu3)(−u)(Cu2 +Du3 + Eu4)

= −(Cu2 +Du3 + Eu4) + u2

ignoring higher-order terms. Then, equating powers of u we find

u2: −C + 1 = 0 C = 1

u3: −D = 0 D = 0

u4: −E = −2 E = 2
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Hence

h(u) = u2 + 2u4 + · · ·
is the equation of the centre manifold (locally). The dynamics on W c

loc are given by

u̇ = −u3 − 2u5 + · · ·
to leading order. So u = 0 is still a non-hyperbolic equilibrium point, but now we know

that it is nonlinearly stable. Trajectories look something like:

v

u

v=h(u)

slow

fast

Parameter dependence can be included by considering the extended system

µ̇ = 0

ẋ = f(x, µ)

in R
n+1, with n0 + 1 eigenvalues on the imaginary axis, i.e. µ is now treated as an

additional ‘slow’ variable. Note that we not automatically preserve the block-diagonal

structure of the linear terms that we assumed previously. This is not a problem in

practice - in general you have just to include possible linear terms in µ in the Taylor

series expansion. Treating our example system in this way we have

µ̇ = 0

u̇ = µu− uv

v̇ = −v + u2

note that the µu term is now a nonlinear one. So

A =

(

0 0

0 0

)

, f(µ, u, v) =

(

0

µu− uv

)

while B = (−1) and g(µ, u, v) = u2 as before. To compute the extended centre manifold

we write

v = h(u, µ) = Cu2 +Duµ+ Eµ2 + · · ·
and substitute in the two expressions for v̇ as before to obtain

v̇ = (2C +Dµ)u̇+ (Du+ 2Eµ)µ̇

≡ (2Cu+Dµ)(µu− u(Cu2 +Duµ+ Eµ2))

= −(Cu2 +Duµ+ Eµ2) + u2.

Again we match terms in powers of u and µ:
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u2: −C + 1 = 0 C = 1

uµ: −D = 0 D = 0

µ2: −E = 0 E = 0

Hence v = u2+O(3) to leading order; the equation for the centre manifold is unchanged.

But, for the dynamics on the centre manifold we have

u̇ = µu− u3 +O(4)

i.e. a pitchfork bifurcation occurs as µ passes thorough zero.

In this way we have reduced the dimension of the bifurcation problem by eliminating

‘fast’ directions and shown that it is one of our previously-studied 1D examples.

Summary of the general outline

We now have a strategy for identifying bifurcations in a set of ODEs ẋ = f(x, µ) in R
n,

with µ ∈ R:

1. Identify equilibria and bifurcation values of µ.

2. Near these bifurcation points, shift the origin of x and µ and perform a linear

change of coordinates to get a system in the form

µ̇ = 0

u̇ = Au+ f(µ, u, v)

v̇ = Bv + g(µ, u, v)

where u ∈ R
n0 .

3. Compute the (extended) centre manifold v = h(u, µ) by Taylor expanding, and

hence derive a reduced set of ODEs on the centre manifold:

u̇ = Au+ f(µ, u, h(u, µ))

4. Perform (near-identity) normal form transformations to simplify this reduced equa-

tion as much as possible.

5. Analyse properties of the resulting normal form, knowing that the results apply

(locally) to the original system in R
n.
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