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a b s t r a c t

In the context of rate-and-state friction, we revisit the crossover between the creep and

inertial regimes in the dynamics of a spring–block system as observed and described in

the dry friction experiment of Heslot et al. (1994) and Baumberger et al. (1994). We

show that the transition between the quasi-static motion of a spring–block and its

dynamic motion occurs at a lower sliding velocity than that which minimises the

steady-state friction coefficient. We perform a weakly nonlinear stability analysis

combined with numerical studies with the continuation package AUTO. In particular,

attention is focused on the change of nature the Hopf bifurcation from supercritical to

subcritical, as observed by Heslot et al. Comparing the results obtained for different

friction laws, we conclude that the weakly nonlinear analysis provides a possible

criterion for distinguishing which friction laws may be physically relevant.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A few decades ago, friction experiments performed on rocks, by Dieterich (1979) in particular, led Ruina (1980), Rice and
Ruina (1983) to formalise the concept of rate-and-state friction. On a frictional interface, this kind of friction law relates the
shear stress t to the normal stress s and the slip rate v while memory effects are taken into account through state variables
f which evolve according to empirical evolution equations. These internal variables model the complex interactions
between the asperities which constitute the frictional interface. For the sake of simplicity, only one state variable is
considered here. Following Rice et al. (2001), a rate-and-state friction law can formally be written as

t ¼ Fðv;f;sÞ;
_f ¼ �Gðv;fÞ:

(
ð1Þ

In this study, the normal stress is considered as a constant parameter, its influence as a variable, especially on the interfacial
state, being disregarded.

Information on the friction law can be gained from a spring–block system for which a block of mass M is pulled over a
flat surface with a spring of stiffness k driven at a specified velocity VðtÞ. Denoting by xðtÞ the position of the block and
XðtÞ � xðtÞ the extension of the spring, so that _X ðtÞ ¼ VðtÞ, the motion of the block is governed by

M €x ¼ kðX � xÞ � t: ð2Þ
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When V is constant and the sliding is steady, the inertia of the block plays no role and (1) must lead to a steady-state
expression t ¼ FssðV ;sÞ ¼ FðV ;fssðVÞ;sÞ obtained in combination with GðV ;fssÞ ¼ 0. Interestingly, for a rather wide range of
slip rates roughly from � 10�2 mm s�1 to � 1 mm s�1, it has been recognised that friction of rocks, metals and other solids
shows a velocity weakening with a logarithmic dependence (for rocks see Dieterich, 1979; Ruina, 1983; Marone, 1998;
Scholz, 2002; Heslot et al., 1994 for Bristol paper and Rabinowicz, 1995 for metals). In this velocity-weakening regime, the
steady state becomes unstable, giving way to a dynamic oscillation, if the spring constant k is less than a critical value kc .
While some information about the partial derivatives of F and G can be experimentally inferred from the response to a
velocity jump, it is mostly the steady-state friction law which can be measured via the extension of the spring.

In addition to this generic feature of dry friction, it has also been observed that the steady-state friction is a non-
monotonic function of the slip rate, presenting a velocity strengthening at very low and high slip rates (Shimamoto, 1986;
Heslot et al., 1994; Rabinowicz, 1995 for instance). By reducing slip rates, Shimamoto (1986) found for halite a transition
from the logarithmic velocity weakening frictional regime towards a strengthening one where ductile shear is activated
along the interface. On the other hand, for very high slip rates, when heat produces partial melting, Tsutsumi and
Shimamoto (1997) showed another velocity weakening effect of the type that Bowden and Freitag (1958) observed with
metal.

Because in situations such as earthquake mechanics (Scholz, 2002) the slip-rate span involved is wide, it is appealing to
describe different regimes of friction at once using a single friction law. In addition, the constraints obtained by this
phenomenological approach give interesting insights for the microscale description and discrimination of the physical
mechanisms involved in the friction phenomenon. The rate-and-state formalism (1) is a good candidate to achieve these
purposes as we show in this paper by revisiting the experimental results for Bristol paper friction obtained by Heslot et al.
(1994) and Baumberger et al. (1994, 1995). We refer to these papers collectively as Heslot et al. in the remainder of this
paper. Our aim is to reconcile the phenomenological steady-state kinetic friction law inferred from Heslot et al.’s
experiments with the dynamic behaviour of the spring–block system modelling the friction force apparatus used for the
measurements. As explained below, this requires us to probe the interplay between the crossover from the quasi-static
sliding regime to the inertial one and the change of monotonicity of the steady-state friction coefficient in relation with the
stick-slip instability onset. The effects of inertia are included in our analysis.

We now briefly summarise the experimental results of Heslot et al. and their theoretical explanation. We then discuss
where further consideration may be needed and outline our more detailed analysis presented in this article.

Investigating the sliding dynamics of a spring–block system, Heslot et al. (1994) have experimentally established that
the variation with the driving velocity V of the steady-state friction coefficient mssðVÞ ¼ Fss=s evolves from a velocity-
weakening part at low slip rates, where it decreases, to a strengthening part at high slip rates (cf. Fig. 1(a)). The weakening
part, corresponding to a creep regime as they denote it, varies in first approximation as the logarithm of V , whereas the so-
called inertial regime corresponding to the strengthening part is a linear function of V . This experimental result shows that
the steady-state friction coefficient reaches a local minimum for a slip rate Vm on the order of mm s �1. In addition, the
nature of the stick-slip instability apparently changes at a slip rate V� of about 2� 10�5 m s�1 (cf. Fig. 1(b)). At low slip rates
VoV�, the onset of stick-slip oscillations corresponds to a supercritical Hopf bifurcation, whereas at higher slip rates, the
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Fig. 1. Experimental results from Heslot et al.: (a) Steady-state kinetic friction coefficient mdðVÞ showing a transition from a logarithmic velocity-

weakening regime to a linear velocity-strengthening one; we denote by Vm the slip rate at which mdðVÞ is minimum. (Reproduced from Heslot et al., 1994

Fig. 4.) (b) Stability regime diagram ðV ; k=MÞ illustrating the change in the nature of the stick-slip bifurcation at V� from a supercritical one at low slip rates

to a subcritical bifurcation at higher slip rates. (Reproduced from Baumberger, 1996, Fig. 15.) Heslot et al. (1994) suggest that this change of behaviour is

related to the change of the monotonicity of the steady-state dynamical friction coefficient. They argue furthermore that it corresponds to the crossover

from a so-called creep regime (Cr) to an inertial one (In) where the inertia is no longer negligible in the momentum conservation equation of a

spring–block system.
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bifurcation is interpreted as a subcritical Hopf bifurcation associated with the appearance of a hysteresis phenomenon and
large amplitude stick-slip oscillations. Thus Baumberger et al. (1994) indicate that steady-state sliding in the inertial
regime, although linearly stable, is unstable to finite amplitude perturbations. The same authors also claim that ‘‘the
inertial regime and the associated velocity strengthening behaviour is system-dependent’’ and argue that their experiment
shows that the system controls the onset of the inertial regime because they consider that Vm ¼ V�. This defines a unique
slip rate splitting the creep and inertial regimes and which varies with the ratio k=M. Indeed, their analysis is based on the
comparison between two time scales involved in the problem (Rice and Tse, 1986): the characteristic time of the free
oscillations of the system tin ¼

ffiffiffiffiffiffiffiffiffiffi
M=k

p
and a characteristic time tcr ¼ L=V over which the state variable reaches its steady-

state value. The characteristic length L is usually interpreted as the memory length necessary for the rejuvenation of the
population of interfacial contacts, that is, the slip distance over which f-fss (e.g. Marone, 1998). The transition between
the two regimes arises when tin � tcr which then defines the transitional slip rate V� via V�ðk=MÞ ¼ L

ffiffiffiffiffiffiffiffiffiffi
k=M

p
.

In disagreement with the interpretation of Heslot et al. we believe that V� does not correspond to the transition at Vm

between the velocity-weakening/velocity-strengthening regimes of friction. First note that V� and Vm are separated by
around two orders of magnitude in the present situation. Crucially, moreover, the whole shape of the steady-state friction
coefficient, and consequently Vm, cannot depend on the stiffness k because these measurements are obtained in steady-
state sliding. The existence of the transition from the velocity weakening regime to the velocity strengthening regime
suggests that the slip-rate Vm is an intrinsic feature of the friction phenomenon corresponding to a change in the nature of
the interactions between the microscopic asperities forming the frictional interface. It is indeed intuitively reasonable to
imagine that different mechanisms of asperity deformation are activated in relation to the slip rate at which an interface
slides, resulting in a friction force which varies in a non-monotonic manner with the velocity. For example, considering
different models of asperity interactions, Estrin and Br�echet (1996) proposed physical models of rate-and-state friction
exhibiting such transitions between velocity weakening and strengthening behaviours. Note moreover that the
experimental results of Kilgore et al. (1993) suggest that the location of Vm can be controlled by varying the imposed
normal stress; the location of a local minimum of the friction coefficient moves towards higher slip rates as the normal
stress increases. From this perspective, a mass dependence of Vm through the normal stress Mg is conceivable, inertia
playing no role in steady sliding.

On the other hand, the stick-slip oscillations of the block, arising from an unstable steady-state sliding, do not seem
consistent with this change of monotonicity of the steady-state friction coefficient mssðVÞ. Indeed, the steady slip of
the block becomes linearly unstable for stiffnesses smaller than a critical value kc which is proportional to the slope
mss
0 � dmss=dV of the steady-state friction coefficient (Ruina, 1980; Rice and Ruina, 1983). In the rate-and-state context (1)

with Fðv;f;MgÞ ¼ Mgmðv;fÞ, the critical stiffness of the spring–block system (2) is given by

kc ¼ �MgGfmss
0 ð1þMGf=ðMgmV ÞÞ; ð3Þ

where mV and Gf denote the partial derivatives of m and G with respect to v and f and evaluated for a steady-state
ðV ;fssðVÞÞ. Therefore we must have kcðVmÞ ¼ 0 and when V4Vm, where friction strengthens with slip rate, steady sliding
must be linearly stable for all k. Yet, Fig. 1(b) shows that kcðV�Þ=M � 2� 104 s �2 which contradicts the hypothesis V� ¼ Vm

considered by Heslot et al. Comparison of Figs. 1(a) and (b) would be problematic if, for instance, Heslot et al. performed the
experiments at high velocities using a different mass, since this could well alter the friction law through change in the
normal stress Mg. Unfortunately, only partial information is available in Heslot et al. (1994), Baumberger et al. (1994), and
Baumberger (1996) about the experimental conditions which led to the two results in Fig. 1. For instance, it would have
been very interesting to show the effects of the mass M and the stiffness k on the measurement of the dynamical steady-
state friction coefficient to demonstrate experimentally how Vm is shifted. Heslot et al., however, comment that the
experiment is difficult to perform when inertia plays a role. A lot of noise is observed and the boundary of the onset of stick-
slip oscillations is fuzzy. This could also cause another source of mismatch between V� and Vm if the noise amplitude is at
least of order of the stick-slip oscillations in the neighbourood of the instability onset.

Nevertheless, in our opinion, the simplest way of reconciling the discrepancy between the two results in Fig. 1, assuming
that V�aVm, is to investigate a change in nature of the Hopf bifurcation that generates stick-slip oscillations originating
from nonlinear effects due to the friction law, possibly combined with effects of inertia, but still inside the domain of
velocity-weakening friction. Considering a friction force which is non-monotonic intrinsically, we seek a better
understanding of the effect of inertia on the development of frictional sliding instabilities. To do so, we present a general
weakly nonlinear analysis of the stability of a spring–block system. In contrast to a linear stability analysis which reveals
only the existence and location of a bifurcation in parameter space (and, for a Hopf bifurcation, the frequency of small
oscillations), a weakly nonlinear analysis allows the nature (super- or sub-critical) of the bifurcation to be identified from
the derivation of a so-called amplitude equation which governs the variation of the amplitude of instabilities away from the
bifurcation point. As a result we are able to explain why the nature of the Hopf bifurcation changes and to provide
quantitative predictions for the amplitude of the oscillations when parameters are varied (Drazin, 1992). In the present
context, we have in mind that the coefficient L of the nonlinear term in the amplitude equation of the Hopf bifurcation
djAj2=dT ¼ GjAj2 þLjAj4 could change its sign depending on the value of the slip rate (cf. Fig. 2). As a consequence, in
agreement with the experimental observations, the nature of the Hopf bifurcation could change from a supercritical one
(Lo0) to a subcritical one (L40) along the critical curve kcðVÞ which delimits the region of linear stability in the phase
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diagram ðV ; kÞ. In addition, it is possible that inertia could be responsible for reducing the amplitude of the oscillations to
the order of magnitude of the experiment noise so that the dynamics would not be distinguishable.

The structure of the remainder of the paper is as follows. After the formulation of the problem and general comments on
the spring–block dynamics, we develop the weakly nonlinear stability analysis taking into account the block inertia. Next,
successively considering purely monotonic friction laws of the Dieterich–Ruina type, and then three non-monotonic ones,
we examine the variations with velocity of the coefficients of the amplitude equation and the associated growth rate and
amplitude of stick-slip oscillations in order to analyse how the friction law and inertia determine the nature of the Hopf
bifurcation. A fully nonlinear bifurcation analysis performed with the continuation package AUTO completes and confirms
these analytical results. Finally, a discussion and comparison with experimental observations is presented.

The central conclusion of the paper is that the merits of one friction law over another should be examined not just by
analysing the steady-state friction coefficient that each friction law implies, but also by examining the dynamical behaviour
that each gives rise to. The weakly nonlinear analysis that we carry out in this paper is an important step in the
investigation of the dynamical behaviour given by different friction laws enabling us to compare the instabilities associated
with different rate-and-state friction laws with the response observed in experiment.

2. Theoretical framework

2.1. Equations of motion and stick-slip cycle

A block of mass M is pulled over a flat and horizontal frictional surface at a constant speed V through a spring of stiffness
k. In a fixed frame of reference, xðtÞ gives the position of the block sliding at the velocity _xðtÞ i. Neglecting vertical motion
and the effects of fluctuations of the normal stress, the dynamics of such a spring–block system with rate-and-state friction
is determined by

M €x ¼ k ðVt � xÞ � Fð _x;f;sÞ;
_f ¼ �Gð _x;fÞ;

(
ð4Þ

where the normal stress s ¼ Mg is held constant. It is interesting to reformulate this system in terms of a set of first order
differential equations to go further in the physical understanding and the numerical analysis of this system than the one
brought by just considering the two characteristic time scales tcr and tin �

ffiffiffiffiffiffiffiffiffiffi
M=k

p
.

To this end, let us denote the spring force by y ¼ kðVt � xÞ and the sliding velocity v ¼ _x. Furthermore, measuring length,
time and force in units of L, L=V� and Mg, respectively, the dimensionless form of Eqs. (4) reads with a slight abuse of
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notation

_y ¼ k ðV � vÞ;
_f ¼ �Gðv;fÞ;
m _v ¼ y� mðv;fÞ;

8><
>: ð5Þ

where the dimensionless mass m and stiffness k are defined by

m ¼ V2
� =ðgLÞ and k ¼ kL=ðMgÞ: ð6Þ

As introduced in the next section, the velocity V� considered here is a reference slip rate associated with a reference value of
the steady-state coefficient of friction. Also, the length L is characteristic of the length of slip after which a steady state is
attained following a step change in slip velocities.

The instantaneous friction coefficient mðv;fÞ corresponds to a dimensionless friction force, Eqs. (5), directly leading to
the system which describes the motion in the quasi-static approximation of a single frictional interface between two elastic
layers, on setting m ¼ 0 (Rice and Ruina, 1983; Gu et al., 1984). Taking into account the block inertia couples the spring and
friction forces in a subtle way. The dynamics of the block is indeed determined by the interplay of the three variables y; f
and v over different phases we describe relative to the characteristic time L=V� ¼ Oð1Þ scaled by reference to the evolution
of the state variable f. In the context of the experiment of Heslot et al., there is a hierarchical relation between y, f and v.
They correspond, respectively, to the slow, intermediate and fast variables of the system.

This hierarchy is a consequence of the orders of magnitude of the parameters m and k. Unless the acceleration of gravity
g is changed, the dimensionless mass m is fixed once a given material is chosen, setting the frictional properties V� and L.
For the Bristol paper board used by Heslot et al. (1994), L � V� � 10�6 which implies a very small dimensionless mass:
m � 10�7. In contrast, the mass M of the block and the spring stiffness k can be easily modified. In the experiment of Heslot
et al., the ratio k=M broadly varies between 10 and 106 s�2. Then, as L=g � 10�7 s, the dimensionless stiffness varies over
several orders of magnitude: 10�6rkr10�1. We then expect fully developed stick-slip dynamics to be governed by the
limits m51 and k51.

Putelat et al. (2008) addressed this point of view while building a composite approximation of the stick-slip cycle
inspired by the picture of stick-slip oscillations drawn by Rice and Tse (1986). They indeed decompose the stick-slip cycle
into two main phases of different duration: a long quasi-static ‘‘stick’’ stage where the friction force balances the spring
force increase is followed by a short dynamic slip phase controlled by inertia and accompanied by an elastic stress drop
governing an overshoot at constant state which ends the cycle and determines the block ‘‘arrest’’. Interestingly, during the
dynamic phase, a peak in the block slip rate is achieved along mssðvÞ as the state evolves on fssðvÞ due to the fast state
relaxation promoted by the rapid block sliding. Fig. 3 illustrates such a cycle.

Rice and Tse (1986) argued that these two phases can be distinguished from the comparison of the inertial and state
relaxation time scales, the latter one based on the actual slip velocity v, i.e. tcrðvÞ ¼ L=v; hence the ratio tin=tcrðvÞ evolves
along one cycle between the extremes 51 (quasi-static ‘‘stick’’ stage) and b1 (inertia-controlled dynamic slip). For
numerical time integration purposes, this separation of time scales allows them to reduce the full system of governing
equations, derived from (4), to quasi-static and dynamic approximations, valid under further hypotheses of considering
that the time of ‘‘stick’’ is much larger than the natural vibration period 2p

ffiffiffiffiffiffiffiffiffiffi
M=k

p
and that the slip is much greater than the

relaxational slip distance L. Interestingly, provided that the block acceleration is much less than v2=L, it is shown that the
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tcr ¼ L=V , critical stick-slip period 2p=oc ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ðb� aÞ

p
L=V , critical free oscillation time tinc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=kc

p
¼ ½gðb� aÞð1þ V2=agLÞ=L��1=2. Steady-state

sliding is unstable when
ffiffiffiffiffiffiffiffiffiffi
M=k

p
¼ tinZtinc. At the onset, the characteristic time-scale of stick-slip oscillations 1=oc is of order of the state relaxation time-

scale tcrðVÞ which are much larger than tinc for slow driving.
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dynamic approximation leads to harmonic oscillations because the friction force varies slowly as FssðvÞ, and can be
considered to be constant over a short range of v.

We deduce from these results that it is inappropriate to evaluate the effect of inertia on the block motion by choosing
the driving velocity V as a characteristic velocity scale to define the state relaxation time and compare it to the inertial
time. Even at low driving velocity, i.e. V5L=

ffiffiffiffiffiffiffiffiffiffi
M=k

p
, inertia cannot be neglected and controls slip events by preventing their

finite time blow up. However, as this point of view is only valid far from the instability onset, it is still relevant to question
the role of inertia in the initial development of stick-slip dynamics. To this end, we must analyse the stick-slip amplitude.

2.2. The amplitude equation

Inspired by the method and notations of Baumberger et al. (1995), we perform a weakly nonlinear stability analysis in
order to find the amplitude equation which determines the stick-slip amplitude in the vicinity of the instability threshold.

The steady-state solution ðx0;f0Þ of (4) is given by

kðVt � x0Þ ¼ FðV ;f0;sÞ; GðV ;f0Þ ¼ 0;

and becomes unstable at a Hopf bifurcation point (Rice and Ruina, 1983; Gu et al., 1984; Heslot et al., 1994; Lim and Chen,
1998) when the stiffness is smaller than a critical stiffness kc given by (3) and written here as

kc ¼ ðFfGV � FV GfÞð1þMGf=FV Þ; ð7Þ

where subscripts on the right-hand side denote partial derivatives. Note that FfGV � FV Gf ¼ �GfFss
0 ðVÞ. The frequency at

the onset of the instability is given by

o2
c ¼

kcGf

FV þMGf
¼ �

G2
fFss
0 ðV ;sÞ
FV

: ð8Þ

It is remarkable that this frequency is determined only by the frictional properties of the interface.
In the neighbourhood of the bifurcation point, we seek a weakly nonlinear solution from a multi-scale development of x

and f assuming a long time scale T ¼ e2t and expanding the stiffness k ¼ kc þ e2k2 where e is a small parameter. We
expand x and f similarly:

x ¼ x0ðtÞ þ
X
nZ1

enXnðt; TÞ; ð9Þ

f ¼ f0 þ
X
nZ1

enfnðt; TÞ; ð10Þ

where x0ðtÞ � Vt � FðV ;f0;sÞ=k and f0 comprise the steady-state solution of (4). These asymptotic expansions together
with the Taylor expansions of F and G around the steady state lead to linear systems of equations at each order in e. At
Oðe3Þ, the Fredholm condition and the cancelling of secular terms yield a Landau equation for the amplitude of the leading
order solution.

At first order, (4) reads

M
@2

@t2
þ FV

@

@t
þ kc Ff

GV
@

@t

@

@t
þ Gf

0
BB@

1
CCA X1

f1

 !
¼ 0:

We denote by Mð@=@tÞ the matrix operator on the left-hand side of the above equation. The solution is

ðX1;f1Þ
T
¼ AðTÞeioctu0 þ c:c:; ð11Þ

where u0 ¼ ð1; zÞ
T, with z ¼ ð�iocGV Þ=ðGf þ iocÞ, is the null right eigenvector of MðiocÞ, c:c: denoting the complex

conjugate. Note that the null left eigenvector of MðiocÞ is u�0 ¼ ð1;�Ff=ðGf þ iocÞÞ.
At Oðe2Þ, we obtain

M
@2

@t2
þ FV

@

@t
þ kc Ff

GV
@

@t

@

@t
þ Gf

0
BB@

1
CCA X2

f2

 !
¼

1

2

�FVV
_X1

2
� 2FVf

_X1f1 � Ffff
2
1

�GVV
_X1

2
� 2GVf

_X1f1 � Gfff
2
1

0
@

1
A;

whose right hand side is rewritten with the help of the first order solution (11) in the form

A2e2ioct
o2

c FVV=2� ioczFVf � z2Fff=2

o2
c GVV=2� ioczGVf � z2Gff=2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

denoted Y2

þ c:c:þ jAj2
�o2

c FVV � iocðz � zÞFVf � zzFff

�o2
c GVV � iocðz � zÞGVf � zzGff

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

denoted Y0

:
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A particular solution of the second order problem is thus

ðX2;f2Þ
T
¼ A2e2ioct ½Mð2iocÞ�

�1Y2 þ c:c:þ jAj2½Mð0Þ��1Y0: ð12Þ

In the following, we use the notation W l ¼ ½MðilocÞ�
�1Y l for l ¼ 0 or 2; the j th component of W l is denoted Wlj.

Consequently, at Oðe3Þ, there is a resonant term. It is found that

M
@2

@t2
þ FV

@

@t
þ kc Ff

GV
@

@t

@

@t
þ Gf

0
BB@

1
CCA X3

f3

 !
¼ eioct l

n

� �
þ non� resonant terms;

where we have

l ¼ �ðFV þ 2iocMÞAT � k2A� gFAjAj2; ð13Þ

n ¼ �ðzþ GV ÞAT � gGAjAj2; ð14Þ

with AT � dA=dT and

gF ¼ 2o2
c W21FVV þ iocðW02 �W22 þ 2zW21ÞFVf þ ðzW02 þ zW22ÞFff

þ 1=2½io3
c FVVV þo2

c ð2z� zÞFVVf þ ioczð2z � zÞFVff þ zz2Ffff�; ð15Þ

gG ¼ 2o2
c W21GVV þ iocðW02 �W22 þ 2zW21ÞGVf þ ðzW02 þ zW22ÞGff

þ 1=2½io3
c GVVV þo2

c ð2z� zÞGVVf þ ioczð2z � zÞGVff þ zz2Gfff�: ð16Þ

A solution at Oðe3Þ exists if the Fredholm condition is satisfied:

u�0
l
n

� �
¼ 0:

Hence this condition, corresponding to the elimination of resonant terms, finally gives the amplitude equation

ddA=dT ¼ aAþ bAjAj2;

with coefficients

d ¼ Ffðzþ GV Þ � ðGf þ iocÞðFV þ 2iocMÞ ¼ 2oc½Moc � iðFV þMGfÞ�; ð17Þ

a ¼ k2ðGf þ iocÞ; ð18Þ

b ¼ ðGf þ iocÞgF � FfgG: ð19Þ

Now, using the usual decomposition of the complex amplitude AðTÞ ¼ jAjexpðiyÞ, we may rewrite the amplitude equation as

djAj=dT ¼ ðGjAj þLjAj3Þ=2;

dy=dT ¼ ðOþ wjAj2Þ=2;

(
ð20Þ

in which the coefficients are defined by

G ¼ 2Reða=dÞ; L ¼ 2Reðb=dÞ; O ¼ 2 Imða=dÞ and w ¼ 2 Imðb=dÞ: ð21Þ

Substituting (17) and (18), we obtain the following relatively simple formulae:

G ¼ �
4o2

c FV

jdj2
k� kc

e2

� �
� �2Gðk� kcÞ=e2

and

O ¼
4oc½FV Gf þMðG2

f þo
2
c Þ�

jdj2
k� kc

e2

� �
� 2Oðk� kcÞ=e2:

The coefficients L and w cannot in general be expressed in such a simple way, except when Dieterich–Ruina friction laws
are considered. Having obtained these analytic expressions in terms of derivatives of F and G, it is straightforward to
evaluate the coefficients in the amplitude equation for any given friction law. Direct comparison with the experimental
results of Heslot et al. is possible since (20) indicates the typical amplitude of oscillations expected, and the dependence of
oscillation amplitude with physical parameters. A stable limit cycle exists if G40 and Lo0 and has a constant amplitude
given by

jAcj
2 ¼ �G=L: ð22Þ
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Then the phase y evolves linearly in time according to dy=dT ¼ ðO�Gw=LÞ=2 which implies a frequency shift of e2ðOþ
wjAcj

2Þ=2 from oc . The constant amplitude solution of (20) leads to

X1ðtÞ ¼ 2jAcjcosf½oc � ðO þ wG=LÞðkc � kÞ�tg:

As a consequence, the maximum perturbation of slip is

maxjx� x0j � 2ejAcj ¼ ð4oc=jdjÞð�FV=LÞ1=2
ðkc � kÞ1=2

ð23Þ

and, differentiating, we find that

maxj _x � V j � 2ejAcj½oc � ðO þ wG=LÞðkc � kÞ� ð24Þ

for the maximum perturbation of slip rate. As we will discuss later on, these two equations are very useful to estimate the
effect of inertia on the amplitude, once a particular friction law is considered. In particular, we shall see that the expression
(23) is of great interest in estimating the apparent critical stiffness k̂ that would be estimated from a certain experimental
precision or noise level of order Dx. Supposing that the experimental measurement error is Dx � maxjx� x0j, we would find
that

k̂ ¼ kc þ
jdj2L

16o2
c FV
ðDxÞ2: ð25Þ

This expression shows that the critical stiffness k̂ for the onset of stick-slip oscillations arising from a supercritical Hopf
bifurcation would be underestimated with an error of order jdj2LDx2=ð16o2

c FV Þ in the presence of measurement error or
noise level Dx. Informally, the error or noise means that the oscillation is not detected until its amplitude reaches Dx,
resulting in a downwards shift of the estimated location of the bifurcation point. With careful measurement, extrapolation
of data using (23) enables this influence to be corrected, but we stress here that this problem is particularly sensitive to
such errors (see Fig. 4(b)). Note that Eq. (25) can also be seen as the iso-level curves of stick-slip amplitude Dx in the ðV ; kÞ
phase diagram. We will show that such effects might explain the discrepancy in Heslot et al.’s experiments between the
minimum of the friction coefficient and the observed complex transition at large slip rates.

3. Application to the Dieterich–Ruina friction laws

In this section we review two simple widely used forms of rate-and-state friction law and compute analytically the
corresponding coefficients of the weakly nonlinear analysis. Comparisons with the numerical computation of bifurcation
diagrams are also provided.

3.1. Definition

The Dieterich–Ruina friction laws are of the Amontons–Coulomb type

Fð _x;fÞ ¼ smð _x;fÞ;

in which the dynamical friction coefficient is defined by

mð _x;fÞ ¼ av þ alnð _x=V�Þ þ blnðV�f=LÞ: ð26Þ

As suggested by experiments (Dieterich, 1978, 1979; Ruina, 1980, 1983), the interfacial state f has to reach a steady state
over a characteristic length scale L and must satisfy an evolution law (1)2 such that, when the sliding is stationary, the
dynamical friction coefficient (26) varies logarithmically with the slip rate according to

mssðVÞ ¼ av � bvlnðV=V�Þ: ð27Þ

Experimentally, it is observed that the steady-state friction coefficient has a purely velocity-weakening form over a wide
range of slip rate. In the experiments of Heslot et al., it is found that av ¼ 0:369, bv ¼ 0:014 and V� ¼ 0:9� 10�6 m s�1

(cf. Table 1). Fig. 4(a) shows the corresponding steady-state friction coefficient.
Two main evolution laws for the state variable f have been proposed. They are commonly known as ‘‘Dieterich’s

slowness law’’ (ageing law) and ‘‘Ruina’s slip law.’’1 In the former law, defined by

Gð _x;fÞ ¼ �1þ j _xjf=L; ð28Þ

the state variable is interpreted as a characteristic contact lifetime (Dieterich, 1978, 1979; Ruina, 1983; Heslot et al., 1994;
Marone, 1998) where L is a constant memory length (of the order of mm for paper). This law has the advantage of
reproducing the logarithmic evolution with the time of stick of the static friction coefficient as observed experimentally
(Dokos, 1946; Dieterich, 1978). On the contrary, Ruina’s slip law obeying

Gð _x;fÞ ¼ ðj _xjf=LÞlnðj _xjf=LÞ ð29Þ

ARTICLE IN PRESS

1 The terms ‘‘ageing law’’ and ‘‘slip law’’ are sometimes used, respectively, for (28) and (29) (e.g. Rice, 1983; Rice and Ben-Zion, 1996). In this article,

we follow the terminology of the review article of Marone (1998) and refer to them as the Dieterich law and the Ruina law.
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does not strengthen in truly stationary contact but requires slip to evolve. But, in both cases, the response to a jump in slip
rate takes a slip of the order of the characteristic length L, that is, a time tf ¼ L=V , so that the interfacial steady state
is fss ¼ L=V .
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Fig. 4. Results for the Dieterich–Ruina laws—(a) steady-state dynamical friction coefficient vs. Heslot et al.’s experimental data; (b) critical stiffnesses kc

and k̂ for different values of Dx (in mm); (c) instability growth rate for M ¼ 1:2 kg (—) and M ¼ 0 kg (– - – - –); (d) Landau coefficient L; (e) slip

perturbation amplitude; (f) slip rate perturbation for the Ruina law. The growth rate (c) and amplitudes (e), (f) are estimated at a distance kc � k ¼ 0:001kc

from criticality. In the legends, RL and DL refer to the Ruina law and Dieterich law, respectively.

Table 1
Parameter values used to fit the experimental data of Heslot et al. (1994).

av a b b=a bv ¼ b� a L (m) V� ðm s�1Þ

0.369 0.0349 0.0489 1.4011 0.014 0:9� 10�6 10�6
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For these laws the critical stiffness (3) of the stick-slip onset takes the form

kc ¼
sðb� aÞ

L
1þ

MV2

Las

 !
: ð30Þ

As a result, the inertia promotes instability by increasing kc in comparison with its constant value sðb� aÞ=L in the quasi-
static regime, thus widening the stick-slip domain (see Fig. 4(b)). As noted by Roy and Marone (1996) for instance, this
departure from the quasi-static value is significant when MGf=FVb1, that is, for slip rates such that

Vb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
asL=M

p
� V̂ � 5:6� 10�4 m s�1: ð31Þ

3.2. Results and discussion

Beginning with the coefficient G, we note that it does not depend on whether G is given by (28) or (29) because their
first partial derivatives evaluated at a steady state are the same. It is found that

GDR ¼ �k2
sa=V

ðsa=VÞ2 þM½Mðb=aÞðV=LÞ2 þ 2sa=L�
: ð32Þ

Without inertia (M ¼ 0), the growth rate e2G=2 of the instability increases linearly with the slip rate: GDR ¼ �k2V=ðsaÞ

(recall k2o0). However, (32) clearly shows that the presence of inertia decreases the growth rate of the instability which
then attains a maximum of

Gmax
DR ¼

3
ffiffi
3
p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 3bÞ

pq
3b� aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 3bÞ

p ffiffiffiffiffiffiffiffiffiffiffi
bL

saM

r

at a slip rate V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 3bÞ

pq
Þ=ð3bÞ V̂ � 0:552 V̂ , in the conditions of the experiments of Heslot et al. (cf. Table 1).

Fig. 4(c) shows this non-monotonic variation of the growth rate of the instability at a distance from onset of

kc � k ¼ 0:001kc . For both the Dieterich and Ruina laws, the inertia thus has a subtle destabilising effect by opening the
domain of instability towards larger spring stiffness (cf. Fig. 4(a)) in combination with a drop in growth rate, slowing down
the development of stick-slip. It should be noticed that the maximum of the growth rate arises at slip rates comparable
with the ones at which complex dynamics was observed by Heslot et al.

Concerning the Landau coefficient L, we find that

LDðVÞ ¼
sMðb� aÞ2V3½�M2ð4bþ 3aÞV4 � 6Lsa2MV2

þ L2s2a3�

L2ðM2bV4
þ 2Lsa2MV2

þ L2s2a3Þ½M2ð4b� 3aÞV4 þ 2Lsa2MV2
þ L2s2a3�

ð33Þ

when we consider the Dieterich law (28). This expression immediately shows that inertia plays an important role.
Indeed, as found by Baumberger et al. (1995) and Ranjith and Rice (1999), neglecting inertia implies that LDðVÞ ¼ 0,
which would, in turn, require consideration of higher orders in the weakly nonlinear analysis to understand the
nonlinear dynamics of the Hopf bifurcation. The present analysis shows that the consideration of inertia is crucial
here.

In addition, asymptotically, the expression (33) proves that LD changes sign as the slip velocity V varies: as V-0 we
obtain LDðVÞ�½Mðb� aÞ2V3�=ðsL4a3Þ40, whereas LDðVÞ� � ½sðb� aÞ2ð4bþ 3aÞ�=½ML2bð4b� 3aÞV �o0 as V-1 (recall that
b4a40, see Table 1). The analysis of the polynomial in the numerator of (33) implies that this change of sign arises at a
critical slip rate

V�D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�3aþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að3aþ bÞ

pq
Þ=ð3aþ 4bÞ

ffiffiffiffi
V̂

p
; ð34Þ

where V̂ is defined in (31). Below (resp. above) this value, LD40 (resp. o0) and the Hopf bifurcation is subcritical (resp.

supercritical) (see Figs. 4(d) and 5). Thus, the Dieterich law cannot explain why the experiment of Heslot et al. (1994) seems
to show a subcritical Hopf bifurcation at large slip velocity. Nevertheless, the Dieterich law illustrates nicely that our
hypothesis of a change in nature with the slip rate of the Hopf bifurcation is possible.

From the Ruina law (29), we obtain

LRðVÞ ¼
sðb� aÞVðLsaþMV2

Þ½M2ð14abþ 3a2 � 18b2ÞV4 � 2MaLsðb2 � abþ a2ÞV2 � a4s2L2�

2L2ðM2bV4
þ 2Lsa2MV2

þ L2s2a3Þ½M2ð4b� 3aÞV4 þ 2Lsa2MV2
þ L2s2a3�

: ð35Þ

This expression shows that LRðVÞo0 for all slip velocities; at low velocities we have LRðVÞ� � ½ðb� aÞV �=ð2aL3
Þo0 as V-0,

and at high velocities we have LRðVÞ�½sðb� aÞð14abþ 3a2 � 18b2Þ�=½2MbL2
ð4b� 3aÞV �o0 as V-1, and the discriminant

of the quartic expression in V on the numerator of (35) is D ¼ �4M2s2L2a2ðb� aÞð4a3 þ 16a2bþ ab2
� b3Þ, which is

negative at least for the values shown in Table 1, cancelling the possibility of having a change of sign of LR. Thus, the Ruina
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law produces a supercritical Hopf bifurcation and is unable to induce a change of its nature as we would require to explain
the observations of Heslot et al. (1994).

Nevertheless, considering the amplitude of the limit cycle, we see that inertia reduces the stick-slip magnitude slightly

from its inertialess value (compare the solid and dot-dashed lines in Fig. 4(e)). Noting that LRðVÞ ¼ �ðb� aÞV=ð2aL3
Þ for the

inertialess system, the supercritical nature of the Hopf bifurcation is preserved. This confirms the early result of Gu et al.

(1984) who showed that a quasi-static spring–block system is unstable (resp. stable) for kokc (resp. k4kc) for small

perturbations. Moreover, as GDR ¼ �k2V=ðsaÞ for M ¼ 0, we have from (23) maxjx� x0j � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðb� aÞ

p
L3=2s�1=2 ðkc � kÞ1=2,

which shows that the slip amplitude scales like the memory length according to

maxjx� x0j�eL

from a distance kc � k ¼ e2kc to criticality. This illustrates the control of stick-slip at onset due to the memory effects and

the sensitivity to measurement errors and noise level for the experimental determination of kc that inertia renders even
more challenging to measure.

Our analytical results are confirmed and completed by computing bifurcation diagrams with the continuation software
AUTO (Doedel et al., 1991). Fig. 6 illustrates the subcritical nature of the Hopf bifurcation in the case of the Dieterich law in
comparison with the supercritical bifurcation implied by the Ruina law for a driving velocity of V ¼ 10�4 m s�1. On the
branch of oscillatory solutions, depicted by the maximum and minimum amplitude of limit cycles at Fig. 6, we see that the
slip rate at which the turning point occurs, leading to a stable limit cycle, is close to the value of the slip rate of the Hopf
bifurcation. Continuation in the two parameters ðV ; kÞ of the location of this limit point shows that it disappears at Vc and
tends towards the critical curve kcðVÞ (the Hopf bifurcation location) as the driving velocity decreases (as shown in Fig.
5(b)). As V decreases, the amplitude of oscillation at the turning point increases; nevertheless, the difference in amplitude
of the stable limit cycles, close to, and far from, the Hopf bifurcation, is not significant. Fig. 7 indeed shows similar trends
for the two laws while plotting the relative magnitude (i.e. the difference between the maximum and minimum
amplitudes of a periodic orbit, relatively to the steady state) of the spring force, slip, slip rate and period. Note that all these
quantities decrease as the driving speed V rises at fixed stiffness. We can thus conclude that it might be very difficult to
distinguish experimentally the Dieterich law from the Ruina one.

Now, we discuss the effect of inertia in more detail. Again, in both cases, we know that it induces at large V a deviation
from the constant value of kc (Eqs. (3) and (30); Fig. 4(b)). In addition, the numerical continuation of the periodic orbits
shows that the amplitude increases very rapidly as jk� kcj

1=2 close to the onset of instability as expected, before evolving as
a power law in the stiffness while k is reduced. This behaviour has been attributed to a relaxation oscillation regime
controlled by inertia by Putelat et al. (2008), where further details can be found. The bifurcation diagrams plotted in Fig. 7
suggest that noise or measurement error in an experiment could lead to an incorrect location of the Hopf bifurcation when
inertia is important. For instance, roughly speaking, considering Figs. 7(c) and (d) shows that a noise naturally produced
during an experiment driven at 10�3 m s�1 and larger than mm in slip amplitude could lead to an error in the measurement
of kc. The noise level would obscure stick-slip oscillations of smaller amplitude. A noise of order 10mm would mask the
inertial effect on kc . Thus a shift towards smaller stiffnesses should be observed. In fact, the weakly nonlinear analysis,
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through the formula (25), gives an interesting quantitative estimation of the sensitivity to inertia of the apparent critical
stiffness k̂. In addition to the critical curve kc , Fig. 4(b) shows for the Ruina law how k̂ varies quickly with a noise level or
measurement error Dx of about 1mm. Above this value, k̂ becomes concave and restricts the apparent domain of stick-slip
to low values of V and k; an inertialess system leading to

k̂jM¼0 � kc ¼ �
sðb� aÞ

8L3
ðDxÞ3:

ARTICLE IN PRESS

Fig. 6. Bifurcation diagrams for the Ruina law (a–d) and Dieterich law (e–h). The maximum and minimum amplitudes of the limit cycles, born at the Hopf

bifurcation point (’), are plotted for: (a, e) the spring force, (b, f) the slip rate, (c, g) the slip distance and (d, h) the stress drop. Solid (dotted) lines read for

stable (unstable) solutions. The symbol
ˆ
denotes the saddle-node bifurcation. The bifurcation diagrams are computed with the continuation software AUTO

for a driving velocity V=V� ¼ 102, considering the stiffness as continuation parameter. Note the change in nature of the Hopf bifurcation in the case of the

Dieterich law.
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This is related to the diminution of stick-slip amplitudes due to inertia (cf. Fig. 4(e)). This phenomenon could give an
explanation of the discrepancy pointed out in the experiment of Heslot et al. (1994). It should be noted, however, that they
reported a noise level for displacement of 10�2 mm.

Finally, we note that the subcritical nature of the Hopf bifurcation at small slip rate induced by the Dieterich law could
lead to hysteretic dynamics. This would be a natural explanation for the complexity of slip history observed by Rice (1994)
in the elastodynamic modelling of a strike-slip fault when using the Dieterich law; in contrast, the Ruina law would lead to
periodic events (see also Rice and Ben-Zion, 1996).
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Fig. 7. Comparison of the magnitudes (i.e. the difference between the maximum and minimum amplitudes) of the limit cycles for the Ruina law (a–d) and

Dieterich law (e–h). Four driving velocities are displayed: V=V� ¼ 1000 (—); V=V� ¼ 100 (- - - -); V=V� ¼ 10 (– - – - –); V=V� ¼ 1 (- - - -). Recall

V� ¼ 10�6 m s�1.
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4. Application to a spinodal friction law

In this section we introduce and discuss a modified friction law, first proposed by Putelat et al. (2007), and investigate
the results of the weakly nonlinear analysis of Section 2.2 when applied to this modified friction law.

4.1. Definition

In addition to their monotonic nature, the most significant drawbacks of the Dieterich–Ruina laws are the logarithmic
singularity of Eq. (26) when v-0, an unlimited decrease of the steady-state coefficient with the velocity and the absence of
saturation of the state at large time in the particular case of the ageing law (28).

A way to avoid the logarithmic singularity was proposed by Rice and Ben-Zion (1996), Ben-Zion and Rice (1997) and
Lapusta et al. (2000) in considering

mð _x;fÞ ¼ a sinh�1 _x

2V�
exp

av þ blnðV�f=LÞ

a

� �� 	
: ð36Þ

Such an expression can be fully derived from assuming a thermally activated rate process which describes the local creep of
interfacial asperity contacts (Heslot et al., 1994; Rice et al., 2001). According to this point of view, the rate-and-state
dependence of friction supposes that the interfacial slip rate follows from a transition-state Eyring process whose energy
barrier E�ðfÞ evolves with the state of the interface and which must overcome, for slip to occur, with the help of applied
stress and thermal noise. Combining forward and backward jumps over the effective energy barrier, such a microscopic
mechanism leads to the generic frictional slip rate

v ¼ 2V�exp
�E�ðfÞ

kBT

� �
sinh

t
as


 �
;

where kB is the Boltzmann constant, T the absolute temperature and a ¼ kBT=Osc . The symbols O and sc refer to a volume
of activation and an average normal stress borne at the asperity contacts. In this framework, the reference slip rate V� is
interpreted as the product of the average slip due to one jump over the energy barrier and the frequency of jump attempts.
Expression (36) is formally obtained with E�ðfÞ ¼ Osc½av þ blnðV�f=LÞ�.

Recently, Putelat et al. (2007) modified expression (36), by taking E�ðfÞ ¼ Osc½av þ blnðc þ f=f�Þ�, to give

mð _x;fÞ ¼ a sinh�1 expðav=aÞ

2

_x

V�
c þ

f
f�

� �b=a
" #

: ð37Þ

They also modified the state evolution law ð1Þ2 to

Gð _x;fÞ ¼ ðf� 1Þ=t�� þ j _xjf=L; ð38Þ

so that f varies between 0 and 1.2 The relations (37) and (38) combine the two competing processes of static ageing and
dynamic weakening proposed by Dieterich (1978, 1979). We assume that the former process takes place on a longer time
scale, t��, than the latter one, characterised by the relaxation time L=V . The small constant c is introduced in order to give a
residual strength to the interface at very high slip rates, when the interfacial state is supposed to have no influence on the
friction force with f � 0. The effect is to produce a logarithmic velocity-strengthening at high velocity which agrees
qualitatively with the experimental finding of Bureau et al. (2002). For this law, the reference slip rate V� is associated to
the reference state

f� ¼ ð1þ t��V�=LÞ�1:

As discussed by Putelat et al. (2007), for small enough steady sliding velocities such that

V5L=t��;

the interface remains rough (f � 1) behaving in a velocity-strengthening manner. Consequently, such a modification of
(28) results in a local maximum of the steady-state friction force obtained for a slip rate

VM � L=½ðb=a� 1Þt���:

Furthermore, choosing t��bL=V� implies that VM5V� which localises this velocity strengthening/weakening transition at a
very low slip rate. It is moreover found that the steady-state friction law has a local minimum at

Vm � ð1þ 1=RÞðb=a� 1ÞV�=c;
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2 It is remarked that the law (38) can be expressed in the general form

Gð _x;fÞ ¼ �
1

t��

f�fssð _xÞ

fssð _xÞ

as was noted by Estrin and Br�echet (1996), their Eq. (2), with their ageing time ta non-dimensionalised so that f ¼ ta=t�� . Whereas Estrin and Br�echet

(1996) assume the Dieterich form tss
a ð _xÞ ¼ L= _x(Dieterich, 1979) but then introduce a cut-off to avoid small _x , we have chosen instead to regularise the

Dieterich steady-state formula to fssð _xÞ ¼ L=ðLþ _xt��Þ so that fssð _xÞ remains finite as _x-0.
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as a result of introducing the constant c in (37). We denote R ¼ t��V�=L the ratio of the characteristic time scale of static
ageing t�� over the dynamic weakening time scale of reference L=V�. For c ¼ 10�3 and the parameter values of Table 1 we
find VM ¼ 2:493� 10�8 m s�1 and Vm ¼ 4:052� 10�4 m s�1.

In summary, a non-monotonic steady-state friction coefficient, shown in Fig. 8(a), is obtained. By analogy with the
isotherms of the pressure–density relation of the van der Waals gas, or the separation of solidifying binary alloy, we
describe such a law as ‘‘spinodal’’.

An important consequence of the existence of the two extrema of mssðVÞ is to close off the domain of stick-slip in the
ðV ; kÞ parameter plane at V ¼ VM and V ¼ Vm for which kc ¼ 0 (see Fig. 8(b)). As a result, the effect of inertia on the critical
stiffness is more subtle than in the previous section and depends on the relative location of Vm compared to the slip rate at
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Fig. 8. Results for the spinodal law (37)–(38) with the residual strength parameter c ¼ 10�3FðaÞ Steady-state friction coefficient; (b) critical stiffness kc

of the stick-slip instability onset (solid line) and apparent critical stiffness k̂ for a noise or measure precision of Dx ¼ 5:7� 10�6 m (dash-dotted line). The

thin dotted line corresponds to k̂ for the inertialess system; (c) growth rate of the stick-slip oscillations; (d) Landau coefficient L; (e) slip perturbation

amplitude; (f) slip rate perturbation amplitude. The growth rate (c) and amplitudes (e), (f) are estimated at a distance kc � k ¼ 0:001kc from criticality.

Note that the Hopf bifurcation is always supercritical (Lr0). Symbols: þ refers to the experimental results of Heslot et al. in graphics (a) and (b); the lines

— and - - - - corresponds to Ma0 and M ¼ 0, respectively, in graphics (c)–(f).
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which MGf=FV becomes order unity, see Eq. (3). For the spinodal law (37), (38), it is straightforward to show that

MGf=FV � MV2=ðLasÞ;

at large slip rates, as for the Dieterich–Ruina laws. This implies that the condition (31) is still valid. Therefore, the inertia
influences kc only for values of c (which determines Vm) that are smaller than the critical value of c

ccrit ¼
ðb=a� 1ÞV�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Las=M
p :

For the parameter values used in this study (cf. Table 1), we have ccrit � 7:2� 10�4.
It is important for the sequel to mention that a high-velocity approximation of the spinodal law is

mð _x;fÞ � a� þ alnð _x=V�Þ þ blnðc þf=f�Þ;
_f � 1=t�� � j _xjf=L;

(

assuming that the interfacial state and slip rate, respectively, remain small and large during stick-slip oscillations; a
situation encountered at high-velocity driving. In fact, this approximation is nothing else than the Dieterich law (26), (28)
modified by incorporating a high-velocity strengthening behaviour so that

mð _x;fÞ ¼ a� þ alnð _x=V�Þ þ blnðc þfV�=LÞ;
_f ¼ 1� j _xjf=L;

(
ð39Þ

once we consider the limit R-þ1 and the rescaling of the interfacial state f-f=t��. We note that the law (39) was used
by Cochard et al. (2003) in the context of the stabilisation of frictional sliding by normal load modulation. A similar law was
also proposed earlier by Weeks (1993) but associated with the Ruina slip law (29).

The steady-state form of (39)

mssðVÞ ¼ a� þ ða� bÞlnðV=V�Þ þ blnð1þ cV=V�Þ ð40Þ

attains a minimum at

VmðcÞ ¼ ðb=a� 1ÞV�=c; ð41Þ

and leads to the comprehensive critical stiffness and stick-slip frequency

kcðV ; cÞ ¼ ðacs=LÞ½VmðcÞ � V �½1þMV2=ðasLÞ�=ðV� þ cVÞ; ð42Þ

ocðV ; cÞ ¼ ðV=LÞ2½b=a� 1� ðbc=aÞ=ðV� þ cVÞ�: ð43Þ

We will use the modified Dieterich law (39) to carry out with useful analytical results the interpretation of the results
obtained from the spinodal law.

We remark also, before considering the results of the weakly nonlinear analysis, that we should keep in mind the
hypothesis that the residual strength parameter c might be a decreasing function of the normal stress (Putelat et al., 2007).
It has indeed been observed for rock friction by Kilgore et al. (1993) that the transition at V ¼ Vm from a velocity weakening
regime to a velocity strengthening regime is displaced towards higher velocities as the normal stress is increased. This
experimental result suggests that a change in the mass of the block used for performing a spring–block experiment will
change the location of the local minimum of the friction coefficient.

4.2. Results and discussion

With the material parameters of Table 1 and using the spinodal friction law (37)–(38), we compute numerically the
coefficients of the amplitude equation, and other related quantities, as presented in Fig. 8.

We start by analysing the predictions of the weakly nonlinear analysis at constant c ¼ 0:001. This value is chosen for a
good visual agreement with the measurements of the friction coefficient performed by Heslot et al. (1994) (cf. Fig. 8(a)). It
produces a critical stiffness curve kcðVÞwith an arch shape as plotted (solid line) in Fig. 8(b). As c4ccrit, no deviation due to
inertia is noticeable. Note also the discrepancy between the theoretical kc and the experimental measurements of Heslot et
al. (1994). Possible origins of this difference are proposed later in this section.

The existence of the two extrema of mssðVÞ means that the coefficients of the amplitude equation are only defined for
VMrVrVm. In this interval, we find numerically that L is negative which implies that the Hopf bifurcation is supercritical.
We moreover observe that G and L rapidly tend to zero as the slip rate tends to VM or Vm. Concerning the variations of G
and L, Figs. 8(c) and (d) show similar trends as for the Dieterich–Ruina laws (Fig. 4(c) and (d)) in the velocity-weakening
regime. Extremal values are also taken close to Vm. But in the case of the spinodal law, these trends interfere with the non-
monotonic nature of the steady-state friction law. Note also that inertia has a negative effect in the vicinity of Vm by
diminishing the absolute magnitudes of G and L.

However, the behaviour of the slip and velocity amplitudes is different from the Dieterich–Ruina laws in several ways.
As the velocity increases, the faster decrease of the Landau coefficient relatively to G drives a fast drop of the slip amplitude
of the periodic orbit conversely to the Ruina law constant behaviour (Fig. 8(e)). In fact this behaviour recalls that obtained
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from the Dieterich law (see Fig. 4(e)) which suggests that it results from the similarity between the evolution laws (28) and
(38). Roughly speaking, the higher the driving, the smaller the slip amplitude. Nevertheless we also observe an effect of
inertia which slightly increases the slip amplitude in the neighbourhood of Vm. This effect is opposite to the one found for
the Ruina law. It is moreover noticeable that the high-velocity slip amplitudes are less than the memory length which
suggests a possible sensitivity to noise level or measurement error as discussed for the Dieterich–Ruina laws. About the slip
rate fluctuations maxj _x � V j, an equivalent trend exists and consists in an increase of the amplitude with V . Here again
inertia enhances the oscillations amplitude, conversely to the Ruina law.

Although it might be difficult to precisely identify experimentally the onset of stick-slip when the amplitude is of same
order of magnitude as the noise level, inertia might in fact help the determination of stick-slip onset due to its positive
effect on the amplitude. Fig. 8(b) emphasises this conclusion by plotting the apparent critical stiffness k̂ (Eq. (25)) for
Dx ¼ 5:7mm. In the presence of inertia, the apparent stiffness is not displaced towards smaller slip rates as much as
without. Actually it is predicted that inertia helps in locating precisely the transition to stick-slip at Vm when using small
stiffnesses. Possible mislocation of stick-slip onset is localised around the right-hand shoulder of kcðVÞ. We also find that
the apparent stiffness is rapidly shifted into the domain of stick-slip as soon as Dx41mm. Thus, we estimate that 1mm is
the typical maximum level of noise or experimental error allowed in order to locate accurately the instability threshold in
the phase plane. However, Heslot et al. (1994) estimate the measurement error Dx in their experiment to be of order
10�2 mm. So, this explanation is not conclusive, and other reasons for the discrepancy between the present theory and the
experiment may be needed. A change in the parameters in the friction law associated with the change in the mass is one
possibility. We note meanwhile that the discrepancy between the measurements of kc and its theoretical location with the
spinodal law does not bias our study due to the lack of information available, which prevents us from performing better fits
with Heslot et al.’s results.

Figs. 9 and 10 depict the effect of varying the constant c. As c decreases from 10�3 to 3� 10�4, the local minimum of the
friction coefficient moves towards larger slip rates Vm. Consequently, the inertia has an effect on kc although this does not
change the overall trends described above. Fig. 9(a) illustrates how the combined effects of the displacement of Vm and
inertia widens the stick-slip domain in the ðV ; kÞ- plane. Nevertheless, a significant change is that the Landau coefficient L
becomes positive in a narrow neighbourhood of Vm (see Fig. 9(b)). The behaviour change that we propose from a
supercritical to a subcritical Hopf bifurcation as the driving velocity rises is thus predicted by our spinodal law. Fig. 10(d)
shows that inertia is responsible for this change of sign, Lr0 for all V when M ¼ 0.

The picture given by the weakly nonlinear analysis is completed by numerical investigations using the continuation
package AUTO. Figs. 11(a–d) and (e–h), respectively, depict bifurcation diagrams for two different values of c, 10�3 and
3� 10�4, and the same dimensionless stiffness k ¼ kL=ðMgÞ ¼ 10�3, that is for a stiffness k ¼ 1:31� 104 N m�1; log10ðV=V�Þ

being the continuation parameter. In both cases, the nature of the Hopf bifurcations is confirmed. Near V ¼ VM, a stable
limit cycle is born from a supercritical Hopf bifurcation and grows first abruptly and then smoothly as the driving velocity
rises. Roughly, the maximum amplitudes are reached in the middle of the velocity-weakening domain. The amplitude
decreases next in a monotonic manner for c ¼ 10�3 until the supercritical Hopf bifurcation near V ¼ Vm is attained, while
the stick-slip orbits become unstable at a saddle-node bifurcation for c ¼ 3� 10�4. In this case, the limit cycle dies at a
subcritical Hopf bifurcation in agreement with the prediction of the weakly nonlinear analysis. It is moreover confirmed
that inertia increases the stick-slip amplitude compared to the one obtained for the quasi-static approximation.

Regime diagrams of the spring–block system in spinodal friction are computed by continuation of the loci of the Hopf
and saddle-node bifurcations in the two parameters log10ðkÞ and log10ðV=V�Þ using AUTO. Fig. 12 compares the diagrams
obtained for four values of the residual strength parameter c. Generically we find a region of bistability, lying between the
loci of the Hopf and saddle-node bifurcations, that grows as c decreases. The saddle-node line meets the Hopf bifurcation
curve at the codimension-two point ðV�; kcðV�ÞÞ. The saddle-node must indeed disappear for VoV� where Lo0 and the
Hopf bifurcation is supercritical. Besides, it is worth noticing that the saddle-node bifurcation does not diverge away from
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Fig. 9. Effect of the residual strength parameter c on the critical stiffness kc and the Landau coefficient L for the spinodal law (37)–(38).
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the Hopf bifurcation curve as the stiffness decreases. We observe instead that the bistability domain closes up, the saddle-
node line converging tangentially towards the Hopf bifurcation locus at low k ¼ kL=ðMgÞ.3

Analytically, the modified Dieterich law (39) allows a complete understanding of the behaviour change of the Hopf
bifurcation and the conditions of existence of the transition velocity V�. As for the Dieterich law, it is possible to express the
amplitude equation’s coefficients in a reasonably compact analytical form. We find

GðVÞ ¼ �k2sa2L2VðcV þ V�Þ=P4ðVÞ ð44Þ

and

LðVÞ ¼
acsV�V2ðV � VmÞP7ðVÞ

LðcV þ V�Þ
2P4ðVÞP5ðVÞ

; ð45Þ

where Vm is given by (41) and

P4ðVÞ ¼ bV�M
2V4 þ 2a2csLMV3

þ 2a2sV�LMV2
þ a3cs2L2V þ a3s2V�L

2;

P5ðVÞ ¼ 3acLM2V5 þ ð3a� 4bÞV�LM2V4 � 2a2csL2MV3
� 2a2sV�L

2MV2
� a3cs2L3V � a3s2V�L

3;

P7ðVÞ ¼ ð6abþ 6a2Þc2L2M3V7 þ ð�4b2 þ 3abþ 9a2ÞcV�L
2M3V6

þ ðð�4b2 þ abþ 3a2ÞV2
� L2M3 þ ð3a2bþ 7a3Þc2sL3M2ÞV5 þ ð13a3 � 6a2bÞcsV�L

3M2V4

þ ðð6a3 � 6a2bÞsV2
� L3M2 þ ða3b� 4a4Þc2s2L4MÞV3 þ ð3a3b� 5a4Þcs2V�L

4MV2

þ ðða3b� a4Þs2V2
� L4M � a5c2s3L5ÞV � a5cs3V�L

5:

The transition velocity V� is defined by LðV�Þ ¼ 0 and then corresponds to a zero of the polynomial P7. Starting from
V ¼ Vm � 1:337� 10�3, we solve P7ðV

�Þ ¼ 0 numerically by iteration. For c ¼ 3� 10�4, we find V� � 1:109� 10�3 m s�1
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Fig. 10. Results for the spinodal law (37)–(38) with the residual strength parameter c ¼ 3� 10�4FðaÞ Steady-state friction coefficient; (b) critical stiffness

kc of the stick-slip instability onset (solid line); (c) growth rate of the stick-slip oscillations at kc � k ¼ 0:001kc from criticality; (d) Landau coefficient L.

Note the strong effect of inertia on the sign of L which becomes positive in the vicinity of the local minimum of friction at Vm. Symbols: þ refers to the

experimental results of Heslot et al. in graphics (a) and (b); the lines — and - - - - corresponds to Ma0 and M ¼ 0, respectively, in graphics (c) and (d).

3 These special periodic orbits are ‘‘canard’’ solutions (Arnold et al., 1999; Guckenheimer et al., 2000) of system (5), (37) and (38).
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(cf. Fig. 13(a)). Repeating this numerical procedure for different values of the residual strength gives the dependence V�ðcÞ

plotted at Fig. 13(b). For small enough values of c, the transition velocity exists, being less than VmðcÞ, and decreases as c�1,
being parallel to VmðcÞ. Just before c ¼ 10�3, V� curves itself to cross VmðcÞ at c ¼ c�. This critical value c� is the value of the
residual strength above which the transition velocity V� does not exist, the Hopf bifurcation staying supercritical for all
velocity between VM and Vm. As Vmðc�Þ ¼ V� by definition, the critical residual strength must solve P7½Vmðc�Þ� ¼ 0, which
corresponds to a cubic equation for c�2

a6c�6 þ a4c�4 þ a2c�2 þ a0 ¼ 0;
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Fig. 11. Bifurcation diagrams of the spring–block system under the spinodal law (37)–(38) for two values of the residual strength parameter c ¼ 10�3

(a–d) and c ¼ 3� 10�4 (e–h)—The maximum and minimum amplitudes of the limit cycles, born at the Hopf bifurcation point (’), are plotted for: (a,e)

the spring force, (b,f) the slip rate, (c,g) the slip distance and (d,h) the stress drop. Solid (dotted) lines reads for stable (unstable) solutions. The symbol
ˆ

denotes the saddle-node bifurcation. The thin dotted line symbolises the amplitudes of the inertialess system. The bifurcation diagrams are computed

with the continuation software AUTO for a dimensionless stiffness k ¼ kL=ðMgÞ ¼ 10�3, considering the driving velocity as continuation parameter.
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whose coefficients are defined by

a0 ¼ bðb� aÞ6ð2b� aÞV7
� L2M3; a2 ¼ a3bðb� aÞ4ð3b� 2aÞsV5

� L3M2; a4 ¼ a6bðb� 2aÞðb� aÞ2s2V3
� L4M;

a6 ¼ �a10bs3V�L
5:
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Fig. 12. Regime diagrams of the spring–block system under the spinodal law (37)–(38) for different values of the residual strength parameter:

(a) c ¼ 10�3; (b) c ¼ 7� 10�4; (c) c ¼ 5� 10�4; (d) c ¼ 3� 10�4. Symbols: the solid and dashed lines, respectively, denotes the supercritical and

subcritical Hopf bifurcations, the dash-dotted line is the locus of the saddle-node bifurcation, their intersection symbolised by 	. Between the bifurcations

is defined a domain of bistability where steady-state and oscillatory slidings co-exist.

Fig. 13. (a) Landau coefficient (45) of the modified Dieterich law (39) with c ¼ 3� 10�4. The dashed line refers to the inertialess coefficient, the symbol 	

locates the transition velocity V� at which L changes sign. (b) Residual strength dependence on the transition velocity V� (solid line). The dashed line

corresponds to VmðcÞ given by (41). The bullet symbol 	 indicates the location of V� for c ¼ 3� 10�4, the open circle
ˆ
defines the critical residual strength c�

above which V� is undefined preventing the behaviour change of the Hopf bifurcation.
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Solving numerically the cubic gives c� � 9:02� 10�4. Although the analytical expression of c� can be written in principle, it
is easier to find bounds. Balancing a4c4 and a0 gives an upper bound, whereas the balance of a6c6 and a2c2 leads to a lower
bound. We find

ðb� aÞ4ð3b� 2aÞ

a7

M2V4
�

s2L2
rc�4r

ðb� aÞ4ð2b� aÞ

a6ð2a� bÞ

M2V4
�

s2L2
;

that is 8:80� 10�4rc�r9:52� 10�4.
Combining now the transition velocity V�ðcÞ obtained numerically with the critical stiffness formula (42) allows the

computation of the transition border k�c ¼ kcðV�Þwhich delimits the region where the Hopf bifurcation is supercritical from
the region where it is subcritical. In Fig. 14 we superpose in the ðV ; kÞ- plane such a transition border (thick solid line) to the
four previous regime diagrams computed with AUTO corresponding to c ¼ f3� 10�4;5� 10�4;7� 10�4;10�3

g. We obtain
a very good agreement between the present approximate analysis and the AUTO computations of the transition points
(bullet points) for the spinodal law. Note also that k�c is undefined for c4c� and tends to 0 as c-c�, that is at
V�m ¼ ðb=a� 1ÞV�=c� � 4:447� 10�4. We finally stress that considering the Ruina slip law (29) with (39) does not provide
such a behaviour change for the Hopf bifurcation which remains always supercritical, despite the residual strength. Once
again, the analytical details of the state evolution law are crucial and can be discriminated with the weakly nonlinear
analysis.

The change of nature of the stick-slip onset is therefore the consequence of the complex interplay between the block inertia,
the high-velocity residual strength of the interface and the dynamic interfacial smoothening which are involved in the
mathematical structure of the coefficient L through the high order details of the friction law carried by its partial derivatives
with respect to its arguments. We thus conclude that it is incorrect to attribute the behaviour change of the Hopf bifurcation to
the crossover between a so-called creep regime to an inertial one based on the comparison of the state relaxation time scale L=V

and the inertial scale ðM=kÞ1=2. As precisely illustrated in Fig. 14, the transition line k�c ðV
�Þ does not correspond to the relation

k ¼ MðV=LÞ2. Even a refinement of such an analysis of order of magnitude does not provide a precise insight for the stick-slip
bifurcation behaviour. Indeed one could argue that the creep and inertial regimes should be defined from comparing the inertial
time scale ðM=kÞ1=2 with the stick-slip time scale at onset o�1

c . We could then define the creep regime when ðM=kÞ1=2
5o�1

c and
the inertial regime conversely, the regime boundary being determined by k ¼ Mo2

c . This boundary is plotted in Fig. 14(a),
considering the expression (43). This shows that the transition point ðV�; k�c Þ belongs to the creep domain and cannot be
estimated from this kind of analysis of order of magnitude. From it, in the neighbourhood of Vm, we can only conclude that the
inertial, stick-slip and state relaxation time scales are of same order, or at least not well separated at stick-slip onset
(cf. Fig. 14(b)). To conclude, the only pertinent analysis of this type would need the development of matched asymptotic
approximations of the stick-slip cycle like the one tackled by us (Putelat et al., 2008).

5. Other spinodal friction laws

In this section we briefly discuss two alternative candidates for a spinodal law. Both candidates satisfy the multiplicative
decomposition of the friction force according to the ‘‘adhesion model’’ of Bowden and Tabor (1954)

F ¼ ArðfÞSð _xÞ; ð46Þ
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Fig. 14. (a) The transition line k�ðV�Þ (thick solid line) divides the parameter space ðV ; kÞ between a region on the left where the Hopf bifurcation is

supercritical from a region on the right where the bifurcation is subcritical and gives birth to a bistability domain which grows as the residual strength c

decreases. The double-dash line corresponds to the quasi-static/inertial regime crossover based on the balance M=k ¼ ðL=VÞ2, whereas the correct inertial

domain is located under the border k ¼ Mo2
c symbolised by the thin dotted line (the thin solid line corresponds to this latter balance computed for the

Dieterich–Ruina laws). The frequency corresponds to the modified Dieterich law (39) and is given by (43). (b) Characteristic time scales for the spinodal

law: 1=oc (solid line), ðM=kcÞ
1=2 (dashed line), L=V (dotted line).
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where ArðfÞ denotes the true area of asperity contact and Sð _xÞ a creep shear strength of asperities (see Baumberger and
Caroli, 2006 for a recent review). In both cases we consider the Dieterich state evolution law (28).4 To simplify our
discussion, we give these laws the names ‘‘nanoscale contact law’’ and the ‘‘micron-scale contact law’’ due to the scales to
which various authors appeal in their construction. We compute the Landau coefficient for these alternative laws and
conclude that neither of these laws yields behaviour which corresponds as closely to the experimental results as that
derived using the law (37)–(38).

5.1. A nanoscale contact law

The first alternative spinodal law we consider comes from the critical discussion of physical models and
phenomenological arguments proposed by Heslot et al. (1994), Baumberger et al. (1995, 1999), and Berthoud et al.
(1999) which were comprehensively summarised and completed by Persson (2000).

We start with a phenomenological approach. In the velocity-weakening regime of friction, Heslot et al. (1994) observed
that the stick-slip onset boundary slightly decreases with the driving velocity and consequently they proposed modifying
the Dieterich–Ruina law (26) by considering

mssðVÞ ¼ av � bvlnðV=V�Þ þ cv ln2
ðV=V�Þ:

Note, however, that the velocity-strengthening that the additional term cv ln2
ðV=V�Þ induces is not sufficient to reproduce

the high speed linear strengthening regime reported by Baumberger et al. (1994) and Heslot et al. (1994). Concerned only
with the creep regime, Baumberger et al. (1995) then considered an expression for the instantaneous friction coefficient
that can be written in the form

mð _x;fÞ ¼ av þ alnð _x=V�Þ þ blnðf=f�Þ þ cv ln2
ðf=f�Þ; ð47Þ

with b ¼ bv þ a. Following Persson (2000), a term ln2
ðf=f�Þ could physically be understood as a second order memory

effect resulting from the time dependence of real contact area due to the asperity creep activated by the normal pressure in
quasi-stationary contact.

On the other hand, a physical description of rate-and-state friction has been proposed by Berthoud et al. (1999) and
Baumberger et al. (1999) based on Bowden and Tabor’s decomposition (46). In this formulation, the memory effects
determine the real contact area through an evolving state variable representing the average contact time of the interface
rejuvenation inferred from the logarithmic time evolution of the static friction force consequence of the surface asperity
creep given by ArðfÞ ¼ A0½1þ alnðfV�=LÞ� (Berthoud et al., 1999; Persson, 2000). In addition, the friction force directly
reacts to variations of the slip velocity upon which the interfacial shear strength depends according to Sð _xÞ ¼

S0½1þ blnð _x=V�Þ�, considering a thermally activated shear-induced creep process localised at the nanometric asperity
junctions (Baumberger et al., 1999; Persson, 2000). In fact, such a law introduces a term�ln2

ðV=V�Þwhich leads to a steady-
state friction coefficient mssðVÞ ¼ A0S0½1þ ðb� aÞlnðV=V�Þ � ab ln2

ðV=V�Þ�, with the wrong curvature and an increasing
function of V for the critical stiffness kcðVÞ once V=V�4exp½ðb� aÞ=ðabÞ�.

However, we found that this drawback can be resolved by including in the physical model of Baumberger et al. (1999)
the second order term ln2

ðf=f�Þ proposed by Persson (2000) for the state evolution of the true contact area ArðfÞ. Indeed,
considering the following friction coefficient:

mð _x;fÞ ¼ ½1þ ðb=avÞlnðf=f�Þ þ a2 ln2
ðf=f�Þ�½av þ a lnð _x=V�Þ� ð48Þ

produces another spinodal law with good phenomenological steady-state features. Note that the additional coefficient a2

can be expressed in terms of those of expression (47) as a2 ¼ cv=av þ ab=a2
v and that a regularised version of (48) is

mð _x;fÞ ¼ a½1þ ðb=avÞlnðf=f�Þ þ a2 ln2
ðf=f�Þ�sinh�1

ð _x=g0Þ

with g0 ¼ 2expð�av=aÞV�51. The velocity-strengthening regimes at very low _x and very high _x of the corresponding
steady-state friction coefficient are caused by a third order term aa2 ln3

ðV=V�Þ. The choice of a2 ¼ 0:0085 (equivalently
cv ¼ �1:4885� 10�3) gives a good fit with the experimental data of Heslot et al. (cf. Fig. 15(a)).

Figs. 15 and 16 summarise results for this spinodal law. It is found that the Landau coefficient changes sign twice over
the range of velocity for which friction is velocity-weakening. As shown in Fig. 15(c), this produces two bubbles of
bistability associated with subcritical Hopf bifurcations at low and high velocity (see Fig. 15(b)). We observe that the
domain of subcriticality extends noticeably inside the velocity-weakening region from the local maximum of the friction
coefficient. Besides, the numerical continuation of the periodic orbits at fixed velocity V=V� ¼ 1 reveals moreover that a
subcritical Hopf bifurcation would have been detected experimentally due to the high amplitude of the oscillations created
in this case (see Fig. 15(a)). Hence, this spinodal law does not fully agree with the behaviour observed by Heslot et al. as the
law (37)–(38) does.
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4 Considering Ruina’s slip law (29) does not change the qualitative features described in this section.
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5.2. A micron-scale contact law

Br�echet and Estrin (1994) derived the following expression for the friction coefficient:

mðt; _xÞ ¼ m0½1þ m1lnð1þ t=t�Þ�lnð _x=V�Þ;

assuming a Nabarro–Herring creep type flow of the contacting asperities,

_e ¼ _e0expðs=s0Þ; ð49Þ

for both the evolution of the asperity junction area induced by the normal pressure and the shearing of asperities during
sliding. The time dependence illustrating the ageing of asperities arises from the increase of the junction area associated
with the height variation of asperities and results from assuming conservation of volume and constancy of the number of
contacts. In contrast to the nanoscopic process referred to by Baumberger et al. (1999), the velocity dependence results
from the estimation of the shear rate of the whole asperity as _e� _x=h0, where h0 is some asperity height. In Estrin and
Br�echet (1996), the ageing time t is associated with an ad hoc evolution law of the Dieterich type and must tend to a
steady-state value L=V , where L is the average distance between asperities. Note that one argument in favour of replacing
the logarithmic velocity dependence with a sinh�1 dependence is that it should be linear in _x at low shear rates. This
corresponds to assuming the Nabarro-Herring creep flow law _e ¼ _e0sinhðs=s0Þ (Poirier, 1985) directly in place of (49).
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Fig. 15. (a) Steady-state friction coefficient of the nanoscale contact law (48); (b) corresponding critical stiffness kc (solid line); (c) Landau coefficient L.

Parameters: av ¼ 0:369, a ¼ 0:0349, b ¼ 0:0489, a2 ¼ 0:0085, L ¼ 10�6 m, V� ¼ 10�6 m s�1. Note that the Landau coefficient L changes sign twice over the

whole range of velocity in the velocity-weakening regime of friction. Although LZ0 around the local minimum of mss , L is also positive in VMrVr6:24�

10�6 implying a subcritical Hopf bifurcation at low velocity in contradiction with the observations of Heslot et al. The behaviour of L is thus very sensitive

to the analytical details of the friction law: it is possible to discriminate between different candidates of phenomenological friction laws. Symbols: þ

refers to the experimental results of Heslot et al. in graphics (a) and (b). The thin dotted line corresponds to the law (37)–(38).

Fig. 16. Numerical continuation results for the nanoscale law (48), a2 ¼ 0:0085FðaÞ Bifurcation diagram along the stiffness axis at the driving velocity

V=V� ¼ 1; (b) bifurcation diagram along the velocity axis at the stiffness kL=ðMgÞ ¼ 10�3, note the subcritical nature of the Hopf bifurcation, the spinodal

shape of (48) prevents the stick-slip amplitude to diverge as the monotonic Dieterich law would do (compare to the thin dotted line in (a)) (see Fig. 11 for

symbols definition). (c) Regime diagram: two domains of bistability where steady-state slidings coexist with oscillatory motions as predicted by the

weakly nonlinear analysis. Both the numerics and the analysis give a transition velocity at small speed V�l � 6:24� 10�6 m 0:16ems�1

(log10ðV
�
l =V�Þ � 0:7953) and a transition velocity at high speed V�h � 3:41� 10�4 (log10ðV

�
h=V�Þ � 2:533) (see Fig. 12 for symbols definition).

T. Putelat et al. / J. Mech. Phys. Solids 58 (2010) 27–53 49



Author's personal copy

As a result, Br�echet and Estrin (1994) first obtained a dynamic friction coefficient with a spinodal steady-state shape
whose both low and high velocity strengthening branch arise from the bulk shearing of asperities, while the velocity-
weakening behaviour results from the combination the quasi-stationary ageing and shearing of bulk asperities.

To relate such a law with the classical logarithmic Dieterich–Ruina law (26), we define

mð _x;fÞ ¼ a½1þ ðb=avÞlnðc þ V�f=LÞ� sinh�1
ð _x=g0Þ

_f ¼ 1� _xf=L:

(
ð50Þ

where the constant g0 ¼ 2expð�av=aÞV�.
5 The corresponding steady-state law is obviously

mssðVÞ ¼ a½1þ ðb=avÞlnðc þ V�=VÞ� sinh�1
ðV=g0Þ: ð51Þ

As g051 the instantaneous friction coefficient and its steady-state form can be approximately written as

mð _x;fÞ � av þ alnð _x=V�Þ þ blnðc þ V�f=LÞ þ ðab=avÞlnðc þ V�f=LÞlnð _x=V�Þ; ð52Þ

mssðVÞ � av þ alnðV=V�Þ þ blnðc þ V�=VÞ þ ðab=avÞlnðc þ V�=VÞlnðV=V�Þ: ð53Þ

Compared to the approximate expressions (39) and (40) of the spinodal law (37)–(38), it is noticeable that the
Br�echet–Estrin formulation (50) introduces an additional higher order term whose coefficient ab=av is about 10% of the
logarithmic terms for the parameter values considered at Table 1. As shown at Fig. 17(a), this is responsible for an additional
curvature of the steady-state friction coefficient that renders the fit of Heslot et al.’s experimental data, by tuning the
residual strength parameter c, more difficult than for the law (37)–(38). We note in particular that (51) is unable to
reproduce correctly the logarithmic velocity-weakening regime for the parameter values considered in the whole paper.
Another set of parameter values could, however, be chosen for a better fit of the logarithmic weakening region, but at the
expense of the strengthening parts. In any case, the expression (53) will always cause lower values than (40) for the high-
velocity strengthening part as lnðc þ V�=VÞlnðV=V�Þ � lnðcÞlnðV=V�Þ is negative. This makes the fit of high velocity data more
difficult too.

A drawback of the law (50) is the prediction (see Fig. 17) of a subcritical Hopf bifurcation at low velocity which is not
consistent with the observations and conclusions of Heslot et al. (1994). Although this behaviour agrees qualitatively with
the one produced by the Dieterich law (26)–(28), which is a reasonable approximation of (50) by construction, we find
numerically that the curvature of the subcritical Hopf bifurcation is more pronounced leading to relatively large amplitude
oscillations (see Figs. 18(a,b)). Such a feature would not have been missed experimentally. Nevertheless (50) predicts the
crossover from a supercritical to subcritical Hopf bifurcation at high velocity provided that the residual strength parameter
is smaller than a critical value. The phase diagram for the law (50), obtained by numerical continuation, summarises the
existence of two bubbles of bistability that these behaviour changes of the Hopf bifurcation produce (Fig. 18(c)).
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Fig. 17. (a) Steady-state friction coefficient (51) of the micron-scale law (50); (b) corresponding critical stiffness kc (solid line); (c) Landau coefficient L for

c ¼ 2:5� 10�2 and 1:4� 10�2. Parameters: av ¼ 0:369, a ¼ 0:0349, b ¼ 0:0489, L ¼ 10�6 m, V� ¼ 10�6 m s�1. Note that the LZ0 at low velocity in the

velocity-weakening regime of friction which implies a subcritical Hopf bifurcation, which conflicts with Heslot et al.’s experiment. The law (51) is,

however, able to produce the behaviour change of the Hopf bifurcation at high velocity if the residual strength is small enough. Symbols: þ refers to the

experimental results of Heslot et al.’s in graphics (a) and (b). The thin dotted line corresponds to the law (37)–(38).

5 Estrin and Br�echet (1996) in fact employed (50)1 only down to a cut-off velocity vc below which _f ¼ 0. We disregarded this additional feature as it

as no effect on the minimum of mss .
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6. Concluding remarks

The rate-and-state frictional dynamics of a spring–block system has been extensively analysed to identify the effects of
inertia on the stick-slip instability onset and further enhance the understanding of the crossover between the creep and
inertial regimes of dry friction as described by Heslot et al. In disagreement with these authors, we showed that this
transition between the ‘‘quasi-static’’ motion of a spring–block (a designation we prefer as ‘‘creep’’ refers to a deformation
mechanism) and its dynamic motion is not directly correlated to the change of monotonicity of the steady-state frictional
behaviour from the velocity-weakening regime to the strengthening one. From a weakly nonlinear analysis combined with
a fully nonlinear numerical study using the continuation software AUTO, we have argued instead that the stick-slip
instability, only linearly promoted by the velocity-weakening character of friction, arises from a Hopf bifurcation which
may change in nature from supercritical to subcritical as the driving velocity of the spring–block system is increased.

We studied in great detail different friction laws to determine the conditions of such a behaviour change of the stick-slip
bifurcation. It turned out that the form of the Landau coefficient in the amplitude equation is very sensitive to the analytical
formulation of the friction law and that the weakly nonlinear analysis is thus a powerful and robust possible criterion to
discriminate between phenomenological friction laws and suggest which are physically relevant. Indeed, in combination
with the numerical computation by continuation methods of spring–block regime diagrams in the parameter plane ðV ; kÞ
(Figs. 12, 14(a)), it came to light that, amongst the laws studied, only the spinodal law (37)–(38) and its singular high-speed
approximation (39) agreed with the observations of Heslot et al. which showed that the Hopf bifurcation changes in nature
only once from supercritical to subcritical at a transition velocity V� slightly smaller than the rheological transition velocity
Vm at which friction strengthens again. Precisely, the transition velocity V� corresponds to a codimension-2 bifurcation
point giving birth to a domain of bistability where stable steady-state slidings coexist with large-amplitude oscillatory
ones. Bounded by the Hopf and saddle-node bifurcations, this domain overlaps the local minimum of friction mssðVmÞ and
forms a bubble which starts at the codimension-2 transition point ðV�; k�c Þ where the saddle-node bifurcation disappears to
make the Hopf stick-slip bifurcation supercritical for VoV�. Using the law (39) and the weakly nonlinear analysis, we could
explain that this domain exists only if the residual strength parameter c, which determines V�ðcÞ and VmðcÞ, i.e. the change
of monotonicity of the steady-state friction, is less than a critical residual strength parameter c� defined by the condition
Vmðc�Þ ¼ V�ðc�Þ, provided that inertia is also taken into account. For the constitutive parameters of Table 1 we computed
c� � 9:02� 10�4 and Vmðc�Þ � 4:447� 10�4 m. The bubble of bistability closes up at small stiffness tangentially to the Hopf
bifurcation line.

In this context, we clearly showed that the Hopf bifurcation changes in nature from supercritical to subcritical in
response to the combination of two factors which are (i) the block inertia and (ii) the high-speed residual interfacial
strength parameter responsible for the local minimum of steady-state friction. Importantly, we found that an evolution of
the interfacial state is also necessary for the behaviour change to happen.6 Furthermore, the state evolution law must
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Fig. 18. Numerical continuation results for the micron-scale law (50), c ¼ 1:4� 10�2FðaÞ Bifurcation diagram along the stiffness axis at the driving

velocity V=V� ¼ 1, (b) bifurcation diagram along the velocity axis at the stiffness kL=ðMgÞ ¼ 10�3, note the subcritical nature of the Hopf bifurcation, the

spinodal shape of (51) prevents the stick-slip amplitude to diverge as the monotonic Dieterich law would do (compare to the thin dotted line in (a)) (see

Fig. 11 for symbols definition). (c) Regime diagram: two domains of bistability where steady-state slidings coexist with oscillatory motions as predicted by

the weakly nonlinear analysis. Both the numerics and the analysis give a transition velocity at small speed V�l � 1:039� 10�5 m s�1

(log10ðV
�
l =V�Þ � 1:01679) and a transition velocity at high speed V�h � 2:07� 10�4 (log10ðV

�
h=V�Þ � 2:3179) (see Fig. 12 for symbols definition).

6 Note that a previous weakly nonlinear study (Elmer, 1997) considered a non-monotonic kinetic friction coefficient only velocity-dependent,

disregarding any internal variables. Under this hypothesis, the Hopf bifurcation occurs at the extrema, denoted here Vc , of the friction law and does not

depend on the stiffness despite common experimental observations. This situation would correspond in the present work to the artificial constraint that

the interfacial state would remain for all time at equilibrium (i.e. on the f- nullcline f ¼ fssðvÞ solution of Gðv;fÞ ¼ 0) as we could expect in the inertial

regime considering a quasi-instantaneous state relaxation due to the separation of time scales tcr5tin. With such a constraint, leading to the amplitude at
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incorporate a high-velocity dynamic smoothing of Dieterich-type in Eqs. (28) or (38). Instead, considering the spinodal
friction coefficient ((37) with a dynamic smoothing of the Ruina-type (Eq. (29)) has been shown to prevent the behaviour
change of the Hopf bifurcation.

We emphasise the sensitive role of the interfacial residual strength parameter c in the birth of stick-slip oscillations by
determining the local minimum of friction at Vm and the appearance of the bistable domain at V� associated with small
values of coc�51. A slight change of c around c� can have a brutal consequence on the amplitude of stick-slip by switching
the Hopf bifurcation from supercritical to subcritical. Recalling that we expect the residual strength to depend on the
normal pressure according to the experimental observations of Kilgore et al. (1993), a mass increase should diminish c and
then promote subcritical stick-slip transitions. Therefore we point out the necessity of careful experimental studies to
clarify the correlation between the location of the local friction minimum and the normal stress imposed to the frictional
interface in combination with the nature and position of the stick-slip onset at high velocity. In practice, we expect
important consequences of this effect in mechanical engineering and earthquake hazard as it would render the bifurcation
dangerous leading to large amplitude instabilities and sensitiveness to finite size perturbation. We warn though that such
experimental studies might be challenging as they must be carried out at high velocity where noise might hide the
bifurcation location. However, choosing small stiffness and/or large mass should reduce this effect.

Other inertial effects have been observed. Apart from the opening in the stability domain associated with the quadratic
divergence in velocity of the critical stiffness, we found that inertia increases the stick-slip amplitude compared to the one
that a quasi-static analysis would predict. In relation to Putelat et al. (2008), we stress the importance of the spinodal
character of the friction law whose main consequence is to reduce the stick-slip amplitude in comparison with that implied
by monotonic laws such as the Dieterich–Ruina laws. As a result, we point out once again the necessity of a careful
confrontation of the friction law with experiments in order to obtain a more realistic and physical description of friction.
We think indeed that the spinodal law (37)–(38) is a good candidate to achieve this aim.
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