
MA6000M Topics in Applied Mathematics 2011-12 J.H.P. Dawes
Bifurcation Theory and Applications

Problem Sheet 2

Starred questions are not necessarily harder, just less central to subsequent course material. Send comments
and queries to J.H.P.Dawes@bath.ac.uk.

1. Identify the bifurcations in the following systems and sketch the bifurcation diagrams. Construct co-ordinate
changes (first moving the bifurcation point to the origin) in order to put the equations explicitly in normal
form.

(a) ẋ = µ− 2x− 2x2,

(b) ẋ = 2µ− (2 + µ)x+ x2,

(c) ẋ = (µ− 2) + µx+ 3x2 + x3,

(d)
ẋ = (µ+ 2)x+ 2y − (2x2 + 2xy + y2)x,
ẏ = −4x+ (µ− 2)y − (2x2 + 2xy + y2)y.

In (d), first make the linear change of co-ordinates that brings the equation into normal form, then sketch
phase portraits for µ above and below the bifurcation point.

2. A predator–prey interaction is described by the ODEs

ẋ =
(

1
a
− 1
)
x− 1

a
x2 − xy,

ẏ =
1
b
xy − y,

where a and b are positive parameters and b ≤ 1. Find the equilibrium points and investigate their stability.
Hence sketch phase portraits of the quadrant x, y ≥ 0 in each of the three regions of the (a, b) plane that
show qualitatively different dynamics.

3. Identify the bifurcation in the following system and sketch the bifurcation diagram and phase portraits:

ẋ = µy − x− 2x3,

ẏ = x− y − y3.

Compute the extended centre manifold near the bifurcation point to determine the nature of the bifurcation.
Remember to shift the bifurcation parameter so that the bifurcation occurs when it is zero. Hint: if you wish
you can make a linear change of co-ordinates to diagonalise the linear part of the problem first (so that Ec is
an axis). Otherwise, just start by constructing W c

loc to be tangent to Ec in the original co-ordinates.

4. Find the value of the (real) parameter µ at which there is a bifurcation from the trivial solution of the system

ẋ = y − x− x2,

ẏ = µx− y − y2.

Find the evolution equation on the extended centre manifold correct to third order. Hence deduce the nature
of the bifurcation.

5. (a) The Lorenz equations

ȧ = σ(−a+ rb),
ḃ = a− b− ac,

ċ = $(−c+ ab),
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clearly have an equilibrium point at the origin (the ‘trivial’ equilibrium). For what range of values of the
parameters r, σ and $ (all positive) do other (non-trivial) equilibria exist? At what parameter values are
there local bifurcations? Compute the centre manifold at r = 1 and hence determine whether the bifurcation
is subcritical or supercritical.

(b) Now analyse the bifurcation at r = 1 using adiabatic elimination, as follows. Write r = 1 + µ. Since c
decays fast at r = 1 (so ċ ≈ 0), scale a = εa′, b = εb′ but c = ε2c′ to balance c′ ∼ a′b′ in the third equation.
Then also substitute

d

dt
= εα

d

dt′
, µ = εβµ′,

for some (as yet undetermined) positive constants α, β. Hence, re-arranging the c and b equations and
substituting them into themselves we get, dropping the primes:

c = ab− εαċ/$,

b = a− εαȧ− ε2a3 +O(εα+2, ε4).

Substitute these into the scaled ȧ equation and choose appropriate values for α and β to balance terms and
obtain

ȧ =
σ

1 + σ
(µa− a3) +O(ε2)

which should agree with your answer to part (a).

6. (a) For the ODEs

ẋ = −2x+ y − x2,

ẏ = xy − x2,

compute the centre manifold x = h(y) to sufficiently high order to determine the stability of the equilibrium
at the origin, remembering to include a linear term in h(y) to ensure that W c

loc is tangent to Ec at (0, 0).
Sketch Es, Ec and W c

loc.

(b) For the same ODEs as in part (a), compute the first two terms of the centre manifold ‘the other way
around’ by writing y = h̃(x), again including a linear term. Notice that h and h̃ are inverses of each other.
For this particular example we find y = h̃(x) = 2x+ 3

2x
2 and all higher-order terms vanish: this is the global

centre manifold W c. Check this by computing dy/dx = ẏ/ẋ evaluated on W c
loc and comparing this with

dy/dx = dh̃/dx.

7. Suppose that the 2D system

ẋ = f(x, y, µ)
ẏ = g(x, y, µ)

has an equilibrium at the origin for all µ and has a Jacobian matrix
(

0 −ω
ω 0

)
evaluated at the origin,

when µ = 0. Then we would expect the system to undergo a Hopf bifurcation at µ = 0. By near-identity
transformations we can put the (x, y) system into the normal form

u̇ = −ωv + (Au+Bv)(u2 + v2)
v̇ = ωu+ (Av −Bu)(u2 + v2)

The coefficient A determines whether the Hopf bifurcation is subcritical or supercritical; it can be explicitly
calculated in terms of partial derivatives of f and g evaluated at x = y = µ = 0, which given the above
assumptions leads to the expression:

A =
1
16

(fxxx + gxxy + fxyy + gyyy)

+
1

16ω

{
fxy(fxx + fyy)− gxy(gxx + gyy)− fxxgxx + fyygyy

}
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(see Glendinning, p227). Consider the case where there is a conserved quantity H(x, y) at µ = 0, so that

ẋ = f(x, y, 0) =
∂H

∂y

ẏ = g(x, y, 0) = −∂H
∂x

Compute A in this case and explain what goes wrong.

* 8. Hopf bifurcation normal form transformations. Show that the set of ODEs

ȧ = b,

ḃ = −λa+ κb+ Pa3 +Qa2b,

where P and Q are constants, and κ and λ are parameters, has a Hopf bifurcation when κ = 0 and λ > 0.
Show that this bifurcation is supercritical when Q < 0 and subcritical when Q > 0. Hint: do this by
transforming the ODEs into the Hopf normal form as follows. First set κ = 0 and do a linear rescaling of a,
b and time to get the ODEs into the form

ẋ = y,

ẏ = −x+ P̃ x3 + Q̃x2y,

where P̃ and Q̃ are constants. Then make a near-identity transformation of the form

x = u+ α1u
3 + β1u

2v + γ1uv
2 + δ1v

3,

y = v + α2u
3 + β2u

2v + γ2uv
2 + δ2v

3,

choosing α1 etc so that the ODEs for u and v are the Hopf normal form:

u̇ = v + (Au+Bv)(u2 + v2),
v̇ = −u+ (Av −Bu)(u2 + v2).
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