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Abstract

The first analysis of a properly three-dimensional mode interaction between steady
and oscillatory forms of convection with different preferred wavenumbers is pre-
sented. By varying the fluid parameters for Boussinesq magnetoconvection we locate
a point where the conduction state is unstable to both steady and oscillatory mo-
tion simultaneously. We then construct and analyse the normal form. The complex
transition between steady and oscillatory convection near onset can be explained:
this extends and completes the work of Clune and Knobloch [1]. Selecting the most
marginal wavenumbers in the problem ensures that the analysis is relevant to the
behaviour which would be observed in an unbounded plane layer.

The symmetries of the resulting Dy x T?-equivariant bifurcation problem play a
large role in determining the bifurcation structure and explain the appearance of
interesting phenomena such as drifting solutions [2]. We also find new phenomena
in the normal form for a Hopf bifurcation with Dy x T? symmetry [3].

The introduction of weakly non-Boussinesq effects leads to qualitative changes in
the dynamics near onset: different convection planforms are stabilised and chaotic
heteroclinic cycling behaviour is observed.
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1 Introduction

Steady-state/steady-state and Hopf/steady-state mode interactions have been
widely studied in two-dimensional convection [4,5], as have Takens-Bogdanov
bifurcations [6,7]. In a three-dimensional problem these interactions still occur
but in all cases the modes may be unstable to three-dimensional perturbations.
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More recently there has been an interest in mode interactions which are truly
three-dimensional. The interaction of two steady modes at 45° to each other
with wavenumbers in the ratio 1 : v/2 was studied by Proctor and Matthews
[8] as a possible explanation for subcritical square-cell convection in experi-
ments on a fluid with variable viscosity. Also, Renardy, Renardy and Fujimura
[9] have studied a Takens-Bogdanov bifurcation on a hexagonal lattice with
applications to a two-layer convection problem.

We study a new interaction of steady and oscillatory behaviour which occurs
in magnetoconvection with a vertical magnetic field. The interaction takes
place when we vary the fluid parameters so that the trivial conduction state
is simultaneously unstable to both forms of convection. By varying the fluid
parameters we can also fix the wavenumbers of these modes to be in the ratio
1 : /2, enabling us to restrict our attention to those modes which lie on a
periodic square lattice in the plane. This restriction, which makes the centre
manifold finite dimensional, allows us to derive a set of amplitude equations
for the dynamics on the centre manifold. The amplitude equations are the
truncation at cubic order of the normal form for this mode interaction with
D, x T? symmetry. They are an asymptotically exact model of the behaviour
of the fluid at the onset of convection in the neighbourhood of the 1 : /2
resonance; this leads to a codimension 2 bifurcation problem. As we also re-
quire the resonant modes to be the most unstable ones we actually impose
four conditions on the physical parameters of the problem, but as the result-
ing ODEs contain only two bifurcation parameters it is better described as a
codimension 2 problem rather than a codimension 4 one.

The preferred planform for Boussinesq magnetoconvection at onset has been
studied in detail by Clune and Knobloch [1]. Their analysis does not, how-
ever, explain how a smooth transition from steady to oscillatory convection
can occur. Although there is a jump in the most unstable wavenumber, a
two-parameter unfolding (as we give here) can provide that explanation and
complete their analysis.

Using modified perturbation theory we can evaluate the coefficients in this
normal form at the codimension 2 point. For a Boussinesq fluid we can draw
on earlier work [3] to help analyse the dynamics in two invariant subspaces in
the problem; the bifurcation structure is complex, and shows the existence of
chaotic solutions arbitrarily close to onset. The weakly non-Boussinesq analy-
sis is extremely complex, and here we restrict the analysis to two contrasting
cases and point out their interesting features. At all times we will concentrate
on stable objects in the bifurcation structure as only these will be physically
relevant.

The relevant coefficient values also highlight previously unseen behaviour in
the analysis of a Hopf bifurcation with Dy x T? symmetry [3]; this is examined



in more detail in [10].

The initial conduction solution planform is invariant under the group F(2) of
all Euclidean symmetries of the plane R?. By then restricting our attention to
solutions which lie on a square lattice the problem becomes a mode interaction
with Dy x T? symmetry. The possible bifurcations from a given solution are
organised by its symmetry group [13]; it is important to understand the role of
the spatial and spatiotemporal symmetries. Novel solutions are found which
drift slowly in space and we explain why this is possible. The spatiotemporal
structure of these planforms can best be appreciated by viewing animations.

In section 2 we provide the fluid-dynamical background for the problem and in
section 3 we derive the normal form equations for the mode interaction. Section
4 contains a discussion of the Boussinesq behaviour and the use of symme-
tries in classifying bifurcations. Aspects of the non-Boussinesq behaviour are
presented in section 5 and we draw conclusions in section 6.

2 Physical Background

Boussinesq magnetoconvection in a uniform vertical magnetic field with stress-
free, fixed temperature upper and lower boundaries and periodic lateral bound-
aries has been extensively investigated [11]. After the governing equations have
been nondimensionalised there are four dimensionless parameters: the Prandtl
number o = v/k (the ratio of the rates at which velocity and temperature gra-
dients diffuse), the magnetic Prandtl number ( = v/n (the ratio of the rates at
which velocity and magnetic flux gradients diffuse), the Chandrasekhar num-
ber () which is proportional to the square of the magnetic field strength and
the Rayleigh number R which is proportional to the temperature difference
between the top and bottom of the fluid layer.

The governing nondimensionalised equations for perturbations to the conduc-
tion solution Uepng = 0, Beona = Z, Trong = 1 — 2z in three dimensions are
the (curl of the) momentum equation, the induction equation and the heat
transfer equation:

dw+ V x (wx 1) =0(Q|V x (J x B) + 8,3| + RoV x (T2) + 0V’w
(1)
OB +V x (Bxu)=0d,u+(V’B (2)
OT +u-VT=u, + VT (3)

where J = VxB and w= V xu, and by taking the curl of the momentum equa-
tion we have eliminated the pressure term. The velocity field u = (u,, u,, u,)



and the magnetic field perturbation B = (B, By, B,) are both solenoidal:
V-u=V-B=0. The (stress-free) boundary conditions are

Oyly = Oyuy =u, =B, =B, =0,B,=T=0 at 2=0 and z=1 (4)

To find the 1 : v/2 resonance point we vary the parameters so that the transi-
tions to oscillatory and steady convection happen at the same critical Rayleigh
number, and the wavenumber of the oscillatory convection is lower by a factor
of v/2 than that of the steady modes. This can be done from 2D linear the-
ory (see [11]): for steady convection at a wavenumber «; the critical Rayleigh
number R, is found to be

a? 4+ 7?)3 N Qm?(a? + 7?)

2 2
g g

(5)

For oscillatory convection at wavenumber «, the critical Rayleigh number R,
is similarly found to be (assuming ¢ < 1):

(a2 + WZ)SC N Qm*(a? + 72)
o) o428 BT

2 2
o, 4

R,= Cs (6)
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where C) = (0 + ¢)(1 +¢)/o and Cy = (0 + ¢)¢/(1 + o) are constants. The
preferred wavenumber for the onset of either form of convection occurs where
R is a minimum. We also require that the wavenumbers «, and «g which
minimise R, and R, must be in the ratio 1 : v/2 and that the critical Rayleigh
numbers at these wavenumbers must be equal. These conditions lead to the
following equations.

1C
2a8 + 3na) — 70 — QrCs =0 (7)
&
208 4+ 3n%a) — 7% — 7'Q =0 (8)
2 | . 2)3 202 | 2 2 | . 2)3 20,2 | 2
) Qe ey Qledemt
a2=a?/2 (10)

This is a system of four equations in five unknowns («s, a,, @, o, and ¢). By
fixing one parameter (here we fix () we can solve numerically for the other
four. Fixing ¢ at values 0.1,0.2,...,0.9 and solving for the other parameter
values gives the results shown in table 1. wy is the frequency of oscillation at
onset for the oscillatory modes. From linear theory this is given by:



Table 1

The position of the 1: /2 point with varying (.

2

¢ o Q Qg R.=R;=R, wo
0.1 0.0855 41.0485 9.9992 1589.44 0.8139
0.2 0.1944 46.1929 10.4069 1689.32 1.6693
0.3 0.3192 56.4837 11.1571 1883.84 2.6175
0.4 0.4445 75.7488 12.3844 2233.33 3.7335
0.5 0.5475 113.5690 14.3581 2881.83 5.1454
0.6 0.6038 197.6955 17.6494 4223.06 7.1059
0.7 0.5987  431.1269  23.6374 7623.22 10.2059
0.8 0.5361 1397.1788  36.5353 20249.85 16.2283
0.9 0.4381 11377.4262 77.5103 135196.45 34.1120
2
s ToCQ(1—() 2/ 2 2\2
wy = —=—("(« 11
§= T - et ) (11)
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Fig. 1. (a) The marginal stability curves for the onset of steady and oscillatory
convection at a 1 : v/2 point. The wavenumber « is plotted along the z-axis, and
the Rayleigh number R along the y-axis. ( = 0.1, 0 = 0.0855 and @) = 41.0485. TB
denotes the Takens-Bogdanov point and the dashed line CT highlights the condition
that the critical Rayleigh numbers are equal. (b) The CT line, and lines of constant
s = az/a, in the (Q, o) plane for ¢ = 0.1. L: s = 1.3, Ly: s = /2, L3: s = 1.6. The
lines CT and Lo cross at the 1 : /2 point corresponding to the first line of table 1.



3 The Normal Form

To keep the centre manifold finite dimensional we restrict our possible solu-
tions to those lying on a square lattice, choosing the lattice dimensions to
match the most unstable wavenumber. This corresponds to the ‘fundamental
representation’ of Dionne et al [12]. In this way we reduce the symmetries
of the problem from F(2) to the subgroup D, x T?. This is the semi-direct
product of two groups: Dy is the group of the rotations and reflections of a
square, and T? is the group of translations in the plane - the spatial origin of
the lattice is not predetermined. We can describe the interactions between the
steady and oscillatory modes by writing down a normal form for the evolution
of the (complex) mode amplitudes. This leads to a set of six coupled equations
for the amplitudes; two amplitudes describe the evolution of steady diagonal
rolls and four more describe the oscillatory modes (travelling waves) in the
+2 and +y directions. The form of the equations is determined by requiring
the equations to be equivariant with respect to the group Dy x T2

The centre manifold is spanned by these six complex amplitudes, and so the

planform (as described by a ‘marker quantity’ such as the vertical fluid velocity
at the mid-plane) looks like

u,(w,y,t) = Re(A; "7 0N 4 Ayei(ortwl) 4 peiloy—wol)
4 Byeilovtwol) 4 pialty) 4 peinlr—y)) (12)

This is illustrated in figure 2. u, must be equivariant under the symmetries

Fig. 2. The geometry of the planform.

D, x T?, so the action of each symmetry on (z,y,t) induces an action on the
mode amplitudes {A;, Ay, By, By, C, D}:

Reflection in the y-axis



my:x——x: A+ A B —-B By— By C<+—D

Reflection in the line z =y

mg:r+—vy: Aj+—B Ay+—B, C—-C D-—=D

Translation in the z and y directions:

HxI.CE—).TE—F(S/O!Z {Al,C,D}—>{A1,C’,D}ei5 {Bl,BQ}%{Bl,BQ}
A2 — A2€7i6

Hyy—>y+5/a {Al,AQ}%{Al,AQ} {BI,C}%{Bl,C}ei‘S
{By,D} = {By, D}e™®

The two reflections generate the group D4 and the two translations generate
the group T2. Requiring equivariance with respect to these symmetries leads
to the following system of ODEs (truncated at third order) for the six complex
amplitudes.

Al = HIAI + al(C’BQ + DBl) + QQAQBlBQ + agAQCD
FA AL + Aol Ao + A(|Bi] + |B2?) + M(IC)2 + DY) (13)

AQ = M1A2 + oy (DBQ + OBl) + a214._1B1B2 + OJ3A10D
F Ao (A [ Ao? + Aol Ar P + A3 (|Bi]? + |B2?) + M(IC)2 + D) (14)

Bl = HlBl + a1<CA2 + DAl) + OJQBQAlAQ + agBQCD
+Bi[M|Bi]* 4 X2 Bo|* 4+ As(| A1) + [A2?) + M(|C)P + [D]?)]  (15)

BQ = ILLlBQ + a1<DA2 + OAl) + QQBlAlAQ + a3BIC’D
+Ba[ M| Bol* + o Bi” + A (| A* + [A2)*) + M(IC* + [DFF)] - (16)

C == ,LLQO + 1 (Ang + B1A2) + V2<B132D + A1A2D)
+O[BCT + Bo| DI + Ba(|Asl* + [Bif*) + Bs(|Aof* + | Bo)]  (17)

D = ILLQD + 11 (AIBI + BQAQ) + VQ(BlBQO + A1A20)
+D[B1|D? + Bo| O + B3(| AL * + [Bo*) + Bs(| Ao * + |Bi[?)]  (18)
The coefficients ps, 51, B2, 1 and vy are forced to be real by symmetry, but

all other coefficients will in general be complex. The bifurcation parameter
p1 = fiy + iw(f11) where i3 and @ are real. The frequency of the bifurcating



solutions in the Hopf bifurcation is close to wy near the bifurcation point
fi1 = 0. The normal form also picks up a symmetry S, corresponding to a
translation in time:

gt 't —t +T/w : {Al,AQ,Bl,BQ} — {Al,AQ,Bl,BQ}eiiT
{C,D} = {C. D}

This symmetry is not a symmetry of the physical problem, but it appears
naturally in all normal forms for problems involving a Hopf bifurcation. There
is also the Boussinesq symmetry to consider. If the fluid is Boussinesq (and, as
we assume throughout, the upper and lower boundary conditions are identical)
then we require the amplitude equations to be equivariant with respect to
reflection z — 1 — z about the midplane z = 1/2 (as the original PDEs have
this symmetry):

m,:z — 1—z: {Al,AQ,Bl,BQ,C, D} — —{Al,AQ,Bl,BQ,C, D} (19)

This has the effect of removing the quadratic terms from the amplitude equa-
tions by forcing o and v to be zero.

Lastly, the planform (12) is invariant under a spatiotemporal symmetry h if
the planform oscillates periodically with period T":

h: (z,y,t) = (x+7/a,y+m/a, t +T)/2) (20)

corresponding to a translation of half a wavelength in the x and y directions
followed by a translation of half an oscillation period.

3.1 Fized points in the invariant subspaces

When we are dealing with a Boussinesq fluid the parameters oy and vy must
be zero. The amplitude equations now have two clear invariant subspaces; one
where C' = D = 0 which is denoted &7, and one denoted S, where A; = Ay =
By = By = 0 (8, is an invariant subspace for the non-Boussinesq problem
as well). We can analyse the equilibrium solutions in each subspace using the
results of [1] and [3].

Applying the Equivariant Hopf Theorem [13, p275, theorem 4.1] to the oscil-
lating subspace S; proves the existence of five primary branches which exist
for all combinations of coefficients in the normal form. These are denoted TR



Table 2

Periodic orbits in S, the form of the corresponding fixed point subspace and ex-
pressions for the signs of the real parts of the eigenvalues in S§; and transversely.
Multiplicities are given in brackets. f = Ay + Ay — 2A3. TR - Travelling Rolls, TS -
Travelling Squares, SR - Standing Rolls, SS - Standing Squares, AR - Alternating
Rolls. Superscript » means ‘the real part of’. For SR, SS and AR the underlined
expressions must be negative to force the last pair of eigenvalues to have negative
real parts. See [3, table 5] for further details.

Fixed Solution form Signs of real parts of eigenvalues

Point (Al,AQ,Bl,BQ) within 81

transverse to Sy

TR

TS

SR

SS

AR

(2,0,0,0) 0@, XTD AL @ Ap A @

00,50 0O, NENO, K- N+a )

(2,2,0,0) 0@, A+ O, —fr ag/? = |2

(Z’Z’Z’Z) 0 (3)’

fr+ax;+ap O,

M= —ay @ T —3ag

Re{as [} — |asf?

(Z’ z, iZ,iZ) 0 (3)3 )\11" - Ag + 045 (2)3 fr + 3Ck§

Ho — ﬂi?l (4)

203011 (4)
H2 = XNy

(285 £v2)i1 (2)

W= TR

B
AC) VD GED Yy

(B30
L) VR L sy

463 iy
12 = Ao
(465 £2v2) 11

fr4+4)N; —ab O, —Re{df} —|as|?

K2 = g Tag—ap

(2)

(Travelling Rolls), TS (Travelling Squares), SR (Standing Rolls), SS (Standing
Squares) and AR (Alternating Rolls). In the steady subspace there are two
primary branches: DR (Diagonal Rolls) and DS (Diagonal Squares). For each
point we can calculate its stability not only to perturbations within the sub-
space, but transversely as well. From now onwards, r will denote the modulus
of a solution, as variation of the Rayleigh number is achieved by varying the
bifurcation parameters fi; and ps.

In the oscillating subspace there is one more possible branch of periodic so-
lutions, called Standing Cross Rolls (SCR). This is a solution of the form
Ay = Ay, By = By, |Ay| # |By|. The existence of an SCR solution is not guar-
anteed by the Equivariant Hopf Theorem since its isotropy subgroup does
not have a two-dimensional fixed point subspace: its existence depends on the
coefficients in the normal form. It can be shown [3] that when this solution
exists it is always unstable. It is still important for two reasons; it can transfer
stability from one solution branch to another, and because other quasiperiodic
solutions can branch from it and these quasiperiodic solutions can be stable
[10].



Table 3

Fixed points in Sy, the form of the corresponding fixed point subspace and ex-
pressions for the signs of the real parts of their eigenvalues in Ss and transversely.
Multiplicities are given in brackets. DR - Diagonal Rolls, DS - Diagonal Squares.
Note that there is a circle of equilibria in each case as the phase of z is arbitrary.

Fixed Solution Signs of real parts of eigenvalues
Point form (C,D) within Sy transverse to So
DR (|2],0) 0@, g W, B—p 0 i — 22 )

DS (alla) 0@, BB, g-p 0 - O o

3.2 Reduction to a system of 9 real equations

The physical problem is invariant under three translation symmetries - in the
x and y directions and in time. By writing the complex amplitudes as 4; =
A4, O = Ce'c etc we can rewrite the equations as evolution equations
for the six moduli and three combinations of the phase variables. The reduced
set of equations is given in the Appendix. We define

¢p1="0p, —O0p, +0c —0p
¢2:9A2 _9A1+9C'+9D
wZHBl +932 _9141 _9142

Periodic solutions to the full system of equations are not isolated in phase space
due to the continuous translation symmetries. However, these simply-periodic
orbits correspond to isolated fixed points in the reduced equations (50)-(58),
and periodic orbits in (50)-(58) correspond to quasiperiodic trajectories in the
full equations (13)-(18); such quasiperiodic solutions will be called modulus-
varying solutions. However, a fixed point of the reduced equations may cor-
respond to a quasiperiodic solution of the full system: for a simply periodic
solution to the full system we require 04, = 04, = 0p, = 0p, and this may not
be the case even though v, ¢, ¢ and all the moduli are constant. These are
examples of relative periodic solutions for the full system: they look periodic
in a suitably co-moving frame. To determine the bifurcation structure, it is
much easier to follow fixed points of the reduced system (50)-(58) (in AUTO
[14] for example) than it is to follow periodic orbits of the full system.

In the Boussinesq case the bifurcation structure is greatly simplified: by rescal-
ing the amplitudes, writing 41 = A1vj, C = C’\/;Tz etc, and dropping the
carats, we can see that the real parameters i1, ps only enter the equations in
the combination py/f1;. So all bifurcation loci will be straight lines through

10



the origin in the (fi1, po)-plane.

4 Boussinesq magnetoconvection
4.1 The normal form coefficients for Boussinesq magnetoconvection

The amplitude equations (13)-(18) contain a large number of undetermined
constants. We will not attempt a full exploration of this parameter space
but instead compute the coefficients for this particular physical problem. The
idealised boundary conditions (4) allow an analytical solution for weakly non-
linear convection to be developed by using modified perturbation theory (see,
for example [6]). By continuing the calculation to third order we can derive
the coefficients for the cubic terms in the amplitude equations.

As usual in a modified perturbation expansion, we also expand some of the
physical parameters (o, ¢, @ and R) in powers of € to provide bifurcation
parameters for unfolding the behaviour of the low-order model around the
onset of convection. It is easiest here to use the Rayleigh and Chandrasekhar
numbers:

R:RC+GT1+€2T2+"'
Q=Qo+€eQ +€eQy+ -

r1 and @ are forced to be zero by the solvability condition imposed at second
order.

Using the solvability condition at third order we can find the values of the
coefficients of cubic terms as ( varies. The values of a; and vy cannot be
found by this expansion as they are identically zero for a Boussinesq fluid.
In section 5 we will explore two contrasting cases: a; = v; and ay = —ry.
By considering a weak breaking of the Boussinesq symmetry we can justify
introducing the quadratic terms at the same order in € as the cubic terms.

One independent check of the calculation is possible: the calculated values for
A1 and Ay should (and do) agree with equation (18) in [15]; this paper gives
an explicit formula (with a small printed error) for these coefficients. It is also
important to relate the linear terms in the amplitude equations (those with
coefficients p; and ps) to the physical parameters ro and Qs.

. . 003(CP* —iwg)re — o (8% — iwp) Q2
= = B iwe — PP(1+ 0 + )]

(21)

11



B aC(2a2ry; — m92Qs)
Y+ a(v 4 T2Q0) — 02 Qo

1y (22)

where 72 = 202 + 72 and (3* = a2 + 7%. The signs of the coefficients agree with
intuition - if ry increases we move further above the point at which convection
starts and both bifurcation parameters increase, and if )y increases the field
inhibits the convective motion and the bifurcation parameters decrease.

To investigate the stable planforms as ( varies, the coefficient values were
interpolated between the calculated values at ( = 0.1,...,0.9.

4.2 Stable solutions in Sy (the steady subspace)

For all values of ( we find #3 < (31 < 0 so both steady branches within &,
always bifurcate supercritically. The stable planform is Diagonal Rolls (DR),
and the other primary branch, Diagonal Squares (DS), is always unstable.

4.8 Stable solutions in Sy (the oscillatory subspace)

The existence of stable Standing Squares for low ¢ and the existence of stable
Alternating Rolls and Travelling Rolls for high ¢ can be deduced directly from
the results of Silber and Knobloch [3].

For 0.3 < ¢ < 0.6, though, none of the five primary periodic branches are
stable. The stable attractor is a previously unnoticed doubly or triply-periodic
orbit. These quasiperiodic orbits are discussed in detail in another paper [10].

The sequence of bifurcations as we increase ( that account for the transition
from stable Standing Squares (SS) to stable Alternating Rolls (AR) is sum-
marised in table 4 and figure 3. Nearly all of this sequence of bifurcations
happens within the SCR subspace, defined by A; = As and B; = By, and so
we could use the well-known associated spherical system of [16]. However, the
novel part of the dynamics is not contained within this subspace. The transi-
tion from SS to AR does not involve the TR solutions which gain stability for
larger (, so we will omit them from this discussion.

There is a Hopf bifurcation from SS when f" — 3aJ = 0 which happens when
¢ = 0.24781. This creates a modulus-varying quasiperiodic orbit which appears
as a periodic orbit in the reduced system. The existence of this quasiperiodic
solution was first noticed by Swift [16]. There is also a subcritical pitchfork
bifurcation from the AR solution when ¢ = 0.628473. In this pitchfork bifur-
cation two SCR solutions are created. They are unstable as we expect.

12



As we increase ( from the SS Hopf bifurcation, the periodic orbit (which
remains in the SCR subspace) grows closer to the AR solution. At a critical
value ¢ = 0.45748 there is a homoclinic connection between the stable and
unstable manifolds of the AR solution. The periodic orbit splits (in a reverse
‘gluing’ bifurcation) into two smaller orbits which are related by the reflection
symmetry myg.

These smaller periodic orbits subsequently lose stability in a direction trans-
verse to the SCR subspace and undergo a pitchfork bifurcation of periodic
orbits at ( ~ 0.57 to create solutions outside the SCR subspace. In the
full system (13)-(18) these new solutions are triply-periodic; looking at the
equations for the individual arguments of the mode amplitudes we see that
04, # 04, # 0p, = Op,, so there are actually three independent frequencies
in the system. The introduction of a third frequency is a consequence of the
symmetry-breaking between the A; and As modes which has taken place. The
moduli of the amplitudes still vary periodically in the reduced system.

At ¢ = 0.58387 this periodic orbit (when viewed in the reduced system (50)-
(58)) undergoes a reverse Hopf bifurcation and a stable “fixed point” appears
in the reduced system, with |A;| # |As|, |B1| = |B2| and ¢ all constant. This
cannot correspond to one of the six possible simply-periodic solutions of the
full system, and there are still three of the mode frequencies still different, so
it is actually still a quasiperiodic solution for the full problem: 9A1 #* 9A2 #*
931 = 932, but 1,/) = 0, imposing the constraint

¢29B1+9.B2_9A1_9A2:0

so there are only two independent frequencies. The corresponding planform
is best described as Drifting Standing Cross Rolls (DSCR) and is a relative
periodic orbit for the full system. Note that this doubly-periodic solution is
still outside the SCR subspace, and that the moduli of the mode amplitudes
are constant for this solution.

At ¢ = 0.62607 this DSCR solution undergoes a bifurcation back to a periodic
orbit, and then at ¢ ~ 0.6344 this asymmetric (in terms of A; and A,) periodic
orbit outside the SCR subspace has a reverse pitchfork bifurcation of periodic
orbits back onto the periodic orbit contained within the SCR subspace. This
orbit then disappears when it goes homoclinic to the SCR fixed points at
¢ = 0.63876.

This sequence of bifurcations is summarised in table 4 and in figure 3. The
y-scaling of the bifurcation diagram is purely schematic since as ( varies the
interpretation of the original bifurcation parameters p; and ps does as well.

The existence of the stable doubly-periodic solution DSCR outside the SCR

13



Table 4
Summary of the stable attractors in the oscillatory subspace for 0.1 < ¢ < 0.9. Note
that for 0.628473 < ( < 0.63876 there are two stable attractors.

¢ Stable No of indep

Between And Solution Frequencies
0.1 0.24781 SS 1
0.24781  0.45748 Periodic orbit around SS 2
0.45748  0.57740 Symmetric orbit 2
0.57740  0.58387 Asymmetric orbit 3
0.58387  0.62607 ‘Fixed point’ DSCR: |A1| # |A2|,| Bi| = | Ba| 2
0.62607 ~0.6344 Asymmetric orbit 3
~0.6344 0.63876 Symmetric orbit 2
0.628473 0.9 AR 1

subspace is investigated in more detail in [10]. Near the bifurcation point the
DSCR solution must be unstable (as the SCR solutions are always unstable)
but, as happens here, it can be stabilised further away.

asymmetric p.o.

Fig. 3. Sketch bifurcation diagram showing the changes in the stable object in the
subspace &7 as ( increases. The DSCR solution and the asymmetric quasiperiodic
orbit lie outside the SCR subspace. H - Hopf bifurcation, h - homoclinic bifurcation.

4.4 Analysis of the case ¢ = 0.1

For ¢ = 0.1, all branches in S; or S, bifurcate supercritically (into ji; > 0 or
pe > 0 respectively). Since all bifurcation loci are straight lines through the
origin, we will use the angle § = tan™!(uy/fi;) as the bifurcation parameter.
For the rest of the paper we will drop the carat on fi;. Standing Squares (SS)
are the only stable solution in &; and Diagonal Rolls (DR) are stable in Sy. The
SS solution is stable against transverse perturbations when all its transverse
eigenvalues are negative which requires
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(48— 2m)m
2N, + Nf + A+ b

(23)

M2

for ¢ = 0.1 this condition gives —7/2 < 6 < —1.4466. Similarly, DR are stable
against transverse perturbations when

12
b1

which for ¢ = 0.1 requires 7 > 6 > 2.4137.

1 — <0 (24)

Subsections 4.4.1-4.4.5 below follow a path of increasing 6 (anticlockwise)
around the origin in the (ui,us)-plane, starting in the lower-left quadrant.
The bifurcation structure was computed numerically using AUTO [14] and
confirmed by the analytic results presented below.

4.4.1 Bifurcations from Standing Squares

As we cross the line § = —1.4466, one Floquet multiplier of the SS peri-
odic orbit crosses the unit circle at +1 and there is a pitchfork bifurcation
of the periodic orbit. Stable solutions representing standing squares with a
constant amount of diagonal squares superimposed are created. Looking at
the linearised equations for perturbations to the SS solution we can determine
the eigenvector corresponding to the bifurcating solution. When C and D are
small we have (from (13)-(18)), splitting C and D into their real and imaginary
parts:

C, pe+405rss  2weris 0 0 Cr

D, _ werks g + 48513 0 0 D,

¢l 0 0 p+4frls 0 C;

D; 0 0 0 f12 + 405785 D;
(25)

This matrix has eigenvalues py + 40513 £ 21vorég and o + 405r%¢ (twice).
The eigenvector corresponding to the first eigenvalue to become zero as 0
increases is (1,—1,0,0)7, i.e. perturbations with C, = —D, in linear theory.
The bifurcating solutions are denoted Standing Squares plus Diagonal Squares
(SS+DS). In the modulus and argument reduced system this SS+DS solution
is of the form A}, = B}, =13, C* = D* =13, ¢1 = 7,y = m,¢ = 0. These
amplitudes can be found analytically:
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p1(Br + Ba) — p12(2X] — ajf)

2
T —=

AT (485 = 2) (2N — af) — (N} + N + 205 + aB) (81 + Ba)
2 - po (] 4+ M 42X + o) — 11 (485 — 21)

(485 — 202)(2X] — af) — (AT + Ab + 2X5 + ab) (61 + f)

Note that this solution SS+DS is in the subspace {¢; = 7, ¢y = 7,1 = 0},
not the subspace {¢; = 0,09 = 0,9 = 0}. Thus it does not have the full
symmetry group Dy, but only reflections in diagonal lines my and my which

generate a group Z2. However, it also other symmetries which will be discussed
in section 4.5.1. This SS+DS solution is stable for —1.4466 < 6 < 1.1534.

4.4.2 Bifurcations from Standing Squares + Diagonal Squares

Two distinct types of bifurcation from SS+DS take place. One is to solutions
denoted type 1 and type 2 which break the equality of the amplitudes of the
oscillatory modes, and one is to type 8 solutions which breaks the equality
of the steady modes. We will analyse each in terms of the marginal modes,
and then in section 4.5.1 this will be set in a more general symmetry-breaking
context. By using the reduced system we can look for zero eigenvalues of the
Jacobian matrix rather than marginal Floquet multipliers.

Bifurcations from SS+DS to type 1 and 2 solutions

Numerical continuation of the SS+DS solution indicates that two new solution
branches bifurcate from SS+DS at the same point. These two solutions can
be distinguished by their symmetries: type 1 solutions are invariant under the
reflection my in the line y = x and type 2 solutions have no simple reflection
symmetries. This can be explained by perturbing around the SS+DS solution;
The simultaneous existence of two independent modes with zero eigenvalues
can be shown by perturbing about the original fixed point of the reduced
system (50)-(58). Write

Al =ra+u Bi=rs+v ¢1:7r+d;1 C=D=r¢

) . (26)
Ay=r4—u By=1r4—0 Gy =T + o V=1

and say ¢, ¢ and ¢ are all small (they are identically zero for the SS+DS
solution). Then, linearising the equations for u, v (bl, ¢2 and w (dropping the
hats) we find

U :u{ul + (BAT — A5+ 205 — ab)rd + (20 + ag)ré] + kT AT
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= f(u, ¢) (27)

2
. ) . ) ) r
b9 :4u[(2ﬁ§ — AN+ A+ ah)ra — ag—c] + 209 (alre + vpr})

= g(u, ¢2) (28)
v=f(v, 1) (29)
¢1=g(v, $1) (30)
W= —dagriep (31)

The ¢ equation decouples, and there is a double real zero eigenvalue of the
linearised system at the bifurcation point. By constructing the centre manifold,
or using symmetry arguments (see section 4.5.2) we can show that there are
two bifurcating solution branches.

To find the bifurcation point we substitute in for r4, and ro and solve the
resulting quadratic in po (for a fixed value of ;). For ( = 0.1 there are two
real roots at § = 1.1534 and 6 = 1.3097; there are two double-zero bifurcation
points for ( = 0.1.

At § = 1.1534, we find that both branches bifurcate supercritically, type 1 so-
lutions are unstable, and type 2 solutions are stable. The inequality of solution
amplitudes means that the solution modes do not oscillate at equal frequencies
0; (the normal form symmetry h has been broken). This small discrepancy in
frequencies leads to the solutions appearing to ‘drift’ in physical space. This
drift is examined in more detail in section 4.5.2. Figure 9(a) below shows the
instantaneous planform of a type 1 solution, and figure 9(b) shows a type 2
solution.

At the second interaction point 8 = 1.3097 both branches are supercritical.
However, neither branch is stable because the SS+DS solution has already
lost stability at the earlier bifurcation. Type 2 solutions remain stable in the
region 1.1534 < 6 < 1.3121. At # = 1.3121 there is a bifurcation to a totally
mixed mode (MM) solution of the form {A4; # As, By # By, C # D, ¢, #
7,9 # w10 # 0}. This joins another branch at # = 1.3133 which is of the
form {A; = By, Ay = B1,C # D, ¢y = —¢9 # 7,1 = 0} which is denoted type
4. This type 4 branch undergoes a secondary Hopf bifurcation at § = 1.3215
to a modulus-varying solution. This is all summarised in figure 4.

Bifurcation from SS+DS — SS+{C#D} (type 3)

A completely different bifurcation from SS+DS is to break the equality of the
C and D amplitudes. From perturbing around the SS+DS solution we find
that the bifurcation occurs at
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4[55(51 — B2) — V251}

tanf =
(Br = Ba) (AT + AL + 205 + af) — 215(2)] — af)

(32)

For ¢ = 0.1 this gives a value of 8 = 1.2610. We can solve the reduced
amplitude equations (50)-(58) directly to find the amplitudes of the modes
in the type 3 solution:

A2 — 22 (1 By — Ajpa) (Br — Ba)
ve = Ble = A= (00— XA (s - ) — 2macin (33)

p+ (p* — 44°)'

C?= 5 (34)
=@’ . 4¢*)'/? (35)

where p and ¢ are defined as
P D i X )t o0
g=CD= ﬁi”Q_A;I (37)

and X = AT + A5 + 2)5 + as.

4.4.8  Bifurcation from type 3 to type 4 solutions

Can a type 3 solution become unstable to perturbations in the A and B
modes in the same way that SS4+DS can? Going back to the perturbation
equations (27)-(30) the equations for u and v are unchanged, except for writing
C =r¢ and D = rp which are not assumed to be equal. However, extra terms
appear in equations (30) and (28) for ¢y = ¢, — 7 and ¢y = ¢y — 7, coupling
them together (below we have dropped the hats again).

d51: —VQTA(:—Z—:—S)¢2+VQTA(:Z+::—§)¢1

So we do not now have the double zero eigenvalue situation that we had before
and there is only one solution branch. This is labelled the type 4 solution, as
it differs from the type 1 solution in having |C| and |D| unequal. They do,
however, have identical spatial reflection symmetries. This bifurcation from
type 3 to type 4 occurs at § = 1.2612 for ¢ = 0.1. The type 4 branch is
stable for 1.3133 < 0 < 1.3215 (see figure 4). The Hopf bifurcation from type
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4 solutions produces a quasiperiodic orbit which is represented as a periodic
orbit in the reduced system, and hence is labelled PO1 on figure 4.

origin

Fig. 4. Part 1 of the bifurcation diagram obtained by travelling anticlockwise around
the origin in the (u1, p2)-plane. Simply-periodic orbits in the full system are repre-
sented as fixed points. Type 1, 2, 3 and 4 solutions are labelled as such. MM refers
to the mixed mode solution. LS - oscillating ‘Large Squares’ solution. H - Hopf bi-
furcation (in the reduced system). Note the transcritical bifurcation between type
1 and type 4 solutions. The MM branch and subsequent bifurcations were carefully
determined using AUTO.

There are many other bifurcations involving fixed points in this system, in-
cluding homoclinic ones. However, they all involve unstable fixed points and
periodic orbits so we will disregard them. The bifurcation diagram shows those
fixed points which bifurcate from the SS+DS solution, and is a complete in-
vestigation of their behaviour. There are also solutions which bifurcate from
each of the other 4 primary solution branches (guaranteed by the Equivari-
ant Hopf Theorem) in the oscillatory invariant subspace (these are TR, TS,
SR and AR). These all follow bifurcation diagrams similar to that given for
SS, but all the solution branches are unstable and so they have no physical
relevance.

4.4.4  Stable modulus-varying solutions

The secondary Hopf bifurcation from type 4 solutions takes place at § =
1.3215 and this periodic orbit (in the reduced system) is stable in the region
1.3215 < 0 < 1.3622. This periodic orbit preserves the symmetry of the type 4
fixed point; points on the orbit satisfy {A; = By, Ay = By, C # D, ¢y = ¢y #
0,1 = 0}. The periodic orbit undergoes another Hopf bifurcation to a 2-torus
at 0 = 1.3622. For 1.3622 < 6 < 1.3744 this quasiperiodic orbit is stable; for
higher values of # numerical results indicate the breakup of the 2-torus and
the existence of a strange attractor (see figure 5).
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This strange attractor is stable up to # = 1.3760 when a new stable periodic
orbit PO2 appears. This new periodic orbit has the same symmetries as the
previous one; points on it satisfy {A; = By, Ay = By,C # D,y = ¢g #
0,7 = 0}. Numerical results show that PO2 is a different orbit to the earlier
one, and the projection of PO2 onto the (]A;], |Az|)-plane is a figure-of-eight
shape, not a simple closed curve as for the first periodic orbit.

After a symmetry-breaking bifurcation, this periodic orbit undergoes a period-
doubling bifurcation at # = 1.3925, and then a period-undoubling bifurcation
at 0 = 1.3954. It is stable in the interval 1.3954 < 6 < 1.3957 before disap-
pearing in a saddle-node bifurcation of periodic orbits. For higher values of 6
trajectories are attracted to a different strange attractor (SA-2 in figure 5).

In the interval 1.3954 < 6 < 1.4514 there is a complex sequence of transitions
between different strange attractors and stable periodic orbits. There is often
more than one stable object at a fixed parameter value.

For 1.4514 < 0 < 2.2270 trajectories are attracted to a new strange attractor
which turns into a 2-torus for 2.2270 < 6 < 2.4137. This torus is created
directly in the bifurcation when the steady solution DR becomes unstable
to perturbations in the A; and B; modes, transverse to the steady invariant
subspace.

4.4.5 The Hopf bifurcation from Diagonal Rolls (DR)

The Hopf bifurcation from DR does not result in a solution combining DR
with one of the five primary branches created in a D, x T?-symmetric Hopf
bifurcation because of the cubic terms with coefficient vy in equations (17)
and (18). When the oscillatory modes are excited, the second steady mode
must also be non-zero; hence the dynamics within the subspace S, are altered
as well as those in transverse directions and the Hopf bifurcation creates a
2-torus in the reduced system, ie a triply-periodic solution. Scaling arguments
show that if the DR solution is given by |C|*> = —us/f1, D = 0 then, near the
bifurcation point when A; and B; are O(e), D is O(e?). This is confirmed by
numerical integrations.

A summary sketch bifurcation diagram completing the circuit anticlockwise
around the origin is given in figure 5. Bifurcations involving strange attractors
are conjectural but all others were determined carefully using AUTO. It is
entirely possible that other stable strange attractors or periodic solutions exist
in this region of the (f,/u2)-plane.
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PD cascade SA-3 \/ 2-Torus

@ - \ SA-torus
PO3 DR
h

""" Periodic window Tt

0

Fig. 5. Completion of the bifurcation diagram in figure 4 travelling anticlockwise
around the origin in the (u1, u9)-plane. Nomenclatures refer to the appearance of
orbits in the reduced system of equations. PD - Period Doubling bifurcation. SN -
Saddle-Node bifurcation. SB - Symmetry-breaking bifurcation of a periodic orbit.
h - homoclinic bifurcation (with the fixed point involved shown in a circle). SA
indicates a strange attractor. Four distinct strange attractors were found numeri-
cally. Arrows show where numerical integrations close to an attractor jumped to a
different attractor as the basin of attraction shrank. The bifurcation which destroys
the attractor has not been investigated. Within the strange attractor SA-3 there
are windows where stable periodic orbits exist.

4.5 Bifurcation analysis in terms of spatial symmetries.

By studying the group theoretic aspects of the problem we can obtain clas-
sifications of all possible bifurcations; these heavy restrictions provide impor-
tant verification of numerical and experimental results [17,18]. A very general
framework for the investigation of symmetry-breaking bifurcations from non-
isolated periodic orbits with spatio-temporal symmetries has been recently
developed by Wulff, Lamb and Melbourne [19,20]. Due to several simplifica-
tions here: the spatiotemporal symmetry element h commutes with all purely
spatial symmetries, so k = 1 in the notation of [19], the use of the reduced
system, and the need only to consider spatial symmetry breaking, we are able
to present the results in a much less technical way.

Finite groups have a finite number of irreducible matrix representations (ir-
reps). For each irrep the matrix representing each group element is unique up
to conjugacy. The traces of such matrices are invariant under such conjugacy
operations, and so these traces uniquely specify an irrep. Furthermore this
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invariance property shows that matrices representing elements in the same
conjugacy class of the group must have the same character in any irrep. This
information (and more, see for example [21]) enables us to construct the char-
acter table for G which classifies the possible symmetry-breaking bifurcations
from a solution with symmetry G.

4.5.1 Classification of bifurcations from Standing Squares

As we will not consider bifurcations which alter the spatial periodicity of the
solutions, we will ignore the pure spatial translations which form the T2 part
of the symmetry group of the problem. The spatio-temporal symmetry h of a
periodic solution is preserved by any perturbation which involves only steady
modes, so all bifurcating solutions from Standing Squares considered in this
section must preserve h. We consider bifurcations as being from a fixed point
of the reduced system (50)-(58) so we can analyse bifurcations in terms of
eigenvalues and eigenvectors.

The spatial symmetries of Standing Squares form the group D, generated by
a y-axis reflection m, and a reflection mg in the line = y. The rotation of
7/2 anticlockwise is denoted p = my o mg. mg = pomy o p* is a reflection
in the line y = —x. The existence of the Boussinesq symmetry (19) results
in a further purely spatial symmetry of Standing Squares: 7 : (z,y,2,t) —
(x4+7/a,y+7/a,1—2,t), i.e. reflection in the mid-plane of the fluid followed
by a translation of half a wavelength in the x and y directions. The full spatial
symmetry group of Standing Squares is ? s¢ = Dy x {Id,7}. The group 7 g5
has 10 conjugacy classes, so (by the orthogonality properties of characters) it
must have 10 irreps. The character table for 7 g5 is given in Table 5.

At a bifurcation point, the dynamics are determined by the behaviour on the
centre manifold. The action of 7 g5 on the mode amplitudes is determined
exactly as before, in section 3. This, in turn, means that ? 5 acts on the
tangent space to the centre manifold. This action of 7 g¢ will generically be
irreducible and so must correspond to one of the irreps listed in table 5. If there
is only one eigenvector, each symmetry will act as =1 on the eigenvector and
we can associate a unique one-dimensional irrep with the bifurcation. The new
state produced in the bifurcation will have a symmetry group consisting of all
the symmetries in ? g which acted trivially (i.e. as +1) on the eigenvector.
This symmetry group is (by definition) then the isotropy subgroup of the new
(bifurcated) solution.

If there are two independent eigenvectors then the action of the symmetries
on the marginal modes can be represented by a set of real 2 x 2 matrices. The
evolution equations for the marginal modes must be equivariant with respect
to these matrices; this restricts the form of these evolution equations. The
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Table 5

The Character Table for I'gg. The irreps are listed in the natural order given by
the induction from the character tables of Dy and {Id, 7}. Writing 7 o p denotes the
group element given by their composition.

Trrep Conjugacy Classes

Id »p p2 mg Mg T TOPp ?0,02 Tomg TOomyg

3

p My Mg Top Tomy Tomg
X1 1 1 1 1 1 1 1 1 1 1
X2 1 11 -1 -1 1 1 1 -1 -1
X3 1 1 1 1 1 -1 -1 -1 -1 -1
X4 1 1 1 -1 -1 -1 -1 -1 1 1
X5 2 0 -2 0 0 2 0 -2 0 0
X6 2 0 -2 0 0 -2 0 2 0 0
X7 1 -1 1 1 1001 -1 1 1 -1
X8 1 -1 1 -1 1 1 -1 1 -1 1
X9 1 -1 1 1 -1 -1 1 -1 -1 1
xo 1 -1 1 -1 I -1 1 -1 1 -1

absence of an irrep of dimension three or higher for this problem shows that
symmetry cannot force three simultaneously zero eigenvalues here. In all cases
we then apply the Equivariant Branching Lemma [13, page 82, theorem 3.3]:
by the Equivariant Branching Lemma, we are guaranteed bifurcating solutions
with isotropy subgroups which have one-dimensional fixed point subspaces. To
find which subgroups of 7 g5 are isotropy subgroups with one-dimensional fixed
point subspaces it is essential to have first identified the irrep.

Using this general theory we can analyse the three possibilities for bifurcations
from Standing Squares. The marginal eigenvectors are elements of a four-
dimensional real vector space corresponding to perturbations in the real and
imaginary parts of C' and D (see equation (25)).

(a) Eigenvector (1,1,0,0), u = C, + D, is the marginal mode so the centre
manifold is one-dimensional.

(b) Eigenvector (1,—1,0,0), u = C, — D, is the marginal mode so the centre
manifold is one-dimensional.

(c) Eigenvectors (0,0, 1,0) and (0,0,0,1), v = C; and v = D; are simultane-
ously marginal modes so the centre manifold is two-dimensional.

In case (a) the elements of 7 g¢ which act as +1 are exactly those in D,. Thus
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the bifurcation breaks the 7 symmetry of SS and corresponds to irrep xs.
The existence of group elements which act as —1 on the 1D centre manifold
means that the bifurcation is a pitchfork, and the dynamics are governed by
an equation of the form @ = ku + bu3.

In case (b) the elements of ? g5 which act as +1 are {Id, mg, mg, p>,7 0 p,7 0
P, Tomy, 7omy,}. These elements form a group isomorphic to Dy, but distinct
from it. We shall denote this group Dy. The corresponding irrep is xig, and
again the bifurcation is a pitchfork, with dynamics on the centre manifold
given by the pitchfork normal form.

Case (c) must correspond to one of the two two-dimensional irreps of ? gs.
Looking at the action of the group elements we find that because 7 : (u,v) —
(—u, —v), it must be irrep xg. The two one-dimensional fixed point subspaces
are (u,0) and (u, u). These have symmetry groups {Id, mg, 7 omg, 7o p?} and
{Id,m,, T om,, 7 o p*} respectively. Both these groups are isomorphic to Z3.
On the centre manifold, the equations for @ and v

U U, v
(s o)
g 9(u,v)
must be equivariant with respect to the action of the symmetries, i.e.
u,v R,(u,v
g (100 ) _ (70 )

where R, is a 2x2 matrix representing a group element. The centre manifold
equations must therefore look like

U= U[H + av® + b(u® + UZ)] (40)
z'):v[fc—kauQ + b(u? +U2)] (41)

when truncated at third order. In theory we can perform the centre manifold
reduction and determine the real coefficients x, a and b in terms of the normal
form coefficients. The planforms of the two solution branches (u,0) and (u, u)
are shown in figure 8.

In this particular problem, because the coefficient v, < 0, we find that case
(b), the bifurcation to SS+DS solutions, occurs for the lowest value of the
parameter 6. If case (a) had occurred for a lower value of 8, we would stay in
the subspace with ¢; = ¢ = ¥ = 0 which Proctor and Matthews [8] call PR
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and we would observe an oscillating version of their “Large Squares” solution.
The behaviour here is very different because it corresponds to a different irrep
of the symmetry group of the pattern. Figures 6-8 show instantaneous views
of solutions to (13) - (18) showing the different patterns produced in these
bifurcations. Each figure shows contours of constant vertical fluid velocity at
the mid-plane of the fluid layer. Solid contours represent upwards flow, dashed
contours represent downwards flow.

Fig. 6. Instantaneous views of (a) Standing Squares, and (b) Oscillating ‘Large
Squares’ created in a bifurcation corresponding to a marginal mode u = C, + D,.
In (b) the solution has a spatial symmetry group Dy - it has lost the symmetry 7.
Both solutions have symmetry h, but this cannot be detected from an instantaneous
view.

Fig. 7. An instantaneous view of the SS+DS solution corresponding to the choice of
u = C, — D, as the marginal mode. This is the case that occurs first for ¢ = 0.1 and
gives a solution with spatial symmetry group D4 and spatio-temporal symmetry h.
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Fig. 8. Instantaneous views of the two bifurcating planforms from the double zero
bifurcation: (a) SS+DR (Diagonal Roll) branch corresponding to v = Cj, (b) SS+DS
(Diagonal Squares) II branch with marginal mode v = C; = w = D;. Both have a
spatial symmetry group isomorphic to Z2 and in addition preserve the symmetry h.

4.5.2  Classification of bifurcations from SS+DS

Exactly as for the bifurcations from SS, we can look at bifurcations from
SS+DS in terms of the irreps of the symmetry group of the SS+DS solu-
tion: ? gs.pg = Dy X {Id,h} (h is the spatiotemporal symmetry defined in
section 3). This group has 10 conjugacy classes, and hence 10 irreps. The
character table of ? g1 pg is the same as that of 7 gg as the two groups are
isomorphic.

As before we can identify which irrep is relevant to a bifurcation by looking
at the action of each symmetry element on the eigenvectors corresponding to
the zero eigenvalues at the bifurcation point.

For the first bifurcation there are two marginal modes (see equations (27)-
(30)): u = (A; — A)/2 and v = (By — By)/2. The spatio-temporal symmetry
h is broken, so the relevant irrep is x%. There will be guaranteed bifurcating
solutions of the form (u,v) = (u,0) and (u,u). The solution (u,0) has sym-
metry group {Id,my} (type 1 - see figure 9(a)) and the solution (u,u) has
symmetry group {Id,7om,} (type 2 - see figure 9(b)). Both these groups are
isomorphic to Zs.

By the same argument as in case (c¢) in the previous section, the centre mani-
fold equations for the marginal modes look like (40) and (41) in this case
as well. From the form of the bifurcation diagram (which we have already
determined through AUTO) the coefficients must satisfy a + 2b < 0 < a.

For the bifurcation to SS+{C#D} (type 3) solutions, the marginal mode is
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Table 6 .
The character table for I'sgips = D4 x {Id, h}.

Irrep Conjugacy classes

Id 7op p*> mgq Fomgy h hop? homgq hofop hoFomy

Fop? mg T omy homg ho#op’ hofom,
X 1 1 11 1 1 1 1 1 1
21 1 1 -1 -1 1 1 1 -1 -1
o1 1 1 1 1 | -1 -1 -1
! 1 1 -1 -1 -1 -1 -1 1 1
x> 2 0 -2 0 0 2 0 -2 0 0
X& 2 0 -2 0 0 2 0 2 0 0
Tl -1 11 -1 1 -1 1 1 -1
&1 -1 1 -1 1 1 -1 1 -1 1
o1 -1 1 1 -1 -1 1 -1 -1 1
Y01 -1 1 -1 1 -1 1 -1 1 -1

u = C, — D,. The symmetries that act as +1 on u are {Id, mg, mg, p*, h}, and
this bifurcation corresponds to irrep x” (as this bifurcation involves only steady
modes in the marginal eigenvectors it must preserve the spatio-temporal sym-
metry h).

(N

(a)
Fig. 9. Instantaneous views of (a) the type 1 solution planform and (b) the type 2
planform. The type 1 solution has symmetry group Zo = {Id,mg} and drifts slowly
along the y = z diagonal as well as executing a vertical oscillation. Similarly, the
type 2 solution has a symmetry group Zs = {Id,7 o my} and drifts slowly in the
y-direction.
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It is important to note that drifting solutions break the symmetry p? - the
direction of drift cannot be invariant under a half-turn rotation. From table 6
we can see that, for this problem, this can only happen when the symmetries
act as x° or X%, forcing a double-zero eigenvalue. This illustrates to what a
great extent possible bifurcations are constrained by symmetry.

4.5.83  Summary of the Boussinesq behaviour for ¢ = 0.1

A summary of the behaviour for ¢ = 0.1, sketching the regions of stability of
each solution in the (u1, po)-plane, is shown in figure 10(a).

r SS+DS
N
g Mainly
Chaotic _ - Ss
Attractors < RS
, N
DR )/ AN
/ \
I \
i \
‘ * ‘ %
I Hy \ I
| /0
/
/
ORIGIN , 8 ORIGIN
/ N
e AN
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s
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Fig. 10. Regions of stability of different solutions for the Boussinesq problem at
¢ =0.1in (a) the (g1, u2)-plane and (b) the (Q2,r2)-plane, computed using (a) and
the transformation defined by equations (21) and (22).

Using the linear transformation defined by the real parts of (21)-(22) we can
redraw figure 10(a) in the (Q2, r2)-plane - figure 10(b). This makes comparison
with the work of Clune and Knobloch [1, figure 5(b)] much easier, and shows
the huge amount of structure which cannot be seen with only one bifurcation
parameter but which is captured in a two-parameter unfolding. As the trans-
formation between (u1, p2) and (@, o) is far from orthogonal, the region of
stability of Diagonal Rolls is squeezed almost to nothing, and there is a much
larger region of chaotic behaviour, as investigated in section 4.4.

4.6 Bifurcations for larger ¢

Following on from the analysis of section 4.4 we can analyse the transverse
stabilities of &; and Sy and hence derive the bifurcation structure in a path
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around the origin in the (uq,puo)-plane as ¢ varies. This is summarised in
figure 11. To the left of line a in figure 11 Standing Squares (SS) are the stable
branch from the Hopf bifurcation. As discussed in section 4.3, to the right
of line a this solution becomes quasiperiodic. By computing the transverse
stability of all the primary solutions in the oscillatory subspace, we can obtain
a necessary condition for the subspace as a whole to be transversely stable.
This is indicated by the dotted line; above the dotted line the whole subspace
S is certainly not transversely stable.

To the right of line b in figure 11 AR are stable in the oscillatory subspace, and
to the right of line ¢ both TR and AR are stable. The bifurcation structure
at high ¢ has also been explored in detail, but we will not present the results
here.

DR

theta

i Osc subspace
SS+DS i possibly stable AR| ARand TR

01 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 11. Stable solutions for varying ¢ in a circle around the origin. Because all
bifurcations take place on straight (half-)lines passing thorough the origin, they are
parametrised by # = tan~!(us/f11). § = —m/2 is the initial Hopf bifurcation from
the origin, and 6 = 7 is the initial steady bifurcation from the origin. Only the first
two bifurcations at most are shown. The meaning of the lines a, b and ¢ is explained
in the text. Note the much greater region of stability of AR at high { as opposed to
SS at low (.

4.7  Numerical results

The analytical work of section 4.4 (and, by implication, the calculation of
the normal form coefficients) was confirmed using a pseudospectral code for
Boussinesq magnetoconvection developed by Cox and Matthews [22]. Fig-
ure 12 shows a numerically obtained instantaneous picture of the vertical
velocity of the fluid layer at the mid-plane which agrees very well with that
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obtained analytically (shown in figure 7), and is numerically well-converged.

I
IRy
s
R
y

"y

Fig. 12. SS+DS solution from the PDEs for Boussinesq magnetoconvection with
¢ =0.1. iy =5, uo = 10 and € = 0.1 which corresponds to physical parameters
R =1657.9, Q = 43.8 and o = 0.0855. The time step At = 0.02.

5 Analysis of the weakly non-Boussinesq equations for { = 0.1

Non-Boussinesq effects introduce the quadratic terms with coefficients a; and
vy. vy is forced to be real by the symmetries, but «; may be complex. By
rescaling the amplitudes we can see that only the ratio of these coefficients
is important and, in addition, always ensure vy > 0. We will focus on two
cases with very different dynamics: ay = vy > 0 and —ay = v; > 0. No new
normal form symmetry is introduced by taking a; € R so these two cases are
generic. Throughout this section we fix ( = 0.1 to enable comparison with the
Boussinesq results.

In the analysis we find a wealth of different types of behaviour: we will only
be interested in what happens very close to the origin in the (p, u2)-plane:
the stable behaviour may be very different to that of the Boussinesq problem,
and it will accurately describe the behaviour of a non-Boussinesq fluid close to
onset. Further from the origin we expect the problem to look more and more
like the Boussinesq one we have already studied. The form of the behaviour
in between is very complex and much less relevant to physical applications.

30



5.1 Case 1: oy =v1 >0

The stable solutions in different regions of the (u1, f12)-plane were determined
using AUTO, and a sketch of the results is given in figure 13.

TYPE 4

TYPE 3

ORIGIN

sn

Fig. 13. Stable solutions in the (1, u2)-plane for case 1 of the non-Boussinesq prob-
lem with ¢ = 0.1. The lines H1 and H2 indicate Hopf bifurcations from the type
4 solution. There is a subsequent secondary Hopf bifurcation to a triply-periodic
solution of the full equations along the line marked T'. The Travelling Squares plus
Diagonal Rolls solution is indicated by TS+DR.

Near the origin type 4 solutions are stable, and near the negative p-axis
Diagonal Rolls are stable (as for the Boussinesq problem). Because of the
quadratic terms the SS solution in the Boussinesq problem does not exist here
(S; is not an invariant subspace for the non-Boussinesq problem). Further
away from the origin we see secondary bifurcations to quasiperiodic solutions,
and then a chaotic region appears further out, but we do not find chaotic
solutions near the origin. The stable type 3 solutions are created in a saddle-
node bifurcation as we cross the line sn in figure 13, and these undergo a
pitchfork bifurcation to type 4 solutions at the line pf. The determination of
this line analytically is theoretically straightforward, but becomes algebraically
very messy. It is not pursued here. There are many other bifurcations as we
cross the pp and po axes but they do not create stable solutions and are not
shown.

As we go further from the origin, the type 3 solution - SS+{C # D} - becomes

closer and closer to an SS+DS solution, so ‘at infinity’ (corresponding to the
limit oy — 0, v; — 0) we recover the Boussinesq behaviour.

31



5.2 Case 2: —ay =v; >0

The normal form contains a large number of invariant subspaces. To give an
idea of the complexity of case 2, we can find a subspace which contains all
the dynamics of the 2:1 two-dimensional resonance problem studied by Arm-
bruster, Guckenheimer and Holmes [23], Proctor and Jones [24] and Julien [25,
chapter 2]. This includes the formation of robust homoclinic cycles. Moreover,
this subspace is related by symmetry to three others, so there are four copies
of these dynamics embedded in the problem.

Define the subspace V as being where A;, B; and D are non-zero, and all
other amplitudes are zero. This subspace is flow-invariant, and the dynamics
are:

AIZAI[MI +)\1|A1|2+)\3|Bl‘2+)\4‘D‘2} +C¥1DBl (42)
BlzBl[Ml+)\1‘Bl|2+)\3|A1|2+)\4|D|2]+()11DA1 (43)
D= Dluy + 1|D|* + B3| A1 * + B3| B1|*] + 11 A, By (44)

Writing the modes in terms of their moduli and arguments we find there is
only one important phase difference; x = 0p, — 04, +0p. If we further assume
that |A;| = |B1| = A then we reduce this system to three real equations for
A, |D| (we will just write D for |D|) and x:

A=Al + (N 4+ X} A% + \,D?] + ADay cos x (45)

D = D[/,LQ + ﬁlDQ + 255142} + V1A2 COS X (46)
. A%

X= —(20&1D —+ ylﬁ) S Y (47)

This is the system analysed by [23-25] in which a stable robust homoclinic
cycle is formed. Numerical integrations of the full system in the quadrant p, >
0, g > 0 and analytic investigation of (45)-(47) give support to the following
scenario: a stable DR solution bifurcates from the origin at gy = 0 and then
loses stability to a DR+TR solution. This periodic solution then undergoes
a secondary Hopf bifurcation which is supercritical close to the origin, and
subcritical further away. This periodic orbit (as it appears in (45)-(47)) then
collides with the DR fixed point to create a robust cycle. This sequence of
events is identical to that found in the 2:1 steady-state/steady-state mode
interaction. The resulting bifurcation structure away from the origin is very
complex. We also numerically find trajectories that cycle irregularly between
the two DR fixed points (C' = 0, D # 0) and (C # 0, D = 0). Near each
fixed point the flow is locally expanding but the global contraction indicates
the existence of a chaotic attractor.
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What is much more analytically tractable (and does not occur in the 2:1 res-
onance problem) is the behaviour in the quadrant u; > 0, ps < 0 of the
(1, p2)-plane. As we cross from p; < 0 to pg > 0 with s fixed and negative
we find that stable AR and SR solutions appear. This is due to the stabilising
effect of the quadratic terms in (13)-(18). More interestingly, these two oscil-
latory solutions make the quadratic terms in the C and D equations vanish,
so these two solutions will lose stability to perturbations in C' and D along
a straight line passing through the origin in exactly the same way as for the
Boussinesq problem.

We summarise the regions of existence of these two unexpected solutions near
the origin. There is a wealth of extra detail which is omitted: we concentrate
on the central result that there are regions of the (1, u2)-plane where these
solutions exist and are stable.

5.2.1 Stable solutions from Alternating Rolls

An Alternating Roll solution is of the form |A;| = [As| = |By| = |Bs|, ¥ = 7.
It loses stability to an AR+DS solution when

Ha 205 — v (48)
e AT+ AL+ 205 — of

which defines a straight line passing through the origin in the (p1, 12)-plane
labelled pf1 in figure 14(a). By a usual perturbation argument we can also find
where the AR solution becomes unstable to SCR+DS (Standing Cross Roll
plus Diagonal Squares) solutions; these have the form |A;| = |Ay], | By| = | Bal,
|C| = |D|, p1 = ¢ =0, ¢ = 7). Let

|A1| = Ay =rap+u  |Bi|=|By] =rap—u
|C]=|D|=v ¢1 =y =0 (49)
Y=+

and linearising in the small perturbations u, v and ¢ (dropping the hat):

u pr + rAR(BfT + 4N, + ab) 0 3 R u
v | = 0 pa 4+ 14405 + 2v9) 114, v
W —8rar(f' + ab) —8a; datvrip | \
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The AR solution is unstable to SCR+DS perturbations when this matrix has
a zero eigenvalue. This defines the line pf2 in figure 14(a).

Periodic Orbit 9%
SCR+DRec -7 B

AR+DS

SCR+DRec

AR
SCR+DS

SCR+DS

pfl

(a) (b)

Fig. 14. (a) Incomplete sketch of the (u1, p2)-plane showing the region of stable Al-
ternating Roll (AR) solutions for case 2 of the non-Boussinesq problem with ¢ = 0.1.
To the right of the dotted line neither SCR+DS nor SCR+DRec (Standing Cross
Rolls plus Diagonal Rectangles) exist - they disappear in saddle-node bifurcations.
(b) Bifurcation diagram following a circle anticlockwise around the point P.

5.2.2  Stable solutions from Standing Rolls

Similarly, Standing Roll solutions are of the form |A;| = |As|, |B1| = |B2| = 0.
Numerical investigations show that they also lose stability in two ways. As in
the case of Alternating Rolls we can apply the usual perturbation arguments
to derive analytic expressions (at least implicitly) for the location of these
bifurcation curves. The curve HI in figure 15 is the locus of a Hopf bifurcation
from Standing Rolls. There is also a pitchfork bifurcation to a Standing Rolls
plus Diagonal Squares solution along the line pf. The point TB where these
two lines H1 and pf meet is a Takens-Bogdanov point; a complete bifurcation
diagram will include all the other bifurcations near the T'B point.

In conclusion, even though the Boussinesq problem is dominated by solutions
based on Standing Squares, a small amount of compressibility or another non-
Boussinesq effect can introduce very different stable solutions.
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H2

Periodic Orbit (SR+DS) W

SR+DS

U:

SR

Periodic Orbit (SR)

pf

H1

Fig. 15. Incomplete sketch of the (1, p2)-plane showing the region of stable Standing
Rolls (SR) for case 2 of the non-Boussinesq problem with ¢ = 0.1. Along the curve
H1 there is a Hopf bifurcation from the SR solution, and along the curve H2 there
is a Hopf bifurcation from the SR+DS solution.

6 Discussion and conclusions

In this paper we have investigated the stable periodic and quasiperiodic solu-
tions near a codimension 2 point in an idealised magnetoconvection problem.
There are several obvious deficiencies in the approach: restricting the prob-
lem to a periodic lattice is essential to ensure the centre manifold is finite-
dimensional, but it means we cannot find the stability of these patterns to
perturbations which do not lie on the lattice (e.g. hexagonal patterns), and
we have not investigated stability to modulational disturbances.

This analysis has only a local validity around the codimension 2 point: by
restricting solutions to other square lattices we can investigate mode interac-
tions where the ratio of wavenumbers is not 1 : \/5, but other irrational ratios.
The 1 : /2 resonance will have a great influence on a complete description of
the transition from steady to oscillatory convection because it is such a strong
resonance, affecting the amplitude equations at third order.

This transition from steady to oscillatory forms of convection completes the
analysis of Clune and Knobloch [1]. Although the most unstable wavenumber
jumps as we cross the CT line, by introducing a second bifurcation parameter
as we have done here, it is possible to build up a coherent, continuous picture
of this smooth transition.

Even ignoring non-Boussinesq effects, it is a very complex transition. We have
seen examples of chaotic sets created in each of the three common ways,
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namely the breakup of a torus, through a period-doubling cascade of periodic
orbits, and from a homoclinic connection at a fixed point. This complexity
is the reason for concentrating only on stable objects, and not attempting
to present a complete bifurcation structure. The continuation and bifurcation
package AUTO [14] was used in conjunction with analytic techniques and
symmetry arguments: these three approaches complement each other.

The non-Boussinesq analysis is much more difficult, and very little can be done
analytically. In case 1, where a; and 14 have the same sign the behaviour
near the origin is qualitatively similar to that in the Boussinesq problem.
However, case 2 («; and vy have opposite signs) contains regions of stable
AR and SR which are not seen in the Boussinesq case. Interestingly, when
the oscillatory modes have the form of Alternating Rolls, ie (A1, A, By, By) =
(2,2, iz,iz) the quadratic terms A B, + By Ay and A; B, 4+ B, A, in the C and
D equations are identically zero. This simplifies some of the analysis in case
2. The fact that a large qualitative change in behaviour can occur between
the Boussinesq and non-Boussinesq problems is also interesting. Numerical
studies of 3D compressible magnetoconvection in the oscillatory regime have
demonstrated a strong preference for AR and TR over the other periodic
planforms [26, section 5.2].

The appearance of drifting solutions has been observed in numerical experi-
ments on compressible magnetoconvection and and has been analysed theo-
retically [2]. The theoretical framework of bifurcations with continuous and
spatio-temporal symmetries which explains the occurrence of these novel so-
lutions is very general [19,20], and finds many other applications, for example
the appearance of ‘superlattice’ patterns in Faraday-wave experiments [17,18].

The 1 : /2 interaction also occurs in rotating thermal convection. Work on this
problem is in progress [27]: the required physical parameters (Prandtl number
and Taylor number) can be obtained experimentally, so direct comparisons
between theory and experiment could be made.
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Appendix

By writing the complex amplitudes as A; = Ae'?41, C = Ce'c etc we can
rewrite the equations (13)-(18) as evolution equations for the moduli and
phases of the six complex variables. These translational symmetries mean we
can eliminate three of the phase variables, and the moduli equations depend
on only three combinations of the phase variables. Thus we can form a reduced
set of 9 equations; six moduli and three phase equations. Define

¢1="0p, — 0p, +0c —0p
¢2:9A2 _9A1+9C'+9D
wZHBl +932 _9141 _9142

and, dropping the tildes on the moduli variables, the reduced equations for

the Boussinesq problem are

Ay= Ay [ + N A2+ N A3+ Ny (BY + B2) + Nj(C? + D?)]
+ Ay By By(ah cosh — absin 1)) 4+ A;CD(a cos ¢y — asin ¢y)

Ay = Ay + N A%+ NA% + Ny(BY + B2) + Nj(C? + D?)]
+A, By By (ahcos ) — absin ) + A,CD(aj cos ¢y + o sin ¢y)

B =5 [Hl + N[ B 4+ M Bs 4+ M5 (AT + A3) + N (C7 + D2)]
+By Ay Ay (b cos ) + alysin ) + ByCD(ak cos ¢y — o sin ;)

By =By + N B2 + Ny B? + Ny(A3 + A2) + Nj(C2 + D?)]
+B Ay As(afy cos ) + absing) + BiCD(a cos ¢y + o sin ¢y)

C=Clus+ BiC* + foD? + B5(A2 + B + A3 + BY)]
+vo(B1ByD cos ¢y + A1 Ay D cos ¢s)

D=D[ps+ BiD* + B,C* + By(A} + B} + A3 + B)]
+vo(B1BoC cos ¢y + A1 AsC cos )

‘ B, B ' : i i i
b :A1A2(§: - B—j)(a% cos ) — absine) + (A — Ay — 264 (B3 — BY)
B,.CD, . B,CD ’
+2 (0 cos by — o sin ¢y) — ———(absin ¢y + A cos ¢y )

BQ Bl
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C Dy . C Dy .
+19 [AlAQ (B - 5) Sin d)Q — BlB2(5 + 6) sin ¢1]
1 A A T i i i i 2 2
P2 = 3132(— - —) (a5 sine) + af cos ) + (A} — Ay — 205) (A; — A7)
Ay A
+A10D (o cos ¢y — afysin ¢y) — @(ag sin ¢g + af cos ¢y)
A2 Al
C Dy . D C\ .
“+159 |:B1B2 (5 — 5) Sin d)l — A1A2(5 + 5) Sin ¢2]
. B1 BQ i ro. Al A2
¢:A1A2(§2 + E)(a2 cos ) — agsin ) — BIBQ(A—2 + A,
1, Bi | B A A
Daoj|(= + = —(—+—
+C a3[(32 + Bl>COS b1 (A2 + A1>COS (;52]
[ B2 Bi, . A Ay
+C’Da3[(§1 — §2> sin ¢1 + (A_2 - A_1) sin ¢2]

+(A X — 200 (B? 4+ B2 — A2 — AY)
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