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More recently there has been an interest in mode interactions which are trulythree-dimensional. The interaction of two steady modes at 45� to each otherwith wavenumbers in the ratio 1 : p2 was studied by Proctor and Matthews[8] as a possible explanation for subcritical square-cell convection in experi-ments on a 
uid with variable viscosity. Also, Renardy, Renardy and Fujimura[9] have studied a Takens-Bogdanov bifurcation on a hexagonal lattice withapplications to a two-layer convection problem.We study a new interaction of steady and oscillatory behaviour which occursin magnetoconvection with a vertical magnetic �eld. The interaction takesplace when we vary the 
uid parameters so that the trivial conduction stateis simultaneously unstable to both forms of convection. By varying the 
uidparameters we can also �x the wavenumbers of these modes to be in the ratio1 : p2, enabling us to restrict our attention to those modes which lie on aperiodic square lattice in the plane. This restriction, which makes the centremanifold �nite dimensional, allows us to derive a set of amplitude equationsfor the dynamics on the centre manifold. The amplitude equations are thetruncation at cubic order of the normal form for this mode interaction withD4� T 2 symmetry. They are an asymptotically exact model of the behaviourof the 
uid at the onset of convection in the neighbourhood of the 1 : p2resonance; this leads to a codimension 2 bifurcation problem. As we also re-quire the resonant modes to be the most unstable ones we actually imposefour conditions on the physical parameters of the problem, but as the result-ing ODEs contain only two bifurcation parameters it is better described as acodimension 2 problem rather than a codimension 4 one.The preferred planform for Boussinesq magnetoconvection at onset has beenstudied in detail by Clune and Knobloch [1]. Their analysis does not, how-ever, explain how a smooth transition from steady to oscillatory convectioncan occur. Although there is a jump in the most unstable wavenumber, atwo-parameter unfolding (as we give here) can provide that explanation andcomplete their analysis.Using modi�ed perturbation theory we can evaluate the coe�cients in thisnormal form at the codimension 2 point. For a Boussinesq 
uid we can drawon earlier work [3] to help analyse the dynamics in two invariant subspaces inthe problem; the bifurcation structure is complex, and shows the existence ofchaotic solutions arbitrarily close to onset. The weakly non-Boussinesq analy-sis is extremely complex, and here we restrict the analysis to two contrastingcases and point out their interesting features. At all times we will concentrateon stable objects in the bifurcation structure as only these will be physicallyrelevant.The relevant coe�cient values also highlight previously unseen behaviour inthe analysis of a Hopf bifurcation with D4� T 2 symmetry [3]; this is examined2



in more detail in [10].The initial conduction solution planform is invariant under the group E(2) ofall Euclidean symmetries of the plane R2 . By then restricting our attention tosolutions which lie on a square lattice the problem becomes a mode interactionwith D4� T 2 symmetry. The possible bifurcations from a given solution areorganised by its symmetry group [13]; it is important to understand the role ofthe spatial and spatiotemporal symmetries. Novel solutions are found whichdrift slowly in space and we explain why this is possible. The spatiotemporalstructure of these planforms can best be appreciated by viewing animations.In section 2 we provide the 
uid-dynamical background for the problem and insection 3 we derive the normal form equations for the mode interaction. Section4 contains a discussion of the Boussinesq behaviour and the use of symme-tries in classifying bifurcations. Aspects of the non-Boussinesq behaviour arepresented in section 5 and we draw conclusions in section 6.2 Physical BackgroundBoussinesq magnetoconvection in a uniform vertical magnetic �eld with stress-free, �xed temperature upper and lower boundaries and periodic lateral bound-aries has been extensively investigated [11]. After the governing equations havebeen nondimensionalised there are four dimensionless parameters: the Prandtlnumber � = �=� (the ratio of the rates at which velocity and temperature gra-dients di�use), the magnetic Prandtl number � = �=� (the ratio of the rates atwhich velocity and magnetic 
ux gradients di�use), the Chandrasekhar num-ber Q which is proportional to the square of the magnetic �eld strength andthe Rayleigh number R which is proportional to the temperature di�erencebetween the top and bottom of the 
uid layer.The governing nondimensionalised equations for perturbations to the conduc-tion solution ucond = 0, Bcond = ẑ, Tcond = 1 � z in three dimensions arethe (curl of the) momentum equation, the induction equation and the heattransfer equation:@t!+r� (!� u)= ��Qhr� (J�B) + @zJi+R�r� (T ẑ) + �r2!(1)@tB+r� (B� u)= @zu+ �r2B (2)@tT + u � rT = uz +r2T (3)where J = r�B and != r�u, and by taking the curl of the momentum equa-tion we have eliminated the pressure term. The velocity �eld u = (ux; uy; uz)3



and the magnetic �eld perturbation B = (Bx; By; Bz) are both solenoidal:r � u = r �B = 0. The (stress-free) boundary conditions are@zux = @zuy = uz = Bx = By = @zBz = T = 0 at z = 0 and z = 1 (4)To �nd the 1 : p2 resonance point we vary the parameters so that the transi-tions to oscillatory and steady convection happen at the same critical Rayleighnumber, and the wavenumber of the oscillatory convection is lower by a factorof p2 than that of the steady modes. This can be done from 2D linear the-ory (see [11]): for steady convection at a wavenumber �s the critical Rayleighnumber Rs is found to beRs = (�2s + �2)3�2s + Q�2(�2s + �2)�2s (5)For oscillatory convection at wavenumber �o the critical Rayleigh number Rois similarly found to be (assuming � < 1):Ro= (�2o + �2)3�2o C1 + Q�2(�2o + �2)�2o C2 (6)where C1 = (� + �)(1 + �)=� and C2 = (� + �)�=(1 + �) are constants. Thepreferred wavenumber for the onset of either form of convection occurs whereR is a minimum. We also require that the wavenumbers �o and �s whichminimise Ro and Rs must be in the ratio 1 : p2 and that the critical Rayleighnumbers at these wavenumbers must be equal. These conditions lead to thefollowing equations.2�6o + 3�2�4o � �6 � Q�4C2C1 =0 (7)2�6s + 3�2�4s � �6 � �4Q=0 (8)(�2s + �2)3�2s + Q�2(�2s + �2)�2s = (�2o + �2)3�2o C1 + Q�2(�2o + �2)�2o C2 (9)�2o =�2s=2 (10)This is a system of four equations in �ve unknowns (�s, �o, Q, �, and �). By�xing one parameter (here we �x �) we can solve numerically for the otherfour. Fixing � at values 0:1; 0:2; : : : ; 0:9 and solving for the other parametervalues gives the results shown in table 1. !0 is the frequency of oscillation atonset for the oscillatory modes. From linear theory this is given by:4



Table 1The position of the 1 : p2 point with varying �.� � Q �2s Rc = Rs = Ro !00.1 0.0855 41.0485 9.9992 1589.44 0.81390.2 0.1944 46.1929 10.4069 1689.32 1.66930.3 0.3192 56.4837 11.1571 1883.84 2.61750.4 0.4445 75.7488 12.3844 2233.33 3.73350.5 0.5475 113.5690 14.3581 2881.83 5.14540.6 0.6038 197.6955 17.6494 4223.06 7.10590.7 0.5987 431.1269 23.6374 7623.22 10.20590.8 0.5361 1397.1788 36.5353 20249.85 16.22830.9 0.4381 11377.4262 77.5103 135196.45 34.1120!20 = �2��Q(1� �)1 + � � �2(�2o + �2)2 (11)
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3 The Normal FormTo keep the centre manifold �nite dimensional we restrict our possible solu-tions to those lying on a square lattice, choosing the lattice dimensions tomatch the most unstable wavenumber. This corresponds to the `fundamentalrepresentation' of Dionne et al [12]. In this way we reduce the symmetriesof the problem from E(2) to the subgroup D4� T 2. This is the semi-directproduct of two groups: D4 is the group of the rotations and re
ections of asquare, and T 2 is the group of translations in the plane - the spatial origin ofthe lattice is not predetermined. We can describe the interactions between thesteady and oscillatory modes by writing down a normal form for the evolutionof the (complex) mode amplitudes. This leads to a set of six coupled equationsfor the amplitudes; two amplitudes describe the evolution of steady diagonalrolls and four more describe the oscillatory modes (travelling waves) in the�x and �y directions. The form of the equations is determined by requiringthe equations to be equivariant with respect to the group D4� T 2.The centre manifold is spanned by these six complex amplitudes, and so theplanform (as described by a `marker quantity' such as the vertical 
uid velocityat the mid-plane) looks likeuz(x; y; t)=Re(A1ei(�x�!0t)) + A2e�i(�x+!0t) +B1ei(�y�!0t)+B2e�i(�y+!0t) + Cei�(x+y) +Dei�(x�y)) (12)This is illustrated in �gure 2. uz must be equivariant under the symmetries
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my : x! �x : A1  ! A2 B1 ! B1 B2 ! B2 C  ! �DRe
ection in the line x = ymd : x ! y : A1  ! B1 A2  ! B2 C ! C D! �DTranslation in the x and y directions:�x : x! x + �=� : fA1; C;Dg ! fA1; C;Dgei� fB1; B2g ! fB1; B2gA2 ! A2e�i��y : y ! y + �=� : fA1; A2g ! fA1; A2g fB1; Cg ! fB1; Cgei�fB2; Dg ! fB2; Dge�i�The two re
ections generate the group D4 and the two translations generatethe group T 2. Requiring equivariance with respect to these symmetries leadsto the following system of ODEs (truncated at third order) for the six complexamplitudes._A1=�1A1 + �1(CB2 +DB1) + �2 �A2B1B2 + �3A2CD+A1[�1jA1j2 + �2jA2j2 + �3(jB1j2 + jB2j2) + �4(jCj2 + jDj2)] (13)_A2=�1A2 + �1( �DB2 + �CB1) + �2 �A1B1B2 + �3A1 �C �D+A2[�1jA2j2 + �2jA1j2 + �3(jB1j2 + jB2j2) + �4(jCj2 + jDj2)] (14)_B1=�1B1 + �1(CA2 + �DA1) + �2 �B2A1A2 + �3B2C �D+B1[�1jB1j2 + �2jB2j2 + �3(jA1j2 + jA2j2) + �4(jCj2 + jDj2)] (15)_B2=�1B2 + �1(DA2 + �CA1) + �2 �B1A1A2 + �3B1 �CD+B2[�1jB2j2 + �2jB1j2 + �3(jA1j2 + jA2j2) + �4(jCj2 + jDj2)] (16)_C =�2C + �1(A1 �B2 +B1 �A2) + �2(B1 �B2D + A1 �A2 �D)+C[�1jCj2 + �2jDj2 + �3(jA1j2 + jB1j2) + ��3(jA2j2 + jB2j2)] (17)_D=�2D + �1(A1 �B1 +B2 �A2) + �2( �B1B2C + A1 �A2 �C)+D[�1jDj2 + �2jCj2 + �3(jA1j2 + jB2j2) + ��3(jA2j2 + jB1j2)] (18)The coe�cients �2, �1, �2, �1 and �2 are forced to be real by symmetry, butall other coe�cients will in general be complex. The bifurcation parameter�1 = �̂1 + i~!(�̂1) where �̂1 and ~! are real. The frequency of the bifurcating7



solutions in the Hopf bifurcation is close to !0 near the bifurcation point�̂1 = 0. The normal form also picks up a symmetry S1, corresponding to atranslation in time:�t : t! t+ �=! : fA1; A2; B1; B2g ! fA1; A2; B1; B2ge�i�fC;Dg ! fC;DgThis symmetry is not a symmetry of the physical problem, but it appearsnaturally in all normal forms for problems involving a Hopf bifurcation. Thereis also the Boussinesq symmetry to consider. If the 
uid is Boussinesq (and, aswe assume throughout, the upper and lower boundary conditions are identical)then we require the amplitude equations to be equivariant with respect tore
ection z ! 1� z about the midplane z = 1=2 (as the original PDEs havethis symmetry):mz : z ! 1� z : fA1; A2; B1; B2; C;Dg ! �fA1; A2; B1; B2; C;Dg (19)This has the e�ect of removing the quadratic terms from the amplitude equa-tions by forcing �1 and �1 to be zero.Lastly, the planform (12) is invariant under a spatiotemporal symmetry h ifthe planform oscillates periodically with period T :h : (x; y; t)! (x + �=�; y + �=�; t+ T=2) (20)corresponding to a translation of half a wavelength in the x and y directionsfollowed by a translation of half an oscillation period.3.1 Fixed points in the invariant subspacesWhen we are dealing with a Boussinesq 
uid the parameters �1 and �1 mustbe zero. The amplitude equations now have two clear invariant subspaces; onewhere C = D = 0 which is denoted S1, and one denoted S2 where A1 = A2 =B1 = B2 = 0 (S2 is an invariant subspace for the non-Boussinesq problemas well). We can analyse the equilibrium solutions in each subspace using theresults of [1] and [3].Applying the Equivariant Hopf Theorem [13, p275, theorem 4.1] to the oscil-lating subspace S1 proves the existence of �ve primary branches which existfor all combinations of coe�cients in the normal form. These are denoted TR8



Table 2Periodic orbits in S1, the form of the corresponding �xed point subspace and ex-pressions for the signs of the real parts of the eigenvalues in S1 and transversely.Multiplicities are given in brackets. f = �1 + �2 � 2�3. TR - Travelling Rolls, TS -Travelling Squares, SR - Standing Rolls, SS - Standing Squares, AR - AlternatingRolls. Superscript r means `the real part of'. For SR, SS and AR the underlinedexpressions must be negative to force the last pair of eigenvalues to have negativereal parts. See [3, table 5] for further details.Fixed Solution form Signs of real parts of eigenvaluesPoint (A1,A2,B1,B2) within S1 transverse to S1TR (z; 0; 0; 0) 0 (1), �r1 (1), �r2 � �r1 (2), �r3 � �r1 (4) �2 � �r3 �̂1�r1 (4)TS (z; 0; z; 0) 0 (2), �r1 � �r3 (1), �r2 � �r1 � �r2 (2), �2 � 2�r3 �̂1�r1+�r3 (4)SR (z; z; 0; 0) 0 (2), �r1 � �r2 (1), �f r, j�2j2 � jf j2 �2 � (2�r3��2)�̂1�r1+�r2 (2)SS (z; z; z; z) 0 (3), �r1 � �r2 � �r2 (2), f r � 3�r2 �2 � 4�r3 �̂12�r3+�r1+�r2+�r2 (2)f r + 4�r3 + �r2 (1), Ref ��2fg � j�2j2 �2 � (4�r3�2�2)�̂12�r3+�r1+�r2+�r2 (1)AR (z; z; iz; iz) 0 (3), �r1 � �r2 + �r2 (2), f r + 3�r2 �2 � 4�r3 �̂12�r3+�r1+�r2��r2 (2)f r + 4�r3 � �r2 (1), �Ref ��2fg � j�2j2 �2 � (4�r3�2�2)�̂12�r3+�r1+�r2��r2 (1)(Travelling Rolls), TS (Travelling Squares), SR (Standing Rolls), SS (StandingSquares) and AR (Alternating Rolls). In the steady subspace there are twoprimary branches: DR (Diagonal Rolls) and DS (Diagonal Squares). For eachpoint we can calculate its stability not only to perturbations within the sub-space, but transversely as well. From now onwards, r will denote the modulusof a solution, as variation of the Rayleigh number is achieved by varying thebifurcation parameters �̂1 and �2.In the oscillating subspace there is one more possible branch of periodic so-lutions, called Standing Cross Rolls (SCR). This is a solution of the formA1 = A2, B1 = B2, jA1j 6= jB1j. The existence of an SCR solution is not guar-anteed by the Equivariant Hopf Theorem since its isotropy subgroup doesnot have a two-dimensional �xed point subspace: its existence depends on thecoe�cients in the normal form. It can be shown [3] that when this solutionexists it is always unstable. It is still important for two reasons; it can transferstability from one solution branch to another, and because other quasiperiodicsolutions can branch from it and these quasiperiodic solutions can be stable[10]. 9



Table 3Fixed points in S2, the form of the corresponding �xed point subspace and ex-pressions for the signs of the real parts of their eigenvalues in S2 and transversely.Multiplicities are given in brackets. DR - Diagonal Rolls, DS - Diagonal Squares.Note that there is a circle of equilibria in each case as the phase of z is arbitrary.Fixed Solution Signs of real parts of eigenvaluesPoint form (C,D) within S2 transverse to S2DR (jzj; 0) 0 (2), �1 (1), �2 � �1 (1) �̂1 � �r4�2�1 (8)DS (jzj; jzj) 0 (2), �1 + �2 (1), �1 � �2 (1) �̂1 � (2�r4��r3)�2�1+�2 (4)3.2 Reduction to a system of 9 real equationsThe physical problem is invariant under three translation symmetries - in thex and y directions and in time. By writing the complex amplitudes as A1 =~A1ei�A1 , C = ~Cei�C etc we can rewrite the equations as evolution equationsfor the six moduli and three combinations of the phase variables. The reducedset of equations is given in the Appendix. We de�ne�1= �B2 � �B1 + �C � �D�2= �A2 � �A1 + �C + �D = �B1 + �B2 � �A1 � �A2Periodic solutions to the full system of equations are not isolated in phase spacedue to the continuous translation symmetries. However, these simply-periodicorbits correspond to isolated �xed points in the reduced equations (50)-(58),and periodic orbits in (50)-(58) correspond to quasiperiodic trajectories in thefull equations (13)-(18); such quasiperiodic solutions will be called modulus-varying solutions. However, a �xed point of the reduced equations may cor-respond to a quasiperiodic solution of the full system: for a simply periodicsolution to the full system we require _�A1 = _�A2 = _�B1 = _�B2 and this may notbe the case even though  , �1, �2 and all the moduli are constant. These areexamples of relative periodic solutions for the full system: they look periodicin a suitably co-moving frame. To determine the bifurcation structure, it ismuch easier to follow �xed points of the reduced system (50)-(58) (in AUTO[14] for example) than it is to follow periodic orbits of the full system.In the Boussinesq case the bifurcation structure is greatly simpli�ed: by rescal-ing the amplitudes, writing A1 = Â1p�̂1, C = Ĉp�2 etc, and dropping thecarats, we can see that the real parameters �̂1, �2 only enter the equations inthe combination �2=�̂1. So all bifurcation loci will be straight lines through10



the origin in the (�̂1, �2)-plane.4 Boussinesq magnetoconvection4.1 The normal form coe�cients for Boussinesq magnetoconvectionThe amplitude equations (13)-(18) contain a large number of undeterminedconstants. We will not attempt a full exploration of this parameter spacebut instead compute the coe�cients for this particular physical problem. Theidealised boundary conditions (4) allow an analytical solution for weakly non-linear convection to be developed by using modi�ed perturbation theory (see,for example [6]). By continuing the calculation to third order we can derivethe coe�cients for the cubic terms in the amplitude equations.As usual in a modi�ed perturbation expansion, we also expand some of thephysical parameters (�, �, Q and R) in powers of � to provide bifurcationparameters for unfolding the behaviour of the low-order model around theonset of convection. It is easiest here to use the Rayleigh and Chandrasekharnumbers:R=Rc + �r1 + �2r2 + � � �Q=Q0 + �Q1 + �2Q2 + � � �r1 and Q1 are forced to be zero by the solvability condition imposed at secondorder.Using the solvability condition at third order we can �nd the values of thecoe�cients of cubic terms as � varies. The values of �1 and �1 cannot befound by this expansion as they are identically zero for a Boussinesq 
uid.In section 5 we will explore two contrasting cases: �1 = �1 and �1 = ��1.By considering a weak breaking of the Boussinesq symmetry we can justifyintroducing the quadratic terms at the same order in � as the cubic terms.One independent check of the calculation is possible: the calculated values for�1 and �2 should (and do) agree with equation (18) in [15]; this paper givesan explicit formula (with a small printed error) for these coe�cients. It is alsoimportant to relate the linear terms in the amplitude equations (those withcoe�cients �1 and �2) to the physical parameters r2 and Q2.�1 � �̂1 + i~!= ��20(��2 � i!0)r2 � ���2(�2 � i!0)Q22i!0�2[i!0 � �2(1 + � + �)] (21)11



�2= ��(2�20r2 � �2
2Q2)
4� + ��(
4 + �2Q0)� ��2Q0 (22)where 
2 = 2�20+�2 and �2 = �20+�2. The signs of the coe�cients agree withintuition - if r2 increases we move further above the point at which convectionstarts and both bifurcation parameters increase, and if Q2 increases the �eldinhibits the convective motion and the bifurcation parameters decrease.To investigate the stable planforms as � varies, the coe�cient values wereinterpolated between the calculated values at � = 0:1; : : : ; 0:9.4.2 Stable solutions in S2 (the steady subspace)For all values of � we �nd �2 < �1 < 0 so both steady branches within S2always bifurcate supercritically. The stable planform is Diagonal Rolls (DR),and the other primary branch, Diagonal Squares (DS), is always unstable.4.3 Stable solutions in S1 (the oscillatory subspace)The existence of stable Standing Squares for low � and the existence of stableAlternating Rolls and Travelling Rolls for high � can be deduced directly fromthe results of Silber and Knobloch [3].For 0:3 � � � 0:6, though, none of the �ve primary periodic branches arestable. The stable attractor is a previously unnoticed doubly or triply-periodicorbit. These quasiperiodic orbits are discussed in detail in another paper [10].The sequence of bifurcations as we increase � that account for the transitionfrom stable Standing Squares (SS) to stable Alternating Rolls (AR) is sum-marised in table 4 and �gure 3. Nearly all of this sequence of bifurcationshappens within the SCR subspace, de�ned by A1 = A2 and B1 = B2, and sowe could use the well-known associated spherical system of [16]. However, thenovel part of the dynamics is not contained within this subspace. The transi-tion from SS to AR does not involve the TR solutions which gain stability forlarger �, so we will omit them from this discussion.There is a Hopf bifurcation from SS when f r � 3�r2 = 0 which happens when� = 0:24781. This creates a modulus-varying quasiperiodic orbit which appearsas a periodic orbit in the reduced system. The existence of this quasiperiodicsolution was �rst noticed by Swift [16]. There is also a subcritical pitchforkbifurcation from the AR solution when � = 0:628473. In this pitchfork bifur-cation two SCR solutions are created. They are unstable as we expect.12



As we increase � from the SS Hopf bifurcation, the periodic orbit (whichremains in the SCR subspace) grows closer to the AR solution. At a criticalvalue � = 0:45748 there is a homoclinic connection between the stable andunstable manifolds of the AR solution. The periodic orbit splits (in a reverse`gluing' bifurcation) into two smaller orbits which are related by the re
ectionsymmetry md.These smaller periodic orbits subsequently lose stability in a direction trans-verse to the SCR subspace and undergo a pitchfork bifurcation of periodicorbits at � ' 0:57 to create solutions outside the SCR subspace. In thefull system (13)-(18) these new solutions are triply-periodic; looking at theequations for the individual arguments of the mode amplitudes we see that_�A1 6= _�A2 6= _�B1 = _�B2 , so there are actually three independent frequenciesin the system. The introduction of a third frequency is a consequence of thesymmetry-breaking between the A1 and A2 modes which has taken place. Themoduli of the amplitudes still vary periodically in the reduced system.At � = 0:58387 this periodic orbit (when viewed in the reduced system (50)-(58)) undergoes a reverse Hopf bifurcation and a stable \�xed point" appearsin the reduced system, with jA1j 6= jA2j, jB1j = jB2j and  all constant. Thiscannot correspond to one of the six possible simply-periodic solutions of thefull system, and there are still three of the mode frequencies still di�erent, soit is actually still a quasiperiodic solution for the full problem: _�A1 6= _�A2 6=_�B1 = _�B2 , but _ = 0, imposing the constraint_ = _�B1 + _�B2 � _�A1 � _�A2 = 0so there are only two independent frequencies. The corresponding planformis best described as Drifting Standing Cross Rolls (DSCR) and is a relativeperiodic orbit for the full system. Note that this doubly-periodic solution isstill outside the SCR subspace, and that the moduli of the mode amplitudesare constant for this solution.At � = 0:62607 this DSCR solution undergoes a bifurcation back to a periodicorbit, and then at � ' 0:6344 this asymmetric (in terms of A1 and A2) periodicorbit outside the SCR subspace has a reverse pitchfork bifurcation of periodicorbits back onto the periodic orbit contained within the SCR subspace. Thisorbit then disappears when it goes homoclinic to the SCR �xed points at� = 0:63876.This sequence of bifurcations is summarised in table 4 and in �gure 3. They-scaling of the bifurcation diagram is purely schematic since as � varies theinterpretation of the original bifurcation parameters �1 and �2 does as well.The existence of the stable doubly-periodic solution DSCR outside the SCR13



Table 4Summary of the stable attractors in the oscillatory subspace for 0:1 < � < 0:9. Notethat for 0:628473 < � < 0:63876 there are two stable attractors.� Stable No of indepBetween And Solution Frequencies0.1 0.24781 SS 10.24781 0.45748 Periodic orbit around SS 20.45748 0.57740 Symmetric orbit 20.57740 0.58387 Asymmetric orbit 30.58387 0.62607 `Fixed point' DSCR: jA1j 6= jA2j,jB1j = jB2j 20.62607 '0.6344 Asymmetric orbit 3'0.6344 0.63876 Symmetric orbit 20.628473 0.9 AR 1subspace is investigated in more detail in [10]. Near the bifurcation point theDSCR solution must be unstable (as the SCR solutions are always unstable)but, as happens here, it can be stabilised further away.
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ARFig. 3. Sketch bifurcation diagram showing the changes in the stable object in thesubspace S1 as � increases. The DSCR solution and the asymmetric quasiperiodicorbit lie outside the SCR subspace. H - Hopf bifurcation, h - homoclinic bifurcation.4.4 Analysis of the case � = 0:1For � = 0:1, all branches in S1 or S2 bifurcate supercritically (into �̂1 > 0 or�2 > 0 respectively). Since all bifurcation loci are straight lines through theorigin, we will use the angle � = tan�1(�2=�̂1) as the bifurcation parameter.For the rest of the paper we will drop the carat on �̂1. Standing Squares (SS)are the only stable solution in S1 and Diagonal Rolls (DR) are stable in S2. TheSS solution is stable against transverse perturbations when all its transverseeigenvalues are negative which requires14



�2 � (4�r3 � 2�2)�12�r3 + �r1 + �r2 + �r2 < 0 (23)for � = 0:1 this condition gives ��=2 < � < �1:4466. Similarly, DR are stableagainst transverse perturbations when�1 � �r4�2�1 < 0 (24)which for � = 0:1 requires � > � > 2:4137.Subsections 4.4.1{4.4.5 below follow a path of increasing � (anticlockwise)around the origin in the (�1,�2)-plane, starting in the lower-left quadrant.The bifurcation structure was computed numerically using AUTO [14] andcon�rmed by the analytic results presented below.4.4.1 Bifurcations from Standing SquaresAs we cross the line � = �1:4466, one Floquet multiplier of the SS peri-odic orbit crosses the unit circle at +1 and there is a pitchfork bifurcationof the periodic orbit. Stable solutions representing standing squares with aconstant amount of diagonal squares superimposed are created. Looking atthe linearised equations for perturbations to the SS solution we can determinethe eigenvector corresponding to the bifurcating solution. When C and D aresmall we have (from (13)-(18)), splitting C and D into their real and imaginaryparts:0BBBBBBBB@ _Cr_Dr_Ci_Di
1CCCCCCCCA=0BBBBBBBB@�2 + 4�r3r2SS 2�2r2SS 0 02�2r2SS �2 + 4�r3r2SS 0 00 0 �2 + 4�r3r2SS 00 0 0 �2 + 4�r3r2SS

1CCCCCCCCA
0BBBBBBBB@ CrDrCiDi

1CCCCCCCCA(25)This matrix has eigenvalues �2 + 4�r3r2SS � 2�2r2SS and �2 + 4�r3r2SS (twice).The eigenvector corresponding to the �rst eigenvalue to become zero as �increases is (1;�1; 0; 0)T , i.e. perturbations with Cr = �Dr in linear theory.The bifurcating solutions are denoted Standing Squares plus Diagonal Squares(SS+DS). In the modulus and argument reduced system this SS+DS solutionis of the form A21;2 = B21;2 = r2A, C2 = D2 = r2C , �1 = �; �2 = �;  = 0. Theseamplitudes can be found analytically:15



r2A = �1(�1 + �2)� �2(2�r4 � �r3)(4�r3 � 2�2)(2�r4 � �r3)� (�r1 + �r2 + 2�r3 + �r2)(�1 + �2)r2C = �2(�r1 + �r2 + 2�r3 + �r2)� �1(4�r3 � 2�2)(4�r3 � 2�2)(2�r4 � �r3)� (�r1 + �r2 + 2�r3 + �r2)(�1 + �2)Note that this solution SS+DS is in the subspace f�1 = �; �2 = �;  = 0g,not the subspace f�1 = 0; �2 = 0;  = 0g. Thus it does not have the fullsymmetry group D4, but only re
ections in diagonal lines md and md0 whichgenerate a group Z22. However, it also other symmetries which will be discussedin section 4.5.1. This SS+DS solution is stable for �1:4466 < � < 1:1534.4.4.2 Bifurcations from Standing Squares + Diagonal SquaresTwo distinct types of bifurcation from SS+DS take place. One is to solutionsdenoted type 1 and type 2 which break the equality of the amplitudes of theoscillatory modes, and one is to type 3 solutions which breaks the equalityof the steady modes. We will analyse each in terms of the marginal modes,and then in section 4.5.1 this will be set in a more general symmetry-breakingcontext. By using the reduced system we can look for zero eigenvalues of theJacobian matrix rather than marginal Floquet multipliers.Bifurcations from SS+DS to type 1 and 2 solutionsNumerical continuation of the SS+DS solution indicates that two new solutionbranches bifurcate from SS+DS at the same point. These two solutions canbe distinguished by their symmetries: type 1 solutions are invariant under there
ection md in the line y = x and type 2 solutions have no simple re
ectionsymmetries. This can be explained by perturbing around the SS+DS solution;The simultaneous existence of two independent modes with zero eigenvaluescan be shown by perturbing about the original �xed point of the reducedsystem (50)-(58). WriteA1 = rA + u B1 = rA + v �1 = � + �̂1 C = D = rCA2 = rA � u B2 = rA � v �2 = � + �̂2  =  ̂ (26)and say �̂1; �̂2 and  ̂ are all small (they are identically zero for the SS+DSsolution). Then, linearising the equations for u; v; �̂1; �̂2 and  ̂ (dropping thehats) we �nd_u= uh�1 + (3�r1 � �r2 + 2�r3 � �r2)r2A + (2�r4 + �r3)r2Ci + �i3rAr2C�216



� f(u; �2) (27)_�2 =4uh(2�i3 � �i1 + �i2 + �i2)rA � �i3 r2CrA i+ 2�2(�r3r2C + �2r2A)� g(u; �2) (28)_v= f(v; �1) (29)_�1 = g(v; �1) (30)_ =�4�r2r2A (31)The  equation decouples, and there is a double real zero eigenvalue of thelinearised system at the bifurcation point. By constructing the centre manifold,or using symmetry arguments (see section 4.5.2) we can show that there aretwo bifurcating solution branches.To �nd the bifurcation point we substitute in for rA and rC and solve theresulting quadratic in �2 (for a �xed value of �1). For � = 0:1 there are tworeal roots at � = 1:1534 and � = 1:3097; there are two double-zero bifurcationpoints for � = 0:1.At � = 1:1534, we �nd that both branches bifurcate supercritically, type 1 so-lutions are unstable, and type 2 solutions are stable. The inequality of solutionamplitudes means that the solution modes do not oscillate at equal frequencies_�i (the normal form symmetry h has been broken). This small discrepancy infrequencies leads to the solutions appearing to `drift' in physical space. Thisdrift is examined in more detail in section 4.5.2. Figure 9(a) below shows theinstantaneous planform of a type 1 solution, and �gure 9(b) shows a type 2solution.At the second interaction point � = 1:3097 both branches are supercritical.However, neither branch is stable because the SS+DS solution has alreadylost stability at the earlier bifurcation. Type 2 solutions remain stable in theregion 1:1534 < � < 1:3121. At � = 1:3121 there is a bifurcation to a totallymixed mode (MM) solution of the form fA1 6= A2; B1 6= B2; C 6= D; �1 6=�; �2 6= �;  6= 0g. This joins another branch at � = 1:3133 which is of theform fA1 = B2; A2 = B1; C 6= D; �1 = ��2 6= �;  = 0g which is denoted type4. This type 4 branch undergoes a secondary Hopf bifurcation at � = 1:3215to a modulus-varying solution. This is all summarised in �gure 4.Bifurcation from SS+DS ! SS+fC6=Dg (type 3)A completely di�erent bifurcation from SS+DS is to break the equality of theC and D amplitudes. From perturbing around the SS+DS solution we �ndthat the bifurcation occurs at 17



tan �= 4h�r3(�1 � �2)� �2�1i(�1 � �2)(�r1 + �r2 + 2�r3 + �r2)� 2�2(2�r4 � �r3) (32)For � = 0:1 this gives a value of � = 1:2610. We can solve the reducedamplitude equations (50)-(58) directly to �nd the amplitudes of the modesin the type 3 solution:A21;2 = B21;2 = r2A= (�1�1 � �r4�2)(�1 � �2)(4�r4�r3 �X�1)(�1 � �2)� 2�2�r3�1 (33)C2= p + (p2 � 4q2)1=22 (34)D2= p� (p2 � 4q2)1=22 (35)where p and q are de�ned asp = C2 +D2= (�2 � �1)(4�1�r3 �X�2) + 2�2�r3�2(4�r4�r3 �X�1)(�1 � �2)� 2�2�r3�1 (36)q = CD= 2�2A2�2 � �1 (37)and X = �r1 + �r2 + 2�r3 + �r2.4.4.3 Bifurcation from type 3 to type 4 solutionsCan a type 3 solution become unstable to perturbations in the A and Bmodes in the same way that SS+DS can? Going back to the perturbationequations (27)-(30) the equations for u and v are unchanged, except for writingC = rC and D = rD which are not assumed to be equal. However, extra termsappear in equations (30) and (28) for �̂1 = �1 � � and �̂2 = �2 � �, couplingthem together (below we have dropped the hats again)._�2= � � � � �2r2A�rCrD � rDrC ��1 + �2r2A�rCrD + rDrC ��2_�1= � � � � �2r2A�rCrD � rDrC ��2 + �2r2A�rCrD + rDrC ��1So we do not now have the double zero eigenvalue situation that we had beforeand there is only one solution branch. This is labelled the type 4 solution, asit di�ers from the type 1 solution in having jCj and jDj unequal. They do,however, have identical spatial re
ection symmetries. This bifurcation fromtype 3 to type 4 occurs at � = 1:2612 for � = 0:1. The type 4 branch isstable for 1:3133 < � < 1:3215 (see �gure 4). The Hopf bifurcation from type18



4 solutions produces a quasiperiodic orbit which is represented as a periodicorbit in the reduced system, and hence is labelled PO1 on �gure 4.

θ

4

3

1
1

origin

SS

2

LS

4
MM

SS

SS+DS

2

H

PO1

SS+DS

Fig. 4. Part 1 of the bifurcation diagram obtained by travelling anticlockwise aroundthe origin in the (�1; �2)-plane. Simply-periodic orbits in the full system are repre-sented as �xed points. Type 1, 2, 3 and 4 solutions are labelled as such. MM refersto the mixed mode solution. LS - oscillating `Large Squares' solution. H - Hopf bi-furcation (in the reduced system). Note the transcritical bifurcation between type1 and type 4 solutions. The MM branch and subsequent bifurcations were carefullydetermined using AUTO.There are many other bifurcations involving �xed points in this system, in-cluding homoclinic ones. However, they all involve unstable �xed points andperiodic orbits so we will disregard them. The bifurcation diagram shows those�xed points which bifurcate from the SS+DS solution, and is a complete in-vestigation of their behaviour. There are also solutions which bifurcate fromeach of the other 4 primary solution branches (guaranteed by the Equivari-ant Hopf Theorem) in the oscillatory invariant subspace (these are TR, TS,SR and AR). These all follow bifurcation diagrams similar to that given forSS, but all the solution branches are unstable and so they have no physicalrelevance.4.4.4 Stable modulus-varying solutionsThe secondary Hopf bifurcation from type 4 solutions takes place at � =1:3215 and this periodic orbit (in the reduced system) is stable in the region1:3215 < � < 1:3622. This periodic orbit preserves the symmetry of the type 4�xed point; points on the orbit satisfy fA1 = B1; A2 = B2; C 6= D; �1 = �2 6=0;  = 0g. The periodic orbit undergoes another Hopf bifurcation to a 2-torusat � = 1:3622. For 1:3622 < � < 1:3744 this quasiperiodic orbit is stable; forhigher values of � numerical results indicate the breakup of the 2-torus andthe existence of a strange attractor (see �gure 5).19



This strange attractor is stable up to � = 1:3760 when a new stable periodicorbit PO2 appears. This new periodic orbit has the same symmetries as theprevious one; points on it satisfy fA1 = B1; A2 = B2; C 6= D; �1 = �2 6=0;  = 0g. Numerical results show that PO2 is a di�erent orbit to the earlierone, and the projection of PO2 onto the (jA1j; jA2j)-plane is a �gure-of-eightshape, not a simple closed curve as for the �rst periodic orbit.After a symmetry-breaking bifurcation, this periodic orbit undergoes a period-doubling bifurcation at � = 1:3925, and then a period-undoubling bifurcationat � = 1:3954. It is stable in the interval 1:3954 < � < 1:3957 before disap-pearing in a saddle-node bifurcation of periodic orbits. For higher values of �trajectories are attracted to a di�erent strange attractor (SA-2 in �gure 5).In the interval 1:3954 < � < 1:4514 there is a complex sequence of transitionsbetween di�erent strange attractors and stable periodic orbits. There is oftenmore than one stable object at a �xed parameter value.For 1:4514 < � < 2:2270 trajectories are attracted to a new strange attractorwhich turns into a 2-torus for 2:2270 < � < 2:4137. This torus is createddirectly in the bifurcation when the steady solution DR becomes unstableto perturbations in the Ai and Bi modes, transverse to the steady invariantsubspace.
4.4.5 The Hopf bifurcation from Diagonal Rolls (DR)The Hopf bifurcation from DR does not result in a solution combining DRwith one of the �ve primary branches created in a D4� T 2-symmetric Hopfbifurcation because of the cubic terms with coe�cient �2 in equations (17)and (18). When the oscillatory modes are excited, the second steady modemust also be non-zero; hence the dynamics within the subspace S2 are alteredas well as those in transverse directions and the Hopf bifurcation creates a2-torus in the reduced system, ie a triply-periodic solution. Scaling argumentsshow that if the DR solution is given by jCj2 = ��2=�1, D = 0 then, near thebifurcation point when Ai and Bi are O(�), D is O(�2). This is con�rmed bynumerical integrations.A summary sketch bifurcation diagram completing the circuit anticlockwisearound the origin is given in �gure 5. Bifurcations involving strange attractorsare conjectural but all others were determined carefully using AUTO. It isentirely possible that other stable strange attractors or periodic solutions existin this region of the (�1,�2)-plane. 20
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invariance property shows that matrices representing elements in the sameconjugacy class of the group must have the same character in any irrep. Thisinformation (and more, see for example [21]) enables us to construct the char-acter table for G which classi�es the possible symmetry-breaking bifurcationsfrom a solution with symmetry G.4.5.1 Classi�cation of bifurcations from Standing SquaresAs we will not consider bifurcations which alter the spatial periodicity of thesolutions, we will ignore the pure spatial translations which form the T 2 partof the symmetry group of the problem. The spatio-temporal symmetry h of aperiodic solution is preserved by any perturbation which involves only steadymodes, so all bifurcating solutions from Standing Squares considered in thissection must preserve h. We consider bifurcations as being from a �xed pointof the reduced system (50)-(58) so we can analyse bifurcations in terms ofeigenvalues and eigenvectors.The spatial symmetries of Standing Squares form the group D4 generated bya y-axis re
ection my and a re
ection md in the line x = y. The rotation of�=2 anticlockwise is denoted � = my � md. md0 = � � md � �3 is a re
ectionin the line y = �x. The existence of the Boussinesq symmetry (19) resultsin a further purely spatial symmetry of Standing Squares: ~� : (x; y; z; t) !(x+�=�; y+�=�; 1� z; t), i.e. re
ection in the mid-plane of the 
uid followedby a translation of half a wavelength in the x and y directions. The full spatialsymmetry group of Standing Squares is �SS = D4 � fId; ~�g. The group �SShas 10 conjugacy classes, so (by the orthogonality properties of characters) itmust have 10 irreps. The character table for �SS is given in Table 5.At a bifurcation point, the dynamics are determined by the behaviour on thecentre manifold. The action of �SS on the mode amplitudes is determinedexactly as before, in section 3. This, in turn, means that �SS acts on thetangent space to the centre manifold. This action of �SS will generically beirreducible and so must correspond to one of the irreps listed in table 5. If thereis only one eigenvector, each symmetry will act as �1 on the eigenvector andwe can associate a unique one-dimensional irrep with the bifurcation. The newstate produced in the bifurcation will have a symmetry group consisting of allthe symmetries in �SS which acted trivially (i.e. as +1) on the eigenvector.This symmetry group is (by de�nition) then the isotropy subgroup of the new(bifurcated) solution.If there are two independent eigenvectors then the action of the symmetrieson the marginal modes can be represented by a set of real 2� 2 matrices. Theevolution equations for the marginal modes must be equivariant with respectto these matrices; this restricts the form of these evolution equations. The22



Table 5The Character Table for �SS . The irreps are listed in the natural order given bythe induction from the character tables of D4 and fId; ~�g. Writing ~� �� denotes thegroup element given by their composition.Irrep Conjugacy ClassesId � �2 mx md ~� ~� � � ~� � �2 ~� �mx ~� �md�3 my md0 ~� � �3 ~� �my ~� �md0�1 1 1 1 1 1 1 1 1 1 1�2 1 1 1 -1 -1 1 1 1 -1 -1�3 1 1 1 1 1 -1 -1 -1 -1 -1�4 1 1 1 -1 -1 -1 -1 -1 1 1�5 2 0 -2 0 0 2 0 -2 0 0�6 2 0 -2 0 0 -2 0 2 0 0�7 1 -1 1 1 -1 1 -1 1 1 -1�8 1 -1 1 -1 1 1 -1 1 -1 1�9 1 -1 1 1 -1 -1 1 -1 -1 1�10 1 -1 1 -1 1 -1 1 -1 1 -1absence of an irrep of dimension three or higher for this problem shows thatsymmetry cannot force three simultaneously zero eigenvalues here. In all caseswe then apply the Equivariant Branching Lemma [13, page 82, theorem 3.3]:by the Equivariant Branching Lemma, we are guaranteed bifurcating solutionswith isotropy subgroups which have one-dimensional �xed point subspaces. To�nd which subgroups of �SS are isotropy subgroups with one-dimensional �xedpoint subspaces it is essential to have �rst identi�ed the irrep.Using this general theory we can analyse the three possibilities for bifurcationsfrom Standing Squares. The marginal eigenvectors are elements of a four-dimensional real vector space corresponding to perturbations in the real andimaginary parts of C and D (see equation (25)).(a) Eigenvector (1; 1; 0; 0), u = Cr +Dr is the marginal mode so the centremanifold is one-dimensional.(b) Eigenvector (1;�1; 0; 0), u = Cr�Dr is the marginal mode so the centremanifold is one-dimensional.(c) Eigenvectors (0; 0; 1; 0) and (0; 0; 0; 1), u = Ci and v = Di are simultane-ously marginal modes so the centre manifold is two-dimensional.In case (a) the elements of �SS which act as +1 are exactly those in D4. Thus23



the bifurcation breaks the ~� symmetry of SS and corresponds to irrep �3.The existence of group elements which act as �1 on the 1D centre manifoldmeans that the bifurcation is a pitchfork, and the dynamics are governed byan equation of the form _u = �u+ bu3.In case (b) the elements of �SS which act as +1 are fId;md; md0 ; �2; ~� � �; ~� ��3; ~� �mx; ~� �myg. These elements form a group isomorphic to D4, but distinctfrom it. We shall denote this group ~D4. The corresponding irrep is �10, andagain the bifurcation is a pitchfork, with dynamics on the centre manifoldgiven by the pitchfork normal form.Case (c) must correspond to one of the two two-dimensional irreps of �SS.Looking at the action of the group elements we �nd that because ~� : (u; v)!(�u;�v), it must be irrep �6. The two one-dimensional �xed point subspacesare (u; 0) and (u; u). These have symmetry groups fId;md; ~� �md0 ; ~� ��2g andfId;mx; ~� �my; ~� � �2g respectively. Both these groups are isomorphic to Z22.On the centre manifold, the equations for _u and _v0B@ _u_v 1CA=0B@ f(u; v)g(u; v)1CA (38)must be equivariant with respect to the action of the symmetries, i.e.Rg 0B@ f(u; v)g(u; v)1CA=0B@ f(Rg(u; v))g(Rg(u; v))1CA (39)where Rg is a 2�2 matrix representing a group element. The centre manifoldequations must therefore look like_u= uh� + av2 + b(u2 + v2)i (40)_v= vh�+ au2 + b(u2 + v2)i (41)when truncated at third order. In theory we can perform the centre manifoldreduction and determine the real coe�cients �, a and b in terms of the normalform coe�cients. The planforms of the two solution branches (u; 0) and (u; u)are shown in �gure 8.In this particular problem, because the coe�cient �2 < 0, we �nd that case(b), the bifurcation to SS+DS solutions, occurs for the lowest value of theparameter �. If case (a) had occurred for a lower value of �, we would stay inthe subspace with �1 = �2 =  = 0 which Proctor and Matthews [8] call PR24



and we would observe an oscillating version of their \Large Squares" solution.The behaviour here is very di�erent because it corresponds to a di�erent irrepof the symmetry group of the pattern. Figures 6{8 show instantaneous viewsof solutions to (13) - (18) showing the di�erent patterns produced in thesebifurcations. Each �gure shows contours of constant vertical 
uid velocity atthe mid-plane of the 
uid layer. Solid contours represent upwards 
ow, dashedcontours represent downwards 
ow.
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(b)Fig. 6. Instantaneous views of (a) Standing Squares, and (b) Oscillating `LargeSquares' created in a bifurcation corresponding to a marginal mode u = Cr +Dr.In (b) the solution has a spatial symmetry group D4 - it has lost the symmetry ~� .Both solutions have symmetry h, but this cannot be detected from an instantaneousview.

Fig. 7. An instantaneous view of the SS+DS solution corresponding to the choice ofu = Cr�Dr as the marginal mode. This is the case that occurs �rst for � = 0:1 andgives a solution with spatial symmetry group ~D4 and spatio-temporal symmetry h.25
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(b)Fig. 8. Instantaneous views of the two bifurcating planforms from the double zerobifurcation: (a) SS+DR (Diagonal Roll) branch corresponding to v = Ci, (b) SS+DS(Diagonal Squares) II branch with marginal mode v = Ci = w = Di. Both have aspatial symmetry group isomorphic to Z22 and in addition preserve the symmetry h.4.5.2 Classi�cation of bifurcations from SS+DSExactly as for the bifurcations from SS, we can look at bifurcations fromSS+DS in terms of the irreps of the symmetry group of the SS+DS solu-tion: �SS+DS = ~D4 � fId; hg (h is the spatiotemporal symmetry de�ned insection 3). This group has 10 conjugacy classes, and hence 10 irreps. Thecharacter table of �SS+DS is the same as that of �SS as the two groups areisomorphic.As before we can identify which irrep is relevant to a bifurcation by lookingat the action of each symmetry element on the eigenvectors corresponding tothe zero eigenvalues at the bifurcation point.For the �rst bifurcation there are two marginal modes (see equations (27)-(30)): u = (A1 � A2)=2 and v = (B1 �B2)=2. The spatio-temporal symmetryh is broken, so the relevant irrep is �6. There will be guaranteed bifurcatingsolutions of the form (u; v) = (u; 0) and (u; u). The solution (u; 0) has sym-metry group fId;mdg (type 1 - see �gure 9(a)) and the solution (u; u) hassymmetry group fId; ~� �myg (type 2 - see �gure 9(b)). Both these groups areisomorphic to Z2.By the same argument as in case (c) in the previous section, the centre mani-fold equations for the marginal modes look like (40) and (41) in this caseas well. From the form of the bifurcation diagram (which we have alreadydetermined through AUTO) the coe�cients must satisfy a + 2b < 0 < a.For the bifurcation to SS+fC6=Dg (type 3) solutions, the marginal mode is26



Table 6The character table for �SS+DS = ~D4 � fId; hg.Irrep Conjugacy classesId ~� � � �2 md ~� �mx h h � �2 h �md h � ~� � � h � ~� �mx~� � �3 md0 ~� �my h �md0 h � ~� � �3 h � ~� �my�1 1 1 1 1 1 1 1 1 1 1�2 1 1 1 -1 -1 1 1 1 -1 -1�3 1 1 1 1 1 -1 -1 -1 -1 -1�4 1 1 1 -1 -1 -1 -1 -1 1 1�5 2 0 -2 0 0 2 0 -2 0 0�6 2 0 -2 0 0 -2 0 2 0 0�7 1 -1 1 1 -1 1 -1 1 1 -1�8 1 -1 1 -1 1 1 -1 1 -1 1�9 1 -1 1 1 -1 -1 1 -1 -1 1�10 1 -1 1 -1 1 -1 1 -1 1 -1u = Cr�Dr. The symmetries that act as +1 on u are fId;md; md0; �2; hg, andthis bifurcation corresponds to irrep �7 (as this bifurcation involves only steadymodes in the marginal eigenvectors it must preserve the spatio-temporal sym-metry h).

  
 

 

(a)   
 

 

(b)Fig. 9. Instantaneous views of (a) the type 1 solution planform and (b) the type 2planform. The type 1 solution has symmetry group Z2 = fId;mdg and drifts slowlyalong the y = x diagonal as well as executing a vertical oscillation. Similarly, thetype 2 solution has a symmetry group Z2 = fId; ~� �myg and drifts slowly in they-direction. 27



It is important to note that drifting solutions break the symmetry �2 - thedirection of drift cannot be invariant under a half-turn rotation. From table 6we can see that, for this problem, this can only happen when the symmetriesact as �5 or �6, forcing a double-zero eigenvalue. This illustrates to what agreat extent possible bifurcations are constrained by symmetry.4.5.3 Summary of the Boussinesq behaviour for � = 0:1A summary of the behaviour for � = 0:1, sketching the regions of stability ofeach solution in the (�1; �2)-plane, is shown in �gure 10(a).
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around the origin in the (�1; �2)-plane as � varies. This is summarised in�gure 11. To the left of line a in �gure 11 Standing Squares (SS) are the stablebranch from the Hopf bifurcation. As discussed in section 4.3, to the rightof line a this solution becomes quasiperiodic. By computing the transversestability of all the primary solutions in the oscillatory subspace, we can obtaina necessary condition for the subspace as a whole to be transversely stable.This is indicated by the dotted line; above the dotted line the whole subspaceS1 is certainly not transversely stable.To the right of line b in �gure 11 AR are stable in the oscillatory subspace, andto the right of line c both TR and AR are stable. The bifurcation structureat high � has also been explored in detail, but we will not present the resultshere.
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uid layer at the mid-plane which agrees very well with that29



obtained analytically (shown in �gure 7), and is numerically well-converged.

 
 

  Fig. 12. SS+DS solution from the PDEs for Boussinesq magnetoconvection with� = 0:1. �̂1 = 5, �2 = 10 and � = 0:1 which corresponds to physical parametersR = 1657:9, Q = 43:8 and � = 0:0855. The time step �t = 0:02.
5 Analysis of the weakly non-Boussinesq equations for � = 0:1Non-Boussinesq e�ects introduce the quadratic terms with coe�cients �1 and�1. �1 is forced to be real by the symmetries, but �1 may be complex. Byrescaling the amplitudes we can see that only the ratio of these coe�cientsis important and, in addition, always ensure �1 > 0. We will focus on twocases with very di�erent dynamics: �1 = �1 > 0 and ��1 = �1 > 0. No newnormal form symmetry is introduced by taking �1 2 R so these two cases aregeneric. Throughout this section we �x � = 0:1 to enable comparison with theBoussinesq results.In the analysis we �nd a wealth of di�erent types of behaviour: we will onlybe interested in what happens very close to the origin in the (�1; �2)-plane:the stable behaviour may be very di�erent to that of the Boussinesq problem,and it will accurately describe the behaviour of a non-Boussinesq 
uid close toonset. Further from the origin we expect the problem to look more and morelike the Boussinesq one we have already studied. The form of the behaviourin between is very complex and much less relevant to physical applications.30



5.1 Case 1: �1 = �1 > 0The stable solutions in di�erent regions of the (�1; �2)-plane were determinedusing AUTO, and a sketch of the results is given in �gure 13.
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5.2 Case 2: ��1 = �1 > 0The normal form contains a large number of invariant subspaces. To give anidea of the complexity of case 2, we can �nd a subspace which contains allthe dynamics of the 2:1 two-dimensional resonance problem studied by Arm-bruster, Guckenheimer and Holmes [23], Proctor and Jones [24] and Julien [25,chapter 2]. This includes the formation of robust homoclinic cycles. Moreover,this subspace is related by symmetry to three others, so there are four copiesof these dynamics embedded in the problem.De�ne the subspace V as being where A1, B1 and D are non-zero, and allother amplitudes are zero. This subspace is 
ow-invariant, and the dynamicsare: _A1=A1[�1 + �1jA1j2 + �3jB1j2 + �4jDj2] + �1DB1 (42)_B1=B1[�1 + �1jB1j2 + �3jA1j2 + �4jDj2] + �1 �DA1 (43)_D=D[�2 + �1jDj2 + �3jA1j2 + ��3jB1j2] + �1A1 �B1 (44)Writing the modes in terms of their moduli and arguments we �nd there isonly one important phase di�erence; � = �B1 � �A1 + �D. If we further assumethat jA1j = jB1j = A then we reduce this system to three real equations forA, jDj (we will just write D for jDj) and �:_A=A[�1 + (�r1 + �r3)A2 + �r4D2] + AD�1 cos� (45)_D=D[�2 + �1D2 + 2�r3A2] + �1A2 cos� (46)_�=��2�1D + �1A2D � sin� (47)This is the system analysed by [23{25] in which a stable robust homocliniccycle is formed. Numerical integrations of the full system in the quadrant �1 >0, �2 > 0 and analytic investigation of (45)-(47) give support to the followingscenario: a stable DR solution bifurcates from the origin at �2 = 0 and thenloses stability to a DR+TR solution. This periodic solution then undergoesa secondary Hopf bifurcation which is supercritical close to the origin, andsubcritical further away. This periodic orbit (as it appears in (45)-(47)) thencollides with the DR �xed point to create a robust cycle. This sequence ofevents is identical to that found in the 2:1 steady-state/steady-state modeinteraction. The resulting bifurcation structure away from the origin is verycomplex. We also numerically �nd trajectories that cycle irregularly betweenthe two DR �xed points (C = 0, D 6= 0) and (C 6= 0, D = 0). Near each�xed point the 
ow is locally expanding but the global contraction indicatesthe existence of a chaotic attractor. 32



What is much more analytically tractable (and does not occur in the 2:1 res-onance problem) is the behaviour in the quadrant �1 > 0, �2 < 0 of the(�1; �2)-plane. As we cross from �1 < 0 to �1 > 0 with �2 �xed and negativewe �nd that stable AR and SR solutions appear. This is due to the stabilisinge�ect of the quadratic terms in (13)-(18). More interestingly, these two oscil-latory solutions make the quadratic terms in the _C and _D equations vanish,so these two solutions will lose stability to perturbations in C and D alonga straight line passing through the origin in exactly the same way as for theBoussinesq problem.We summarise the regions of existence of these two unexpected solutions nearthe origin. There is a wealth of extra detail which is omitted: we concentrateon the central result that there are regions of the (�1; �2)-plane where thesesolutions exist and are stable.5.2.1 Stable solutions from Alternating RollsAn Alternating Roll solution is of the form jA1j = jA2j = jB1j = jB2j,  = �.It loses stability to an AR+DS solution when�2�1 = 2�r3 � �2�r1 + �r2 + 2�r3 � �r2 (48)which de�nes a straight line passing through the origin in the (�1; �2)-planelabelled pf1 in �gure 14(a). By a usual perturbation argument we can also �ndwhere the AR solution becomes unstable to SCR+DS (Standing Cross Rollplus Diagonal Squares) solutions; these have the form jA1j = jA2j, jB1j = jB2j,jCj = jDj, �1 = �2 = 0,  = �). LetjA1j = jA2j = rAR + u jB1j = jB2j = rAR � ujCj = jDj = v �1 = �2 = 0 = � +  ̂ (49)and linearising in the small perturbations u, v and  ̂ (dropping the hat):0BBBBB@ _u_v_ 1CCCCCA=0BBBBB@�1 + r2AR(3f r + 4�r3 + �r2) 0 r3AR�i20 �2 + r2AR(4�r3 + 2�2) �1r2AR�8rAR(f i + �i2) �8�1 4�r2r2AR
1CCCCCA0BBBBB@ uv 1CCCCCA33



The AR solution is unstable to SCR+DS perturbations when this matrix hasa zero eigenvalue. This de�nes the line pf2 in �gure 14(a).
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namely the breakup of a torus, through a period-doubling cascade of periodicorbits, and from a homoclinic connection at a �xed point. This complexityis the reason for concentrating only on stable objects, and not attemptingto present a complete bifurcation structure. The continuation and bifurcationpackage AUTO [14] was used in conjunction with analytic techniques andsymmetry arguments: these three approaches complement each other.The non-Boussinesq analysis is much more di�cult, and very little can be doneanalytically. In case 1, where �1 and �1 have the same sign the behaviournear the origin is qualitatively similar to that in the Boussinesq problem.However, case 2 (�1 and �1 have opposite signs) contains regions of stableAR and SR which are not seen in the Boussinesq case. Interestingly, whenthe oscillatory modes have the form of Alternating Rolls, ie (A1; A2; B1; B2) =(z; z; iz; iz) the quadratic terms A1 �B2 +B1 �A2 and A1 �B1 +B2 �A2 in the _C and_D equations are identically zero. This simpli�es some of the analysis in case2. The fact that a large qualitative change in behaviour can occur betweenthe Boussinesq and non-Boussinesq problems is also interesting. Numericalstudies of 3D compressible magnetoconvection in the oscillatory regime havedemonstrated a strong preference for AR and TR over the other periodicplanforms [26, section 5.2].The appearance of drifting solutions has been observed in numerical experi-ments on compressible magnetoconvection and and has been analysed theo-retically [2]. The theoretical framework of bifurcations with continuous andspatio-temporal symmetries which explains the occurrence of these novel so-lutions is very general [19,20], and �nds many other applications, for examplethe appearance of `superlattice' patterns in Faraday-wave experiments [17,18].The 1 : p2 interaction also occurs in rotating thermal convection. Work on thisproblem is in progress [27]: the required physical parameters (Prandtl numberand Taylor number) can be obtained experimentally, so direct comparisonsbetween theory and experiment could be made.
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AppendixBy writing the complex amplitudes as A1 = ~A1ei�A1 , C = ~Cei�C etc we canrewrite the equations (13)-(18) as evolution equations for the moduli andphases of the six complex variables. These translational symmetries mean wecan eliminate three of the phase variables, and the moduli equations dependon only three combinations of the phase variables. Thus we can form a reducedset of 9 equations; six moduli and three phase equations. De�ne�1= �B2 � �B1 + �C � �D�2= �A2 � �A1 + �C + �D = �B1 + �B2 � �A1 � �A2and, dropping the tildes on the moduli variables, the reduced equations forthe Boussinesq problem are_A1=A1h�1 + �r1A21 + �r2A22 + �r3(B21 +B22) + �r4(C2 +D2)i+A2B1B2(�r2 cos � �i2 sin ) + A2CD(�r3 cos�2 � �i3 sin �2) (50)_A2=A2h�1 + �r1A22 + �r2A21 + �r3(B21 +B22) + �r4(C2 +D2)i+A1B1B2(�r2 cos � �i2 sin ) + A1CD(�r3 cos�2 + �i3 sin�2) (51)_B1=B1h�1 + �r1B21 + �r2B22 + �r3(A21 + A22) + �r4(C2 +D2)i+B2A1A2(�r2 cos + �i2 sin ) +B2CD(�r3 cos �1 � �i3 sin�1) (52)_B2=B2h�1 + �r1B22 + �r2B21 + �r3(A21 + A22) + �r4(C2 +D2)i+B1A1A2(�r2 cos + �i2 sin ) +B1CD(�r3 cos �1 + �i3 sin�1) (53)_C =Ch�2 + �1C2 + �2D2 + �r3(A21 +B21 + A22 +B22)i+�2(B1B2D cos�1 + A1A2D cos�2) (54)_D=Dh�2 + �1D2 + �2C2 + �r3(A21 +B21 + A22 +B22)i+�2(B1B2C cos�1 + A1A2C cos�2) (55)_�1=A1A2�B1B2 � B2B1�(�i2 cos � �r2 sin ) + (�i1 � �i2 � 2�i3)(B22 � B21)+B1CDB2 (�i3 cos�1 � �r3 sin�1)� B2CDB1 (�r3 sin �1 + �i3 cos�1)37
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