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Abstract

Robust heteroclinic cycles (RHCs) arise naturally in collections of symmetric differential equations
derived as dynamical models in many fields, including fluid mechanics, game theory and population
dynamics. In this paper, we present a careful study of the complicated dynamics generated by small
amplitude periodic perturbations of a stable robust heteroclinic cycle (RHC). We give a detailed deriva-
tion of the Poincaré map for trajectories near the RHC, asymptotically correct in the limit of small
amplitude perturbations. This reduces the nonautonomous system in R

3 to a 2D map.
We identify three distinct dynamical regimes. The distinctions between these regimes depend

subtly on different distinguished limits of the two small parameters in the problem. The first regime
corresponds to the RHC being only weakly attracting: here we show that the system is equivalent to a
damped nonlinear pendulum with a constant torque. In the second regime the periodically-perturbed
RHC is more strongly attracting and the system dynamics corresponds to that of a (non-invertible
or invertible) circle map. In the third regime, of yet stronger attraction, the dynamics of the return
map is chaotic and no longer reducible to a one-dimensional map. This third regime has been noted
previously; our analysis in this paper focusses on providing quantitative results in the first two regimes.

1 Introduction

A heteroclinic cycle in a dynamical system consists of saddle-type invariant sets (equilibrium points,
periodic orbits or chaotic attractors), and heteroclinic trajectories connecting them. In generic dynamical
systems without symmetry or other constraints, such configurations are structurally unstable. On the
other hand, in symmetric systems the existence of invariant subspaces (fixed under a symmetry subgroup)
may force the existence of such connecting trajectories; heteroclinic cycles may then become robust in
the sense that the heteroclinic cycle persists under small symmetry-preserving perturbations.

Examples of robust heteroclinic cycles (RHCs) connecting equilibrium points have been discussed in
many contexts [28, 17, 24, 10, 12, 7, 31]. Perhaps the most important motivations for their study have been
ecological models of competing species [18, 28], thermal convection [9, 6, 34], game theory [14, 38], and
mathematical neuroscience [35, 44, 42, 37, 43, 3, 4, 36]. In biological settings, systems with heteroclinic
cycles represent mathematically the concept of ‘winnerless competition’ which has been widely discussed
as being a more biologically-relevant paradigm than the alternative ‘winner-takes-all’ assumption in many
scenarios, especially in game theory and evolutionary biology [30].
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The focus of this paper is on the specific, seemingly simple model problem given by the following set
of three ordinary differential equations:







ẋ = x(1− (x+ y + z)− cy + ez) + γ(1− x)f(2ωt)
ẏ = y(1− (x+ y + z)− cz + ex)
ż = z(1− (x+ y + z)− cx+ ey)

. (1)

In the case γ = 0 this is exactly the toy model example proposed by May and Leonard in 1975 [28] as
an example of competitive Lotka–Volterra type model for the dynamics of three populations: x(t), y(t)
and z(t) are the non-negative proportions of the total population that consists of each species. May and
Leonard proved that when the coefficients satisfy 0 < e < c < 1, there exists an attracting invariant
set in the closed octant R

3
+ that consists of three saddle-type equilibrium points, situated one on the

positive part of each axis, and heteroclinic connecting orbits between them The dynamical behaviour is
aperiodic: typical trajectories near this ‘heteroclinic cycle’ spend increasing amounts of time near each
saddle point on each occasion that they return close to it. Although May and Leonard did not point out
the robustness of this cycle, it clearly is robust due to an obvious biological constraint (in the case γ = 0):
if a species is extinct at time t = 0, it will remain extinct for all t > 0. In other words, the coordinate
planes {x = 0}, {y = 0} and {z = 0} form invariant planes supporting the connecting orbits. Within
each of these invariant planes the relevant connecting orbit is a saddle-sink connection, and therefore it
is structurally stable.

Guckenheimer and Holmes [17] analysed the May–Leonard example further and confirmed more gen-
erally that robust heteroclinic cycles exist in open subsets of the space of Cr vector fields, r ≥ 1, on
R
3 which are equivariant with respect to a symmetry group generated by two elements, namely, cyclic

permutation of the coordinate axes and reflection in the coordinate planes.
Symmetry-breaking constant perturbations to RHCs are well-known [21] to result in long-period peri-

odic orbits that lie close to the original cycle. For a heteroclinic cycle perturbed by random noise, the time
taken for trajectories to return to a cross section transverse to the original heteroclinic cycle becomes a
random variable with well-defined statistics, for example the mean return time [40]. Perhaps surprisingly,
given these previous studies, to date there has been very little systematic investigation of the effects of
perturbations that are time-periodic, despite that being natural for the modelling of many biological ef-
fects. Mathematically, one might expect to make comparisons between the effects of time-periodic forcing
on a heteroclinic cycle and the well-known effects of time-periodic forcing on periodic oscillations, for
example frequency-locking. These general observations provide twin motivations for the work described
in this paper.

In this paper we consider the extension of the Lotka–Volterra type model (1) taking f(2ωt) to be
a non-negative, 2π-periodic and continuously differentiable function, and the perturbation amplitude γ
to be small and positive: 0 < γ ≪ 1. Our choice of perturbation term, and its appearance only in
one coordinate is made for two reasons. First, it simplifies the quantitative reduction of the differential
equations to a map, as we outline in section 2.3 and in the Appendix. Second, it allows comparison with
previous work by other authors, in particular Rabinovich et al. [35].

Considering the form of the periodic forcing, the choices made in (1) are a generalized version of the
system studied in [35]. There, the motivation was neuronal dynamics, and so the variables x(t), y(t), z(t)
represented instantaneous firing rates of neuronal circuits within each of which couplings are assumed to
be stronger than the couplings between circuits. In this context Rabinovich et al [35] used the dynamics
of (1) to examine possible synchronisation phenomena in the ‘winnerless competition’ between three
neural circuits. For example, they reported numerically the existence of a sequence of intervals in the
forcing frequency ω within which frequency locking is observed (for the specific case c = 0.25, e = 0.2
and f(2ωt) = sin2(ωt)) and outside which complicated dynamics are observed. Since in this case the
dynamical variables represent firing rates they are clearly non-negative quantities, and the form of the
perturbation term was chosen to preserve this feature. This is also a sensible feature in terms of the
population dynamics motivation of May and Leonard. But mathematically, other choices are of course
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possible and may lead to more complex behaviour. We leave these further possibilities as the subject of
future work, expecting that the results we present here are useful in this wider context.

In our previous papers [13, 41] we presented preliminary results of investigations. We pointed out the
existence of two distinct dynamical regimes corresponding to the existence or non-existence of intervals
of frequency locking as ω varies. The present paper substantially extends and generalises these results:
we highlight the existence of a third regime, in which the dynamics can be reduced to that of a damped
nonlinear pendulum; we provide substantial additional detail on the intermediate regime in which the
dynamics is equivalent to a circle map; and we carry out quantitative analyses in the invertible and non-
invertible cases. The Appendix contains the construction of the Poincaré map for general f(2ωt); the
paper [13] worked exclusively with the case f(2ωt) = sin2(ωt).

We now briefly describe the main results and the contents of this paper. Our approach is asymptotic
in nature and throughout the analysis we consider the amplitude γ of the time-periodic perturbation to
be sufficiently small that terms of O(γ2) and higher can be neglected. A second parameter of considerable
interest is ǫ := (c/e)3 − 1 which measures the attractivity of the RHC. The forcing frequency ω is our
principal bifurcation parameter, and in several places we consider limits of small and large ω in order to
make analytic progress. In section 2, we review the definition of RHCs, the symmetric dynamics context
and we summarise the effect of adding constant symmetry-breaking perturbations, in order to set the
scene. In section 2.3, we present the Poincaré map of the system (1) for the case f(2ωt) = sin2(ωt). The
Poincaré map for this non-autonomous system yields a description of the dynamics in terms of a 2D map
for the x-coordinate and the return time t at which trajectories cross the Poincaré section. Although one
might expect the x-coordinate of the map to decay rapidly until it is of the same asymptotic order as
the perturbation amplitude γ, careful investigation of the dynamics is necessary to make this statement
precise; the existence of two small parameters allows a distinguished limit to arise in which this is not the
case. Section 2.4 considers the interaction between these two small parameters in detail and defines the
‘weakly attracting’ and ‘strongly attracting’ regimes. Having introduced the parameter ǫ that measures
the rate of convergence of trajectories to the RHC that exists in the unperturbed case γ = 0, we describe
the ‘weakly attracting’ case that arises in the distinguished limit γ ≪ 1 such that γǫ ∼ 1, and the ‘strongly
attracting’ case that arises in the limit γ ≪ 1 such that γǫ ≪ 1. We also informally refer to the weakly
attracting case as being ‘ǫ near 0’ and the strongly attracting case as being ‘ǫ of order unity’; implicitly
we consider γ always to be asymptotically small.

We discuss these two cases in detail in sections 3 and 4, respectively, which are the heart of the paper.
In section 3 we show that in the weakly attracting case the dynamics of the Poincaré map is equivalent
to the well-known two-dimensional continuous time dynamics of a forced damped pendulum with torque.
For this problem trajectories are attracted generically either to a stable equilibrium, or to a stable periodic
orbit. For an open region of parameter space these two stable invariants coexist: the dynamics exhibit
bistability. The implication of these results for our forced RHC are that, for a fixed forcing frequency,
there are three possible attracting sets: a periodic orbit, a stable 2-dimensional torus, or their coexistence
within a region of bistability.

In section 4, where the RHC is strongly attracting, we observe circle map dynamics. We show in
section 4 that the system is equivalent (i) to an invertible circle map when the forcing frequency ω is
large, and (ii) to a non-invertible circle map when ω > 0 is sufficiently small. For intermediate values of
ω we are unable to proceed analytically due to the complicated form of the Poincaré map. We provide
numerical evidence that the transition from a non-invertible to an invertible circle map when ω increases
is ‘monotonic’ in the sense that there is a single value of the forcing frequency above which no chaotic
dynamics appears, but below which every interval in which the dynamics appears to be complicated
appears to contain chaos.

Section 5 contains additional results that set the paper in a wider context. In subsection 5.1 we compare
our results with the results of Afraimovich et al [2], who also carried out a derivation of the Poincaré map
for a periodically-perturbed Lotka–Volterra-type system in R

3 and investigated the bifurcation structure
analytically. The results of [2] agree with, and are complementary to, those we present here. Afraimovich
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et al. [2] establish sufficient conditions for the dynamics of the periodically forced RHC to be either
‘regular’ (i.e. having an invariant closed curve as the maximal attractor) or chaotic in the sense that the
dynamics of the 2D return map is chaotic. The regular regime corresponds to our strongly attracting
regime in which the dynamics are those of a circle map. Since we keep the forcing frequency ω as an
explicit bifurcation parameter, we are able to probe the structure of the strongly attracting regime in
more detail. We remarked on the existence of the chaotic regime for the 2D return map in our previous
paper [13], see in particular figure 6 in that paper. Given this, the detailed work we present on the weakly
and strongly attracting regimes, and the sufficient condition for chaotic dynamics deduced by [2], we do
not comment further on this third regime in the present paper.

In section 5.2 we briefly discuss more general classes of periodic perturbation. In many respects
the dynamics of the Poincaré map of the ODE system (1) for the case f(2ωt) = sin2(ωt) turn out to
be indicative of the dynamics of the system (1) for general periodic functions f(2ωt). However, the
perturbation function γ sin2(ωt) has the particular feature that its time-average and maximum amplitude
are of the same order. Clearly it is of interest to explore cases where the mean and maximum amplitude
of the forcing function γf(2ωt) do not scale in the same way. In section 5.2 we propose a slightly more
general form for the forcing function in order to derive a generalised model map; we then briefly discuss
its bifurcation structure. We summarise our results in section 6.

2 Symmetric structure and perturbation effects

In this section we recall and summarise standard definitions from equivariant dynamics and introduce our
model example.

2.1 Symmetric structure

Let Γ ∈ O(n) be a compact Lie group acting linearly on R
n. Let f : Rn → R

n be a Γ-equivariant vector
field. That is

f(γx) = γf(x), ∀γ ∈ Γ and ∀x ∈ R
n.

Definition 2.1 Suppose that ξj, j = 1, · · · ,m are hyperbolic equilibria of the vector field f(x) and that
the group orbits Γξj = {γξj : γ ∈ Γ}, j = 1, 2, . . . ,m are distinct. Let W s(ξj) and W u(ξj) denote the
stable and unstable manifolds of ξj, respectively. The set of group orbits of the unstable manifolds

X = {W u(γξj), j = 1, · · · ,m, γ ∈ Γ}

is said to form a heteroclinic cycle provided dimW u(ξj) = 1 for all j = 1, . . . ,m and

W u(ξj)− {ξj} ⊂
⋃

γ∈Γ
W s(γξj+1).

Here, we use indices ‘modulo m’, i.e. we set m+ 1 ≡ 1. If m = 1, we call X a homoclinic cycle.

Let Σ ⊆ Γ be a subgroup. We define its fixed-point subspace by

Fix(Σ) = {x ∈ R
n : σx = x,∀σ ∈ Σ} .

In particular, since f(Fix(Σ)) ⊂ Fix(Σ) for every Γ−equivariant f and isotropy subgroup Σ, the
following definition is natural:

Definition 2.2 The heteroclinic cycle X is a robust heteroclinic cycle if for each j = 1, . . . ,m, there
exists a fixed-point subspace Pj = Fix(Σj) where Σj ⊂ Γ, such that (i) ξj+1 is a sink in Pj (considering
indices to be taken ‘modulo m’ as before) and (ii) W u(ξj) ⊂ Pj .
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In [17] Guckenheimer and Holmes considered Γ-equivariant vector fields for the group Γ ⊂ O(3)
generated by

rx =





−1 0 0
0 1 0
0 0 1



 and σ =





0 0 1
1 0 0
0 1 0



 ,

i.e. Γ consists of cyclic permutations of the coordinate axes in R
3 and reflections in the coordinate planes.

It is easily shown that systems of k-times continuously differentiable ODEs (k ≥ 3) that are equivariant
with respect to Γ have a truncated Taylor expansion at the origin that takes the form (up to cubic order)







ẋ = x(λ+ a1x
2 + a2y

2 + a3z
2)

ẏ = y(λ+ a1y
2 + a2z

2 + a3x
2)

ż = z(λ+ a1z
2 + a2x

2 + a3y
2)

, (2)

which we will refer to as the ‘G–H system’ of ODEs. The G–H system is closely related to the Lotka–
Volterra system (1), with γ = 0 through the change of variables (x̃, ỹ, z̃) = (x2, y2, z2). To put the ODEs
into exactly the form (1) it is necessary also to carry out a rescaling of time and the dependent variables
in order to set λ = a1 = 1. Finally, we note that the non-negativity of the forcing term ensures that
the positive orthant remains forward-invariant under time integration so we may restrict our attention to
that part of the phase space.

Removing this restriction, and considering a forcing term that took both positive and negative values,
would be most natural in the context of the G–H system (2) rather than for the Lotka-Volterra version (1)
due to the change of variables that relates them. We expect that a forcing term taking values of both signs
added to the G–H system would lead to switching near to the heteroclinic network formed by the group
orbits of equilibria. This would demand a more detailed analysis, keeping track of which equilibrium
points a trajectory had visited. We would expect this paper to provide useful material to support the
investigation of the dynamics in this, more complex, situation which we may consider in future work.

Throughout the paper we consider the coefficients to satisfy 0 < e < c < 1 which guarantees the
existence of an asymptotically stable robust heteroclinic cycle when γ = 0.

2.2 Effects of perturbations

Additive constant perturbations to (2) or the Lotka–Volterra version (1) with γ = 0, usually result in
long-period periodic orbits that lie close to the RHC that exists when the perturbation is not present.
This observation is widely recognised in the literature, for example see Proctor & Jones [34] and Krupa
[21]. The period of the periodic orbit is ‘long’ in the sense that it tends to infinity as the amplitude
of the perturbation tends to zero, usually logarithmically: T ∼ C̃1 log(1/γ) where γ is a (positive)
measure of the amplitude of the perturbation and C̃1 is a constant that depends on the vector field away
from neighbourhoods of the equilibria on the RHC, and is therefore usually very difficult to calculate
analytically. C̃1 will also depend on the precise form of the symmetry-breaking perturbations introduced
and therefore we have been deliberately vague about the form of the perturbation: the logarithmic
dependence T ∝ log(1/γ) appears to be very generally applicable.

One might therefore expect that, to a first approximation, the effect of the term γ(1−x)f(2ωt) in (1)
would be to replace the attracting RHC with an attracting periodic orbit whose period T ∝ − log γ. This
is exactly what happens when the perturbation term does not explicitly depend on time, for example
replacing γ(1− x)f(2ωt) by γ(1− x)/2 in (1), as illustrated in figure 1.

Since the logarithmic scaling of T with γ is well known, and since in this paper we will work in the
regime in which γ is always small, the real interest lies in understanding how the presence of a second
frequency 2ω (the factor of 2 is for consistency with the remainder of the paper), within the external
forcing term, affects the dynamics. There is a clear distinction to be made between two cases: 2ω > 2π/T
and 2ω < 2π/T . If the frequency of the external forcing 2ω is smaller than 2π/T then we expect closed
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Figure 1: The period T of the periodic orbit generated by the time-independent perturbation term
γ(1 − x)/2, as a function of the perturbation amplitude γ. As expected, the relationship is very close to
the form T = C1− ξ log γ. The constant ξ ≡ (e2+ ce+ c2)/e3 can be computed directly from the Poincaré
map reduction. The constant C1 cannot easily be computed analytically. Other parameter values are
c = 0.25 and e = 0.2.

trajectories near the periodic orbit to make a number of excursions close to the full length of the (former)
periodic orbit before closing. When the dynamics is investigated using Poincaré (return) maps, the
corresponding orbit produces several discrete intersection points between the orbit and the hyperplane
used in the construction of the return map. All these points lie on a single orbit of the continuous-
time dynamics. In the case 2ω > 2π/T trajectories wind several times around a toroidal surface near
the original periodic orbit before intersecting the hyperplane again. Thus closed orbits correspond to
single points on the hyperplane and therefore to fixed points of a return map. A prominent feature
of the dynamics that we explore are the existence of intervals in ω over which closed orbits exist that
are frequency-locked in the sense that the closed orbit winds k times around the toroidal surface before
closing. The period T of such an orbit satisfies 2ω = 2πk/T .

2.3 The Poincaré map

The Poincaré (return) map method has become the standard approach for studying the dynamics near
heteroclinic cycles and networks [21, 10], just as it is for the study of dynamics near periodic orbits. The
idea of the method is to define a codimension-one hyperplane, (often called a ‘cross-section’), that all
trajectories in a neighbourhood of the heteroclinic cycle intersect transversely. Repeated intersections
define a return map from the cross-section to itself; studying the dynamics of this map enables us to
understand the dynamics of trajectories near the periodic orbit or heteroclinic cycle. For a heteroclinic
cycle we can make additional analytical progress by constructing the return map as the composition of
two kinds of map: local maps within neighbourhoods of the saddle-type equilibrium points where the
dynamics can be well approximated by the flow of the linearised equations (since the equilibrium points
are hyperbolic), and global maps from one neighbourhood to another.

Previous work for example [19, 22, 23, 32, 33], uses the Poincaré map method to study the dynamics of
an autonomous system containing a robust heteroclinic cycle. Only a few papers consider non-autonomous
dynamics in any detail. Afraimovich et al. [2] derived a Poincaré return map for a system which is similar
to the one we consider; section 5 discusses their results.

The derivation of the Poincaré map involves careful calculation of the local and global maps between
cross-sections. Near equilibrium j on the RHC these are denoted H in

j and Hout
j for j = 1, . . . , 3, as

indicated on Figure 2. Because of the time-periodic perturbation, the local linearisations now include
time-dependent terms. These time-dependent terms play a very important role in calculating the local
map accurately. Our calculation also takes the time-periodicity of the global maps (diffeomorphisms
between two cross sections) into account: numerically this can be seen to produce a better map than that
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Figure 2: Sketch of the cross sections for the heteroclinic cycle and the times at which a trajectory near
the cycle hits each cross section.

in [13], although the effect of the time-periodic terms is small since the time spent on these parts of the
trajectory is much less than that spent near the equilibrium points.

As well as the values of the coordinates, the non-autonomous nature of the dynamics requires us to
keep track of the elapsed time spent on each part of the trajectory. At leading order we obtain a return
map that comprises a single coordinate and the elapsed time: it is a two-dimensional return map rather
than the one-dimensional return maps that are usually obtained in the more common calculations for
autonomous dynamics. Apart from this additional aspect, the detailed calculation of the Poincaré map is
quite standard in nature: we leave the detail of the derivation and the explicit form of it to the Appendix.
However, there are two points that deserve brief remarks here. Firstly, although the perturbation term
only acts on the x-coordinate in our ODE system (1), the Poincaré map calculation is very similar for the
more general case in which all three coordinates are perturbed, and the leading order result should be of
the same form as (47). Secondly, the form of the Poincaré map at leading order in γ is unchanged if we
replace the perturbation term γ(1− x)f(2ωt) with γf(2ωt). This is because the time-dependencies enter
only through the local maps H in

3 → Hout
3 and H in

2 → Hout
2 at leading order. For these two local maps,

however, x is O(γ) and so the γxf(2ωt) term is O(γ2).
For convenience when making detailed analysis and comparisons with numerical simulations of the

ODEs, we will consider the system (1), setting f(2ωt) = sin2(ωt), as [13]. As illustrated in Figure 2, we
construct a return map F (x, t) from the cross section H in

3 (i.e. the plane {y = h} in a neighbourhood of
P3 = (0, 0, 1)) to itself. The Poincaré map F (x, t) takes the form (x̄, t̄) = F (x, t) := (f1(x, t), f2(x, t)):















f1(x, t) = µxd + γ [µ1 + µ2(−a1 cos(2ωg) − b1 sin(2ωg))
−µ4(−a1 cos(2ω(t̄− δ3))− b1 sin(2ω(t̄− δ3)))
−µ5(−a2 cos(2ωt̄)− b2 sin(2ωt̄))] +O(γ2)

f2(x, t) = t+ µ3 − ξ log(x)− γ ξ
2e [1− a2 cos(2ωt) + b2 sin(2ωt)]x

−1 +O(γ2)

, (3)

where we define the coefficients a1 = c2/(c2 + 4ω2), b1 = 2cω/(c2 + 4ω2), a2 = e2/(e2 + 4ω2), b2 =
2eω/(e2 + 4ω2), ξ = (e2 + ce + c2)/e3, d = (c/e)3, and the function g(x, t) := t + µ3 − ξ log(x). The
coefficients µ, µ1, . . . , µ5 and δ3 depend on the global maps and are not computable analytically. We make
specific choices for these parameter values at various points in the analysis, to indicate that the dynamics
of the ODEs are well captured by the dynamics of the above 2D map. In every case, the parameter values
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that we give are the result of careful systematic scans through parameter space; however, the values are
not the result of an optimisation procedure, so they are not ‘optimal’ in any precise sense. This is in line
with our hope that the 2D map will elucidate the generic kinds of dynamics selected by the ODEs, and
this is seen to be the case. We ignore terms in (3) that are O(γ2) or higher: throughout the analysis of
later sections we take γ sufficiently small in the analysis that these terms are certainly negligible.

In general in order to ensure that Poincaré maps such as F are well-defined, it is necessary to check
that there exists an open set V in R

2 such that F (V ) ⊆ V . In our case this is clear since each local and
global map is a diffeomorphism defined on the intersections of open neighbourhoods of the points Pj with
the relevant cross-sections and with the positive octant R

3
+: there are no difficulties with cusp-shaped

regions (or their complements) as often arise in the study of heteroclinic networks [19].

2.4 Asymptotic balances in different distinguished limits

In this subsection we motivate the existence of two distinct asymptotic regimes in the limit γ ≪ 1: either
ǫ := d− 1 is in addition small, so that γǫ ∼ 1 in the limit of small γ, or ǫ is larger, so that γǫ ≪ 1 when
γ ≪ 1.

The dynamics of (3) depends in a complicated way on the relative size of the first term in f1(x, t)
compared to the remaining terms. We set the scene for the different cases that are considered in the next
section by considering the dynamics of the one-dimensional map x̄ = l(x) := xd + γ; in some sense this is
a ‘time-averaged’ and simplified version of x̄ = f1(x, t) where, for simplicity and without loss of generality
(after rescaling x and γ), we can set µ = µ1 = 1.

The first question we ask about the map l(x) concerns the existence of fixed points: l(x̂) = x̂. This
depends on the relative sizes of the two small positive parameters γ and ǫ := d− 1. When ǫ > 0 is small
we are close to the resonant bifurcation at which (in the absence of the time-periodic forcing) the robust
heteroclinic cycle would lose stability. We now estimate the region of the (ǫ, γ) plane in which a fixed
point x̂ exists. We note that since ǫ > 0 the graph of l(x) has zero gradient at x = 0, and the gradient
is positive and monotonically increasing to +∞ in x > 0. We define xm to be the point at which the
gradient is unity: l′(xm) = 1. We obtain, explicitly,

xm =

(

1

1 + ǫ

)1/ǫ

.

Now, since l(0) = γ > 0, if xm ≥ l(xm), i.e. γ ≤ xm − x1+ǫ
m , then necessarily the equation l(x) = x has at

least one solution in x > 0. In other words, given ǫ > 0, there exists

γ1(ǫ) :=

(

1

1 + ǫ

)1/ǫ

−
(

1

1 + ǫ

)(1+ǫ)/ǫ

,

such that if γ ≤ γ1(ǫ), then l(x) = x has a solution. We denote the solution smaller than, or equal to, xm
by x̂ (i.e. this is the stable fixed point when two exist).

We now estimate the asymptotic size of x̂ in terms of γ and ǫ. This is useful since it indicates
under what conditions we may ignore the term xd in (3) without qualitatively affecting the dynamics.
Let p > 1 be a constant. Then x̂ = γ1/p is, directly, a solution of l(x̂) = x̂ if and only if ǫ = ǫp(γ) :=
p log(γ1/p−γ)/ log γ−1. Since ǫp(γ) is a strictly monotonically increasing function of γ > 0, we may apply
the inverse function theorem to assert that there exists a function γ2,p(ǫ) such that x̂ = γ1/p if and only if
γ = γ2,p(ǫ), see Figure 3. We conclude that if (ǫ, γ) lies in the region Φp = {(ǫ, γ) : γ2,p(ǫ) ≤ γ ≤ γ1(ǫ)},
then γ1/p ≤ x̂ ≤ xm. It follows that different choices of ǫ and γ may lead to x̂ being either close to γ or x̂
being far larger than γ. This, in turn, implies that xd can either be neglected or not, respectively, in (3).

Upper and lower bounds (denoted by B1 and B2, respectively) on x̂ can be constructed by linear
interpolation, using the monotonicity and convexity of l(x), as shown in Figure 4. More precisely, consider
the line L1 in the (x, l(x)) plane joining the two points (0, γ) and (xm, xdm+γ). L1 intersects the diagonal
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the curves γ = γ1(ǫ) (upper curve, red) and γ = γ2,p(ǫ), for any p > 1. For illustration we show two cases:
p = 2 (middle curve, blue) and p = 3/2 (lowest curve, green).

at x = l(x) = γxm/(xm − xdm). Since l(x) is convex, L1 lies above l(x) for 0 ≤ x ≤ xm. In particular,
L1 lies above the intersection point x̂ of l(x) with the diagonal. Hence it follows that we have the upper
bound x̂ ≤ B1(ǫ, γ) := γxm/(xm−xdm). Similarly, consider the line L2 defined as the line passing through
(γ, γd+γ) and tangent to l(x) there. Since γ < x̂, and the gradient of l(x) is increasing, the intersection of

L2 and the diagonal, which occurs at B2(ǫ, γ) :=
(

1 + γǫ

1−(1+ǫ)γǫ

)

γ, is a lower bound for x̂. To summarise:

B2(ǫ, γ) :=

(

1 +
γǫ

1− (1 + ǫ)γǫ

)

γ ≤ x̂ ≤ xm
xm − xdm

γ =: B1(ǫ, γ).

Figure (4)(b) indicates these upper and lower bounds for x̂ in the case of e = 0.2 and γ = 10−6, varying
c in order to vary ǫ (recall that d := (c/e)3 and ǫ := d − 1). Further, since these scaling arguments
are independent of the oscillating terms in the first equation of (3), we can use them to estimate the
importance of the role of the xd term when c is near e. For example, the xd term can be ignored in the
case c = 0.25, e = 0.2 for which ǫ ≡ (c/e)3 − 1 = 0.953125. This analysis justifies our procedure, when
discussing the numerical simulations presented later, in which we typically fix e = 0.2 and γ = 10−6 and
consider the two contrasting cases c = 0.2001 and c = 0.25.

In the following two sections we investigate the bifurcation structure of (simplified versions of) sys-
tem (3) when varying the forcing frequency ω, i.e. considering ǫ and γ as fixed. Our discussion above can
be summarised by saying either that we are in the case ‘ǫ near 0’ meaning that, for a given γ, ǫ is small
enough such that the term xd must be included in the Poincaré map (3) since γǫ ∼ 1. Or, in contrast, we
will say that we are in the case ‘ǫ of order unity’ if, for a given γ, ǫ is large enough that xd can be ignored
without causing qualitative changes to the bifurcation structure, i.e. γǫ ≪ 1. The actual values of ǫ that
these situations correspond to will themselves depend on γ.

3 The weakly attracting regime: γ, ǫ ≪ 1 with γǫ ∼ 1

Having worked carefully to construct the Poincaré map (3) in section 2.3, it is perhaps surprising that the
dynamics of the map can be captured quantitatively by a much simpler form. In this section we justify
this simpler form, and we then explore its behaviour in more detail, given that it is simple enough to be
analytically tractable.
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(b) The upper (Bd

1 , blue) and lower (Bd
2 , green) bounds for x̂d functions of ǫ for e = 0.2 and γ = 10−6.

(b) shows that when ǫ → 0 at fixed positive γ we find that x̂d ≫ γ while with increasing ǫ at fixed γ, x̂d

rapidly becomes far smaller than γ.

The results of subsection 2.4 show that in the weakly attracting regime the term µxd in f1(x, t), the
first equation in (3), contributes to the leading-order determination of the size of fixed points x̂. Moreover,
when fixed points exist, assuming that the O(γ) terms in (3) do not vanish, we expect x̂ ≫ γ. The precise
form of the O(γ) terms in the first equation of (3) contributes (at fixed x) a t-periodic function whose
amplitude and phase depends on the forcing frequency ω. The coefficients a1 and a2 are in fact close
to each other in the weakly attracting regime, for all values of ω, since the limit ǫ ≪ 1 implies that the
difference between c and e is small.

Given that the terms in the first equation in (3) contain several undetermined parameters (µ2, µ4, µ5

and δ3) that come from the global parts of the Poincaré return map, we propose replacing this complicated
collection of quantitatively unknown terms with a single sinusoidal perturbation, i.e. we replace f1(x, t)
in (3) with

x̄ = µxd + γµ1 (1 +
√
a2 sin(2ωt)) .

We turn now to the second equation of (3). The form of the O(γ) terms in f2(x, t) can in fact be rewritten
in a much simpler form using the new simplified form of f1(x, t) above. This observation has its roots in
the Taylor series argument, expanding in γ, that we used to derive (3). The O(γ) terms in the second
equation of (3) arise naturally in a Taylor expansion of log x̄, so that we can collect the leading order and
O(γ) terms together and write

t̄ = t+ µ3 − ξ log x̄,

as the most concise way to describe the t-dynamics, ignoring terms that are O(γ2). Note that the right
hand side still contains non-trivial dependence on t since it contains x̄, not x.

Putting these together, the simplified map (x̄, t̄) = F (x, t) takes the form

{

x̄ = µxd + γ
(

1 +
√
a2 sin(2ωt)

)

,
t̄ = t+ µ3 − ξ log x̄,

(4)

and for completeness we recall that a2 = e2/(e2 + 4ω2), ξ = (e2 + ce + c2)/e3, d = (c/e)3. µ and µ3 are
parameters that arise from the global parts of the return map and hence may be adjusted to fit the ODE
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Figure 5: Comparison of the dynamics of the ODEs and the simplified model map (4). (a) Attractors
for the dynamics of the ODE (1) for c = 0.2001, e = 0.2 and γ = 10−6. We plot the x-coordinates
of the points of two typical trajectories on the cross section H in

3 for each fixed ω after transients have
decayed. The curves in the figure correspond to frequency-locked periodic orbits in the ODEs. Bistability
occurs in both ends of each curve. The horizontal ‘lines’ in the figure, which all sit near x̂ ≈ 2.2 × 10−3,
indicate (possibly complex) dynamics with |x− x̂| = O(γ). (b) Quantitatively similar dynamics observed
by iterating the simplified model map (4) with parameters γ = 2 × 10−5, µ = 1 and µ3 = 27. The four
curved lines indicate the existence of fixed points for the return map; each curve exists over one of the
first four frequency-locking intervals [ω−

k , ω
+
k ] for k = 1, . . . , 4, defined in section 3.1.

dynamics (we have taken µ1 = 1 since, numerically, this appears to be a reasonable value, and variation
in µ1 corresponds only to a rescaling of γ).

Figure 5 compares bifurcation diagrams computed numerically via integration of the ODE system and
from iteration of the 2D model map (4), using ω as the bifurcation parameter, in the case c = 0.2001,
e = 0.2 (and so ǫ ≈ 0.0015) and γ = 10−6. Although the end points of the frequency-locking intervals are
not quite at the same values of ω, it is clear that many other aspects are captured extremely accurately
and the main global features of the dynamics in these two systems are essentially identical. Thus the
numerical results confirm our intuition in replacing the complicated parts of f1(x, t) by a much simpler
sinusoidal term.

We observe that, in the map, orbits are attracted either to an invariant curve or to a fixed point, and
indeed both may be stable simultaneously, see figure 7 for an example that will be discussed in detail
presently. The corresponding dynamics for the ODE system is the existence of a stable invariant torus or
periodic orbit which again may both be stable at the same time. Moreover, these attractors alternate in
a regular pattern as ω increases.

Frequency-locked periodic orbits occur in intervals on ω which can be identified by considering a plot
of the return period T = t̄ − t against ω. Such a periodic orbit must have a period that is an integer
multiple of the forcing frequency π/ω, i.e. a period T = kπ/ω, for some k ∈ N. The curves in Figure 6
therefore lie on the hyperbolas T (ω) = kπ/ω indexed by k.

11
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Figure 6: The ω–T plot for the system (4) for c = 0.2001, e = 0.2, µ = 1, µ3 = 27 and γ = 2× 10−5. The
curves, on which frequency-locked periodic orbits exist (compared to figure 5), are sections of hyperbolas
as discussed in the text, i.e. T = kπ/ω for integers k = 1, . . . , 4.

In the remainder of this section, we will consider (4) as a model to enable us to understand the dynamics
of the ODEs (1) in the case ǫ near 0. We give a detailed analysis near the ends and near the centre of
the frequency locking intervals for small ω in subsections 3.1 and 3.2 respectively. In subsection 3.3 we
show that for sufficiently small frequencies ω, below ω−

1 , there exists a globally attracting invariant curve
within the 2D map. In the case ω → ∞, the dynamics are the same as in the case ω → ∞ for ǫ large:
this case is studied in section 4.1.

3.1 Local bifurcations

In this section we discuss the bifurcations that occur at the end of the frequency locking intervals in the
model system.

Consider varying ω through the kth frequency locking interval which we denote by ω−
k ≤ ω ≤ ω+

k and
define below. A fixed point (x, t) = (x(ω), t(ω)) in the system (4) exists, for a given ω, if and only if

{

x = µxd + γ(1 +
√
a2 sin(2ωt))

µ3 − ξ log x = kπ/ω
, (5)

hence x(ω) = exp((µ3 − kπ/ω)/ξ). Since x(ω) is monotonically increasing, tends to zero as ω → 0 and
tends to eµ3/ξ as ω → ∞, which is much larger than the typical values of x that we are interested in for
our choices of parameters, we define ω−

k to be the smallest ω such that x(ω) satisfies the first equation of
(5) for some t. At ω = ω−

k , sin(2ωt) takes the value −1 and so t(ω−
k ) =

3π
4ω−

k

.

For ω is slightly above ω−
k , x(ω) > x(ω−

k ) and there exist two values for t(ω), one larger and one
smaller than t(ω−

k ), such that (x(ω), t(ω)) satisfy (5). The stability of these fixed points can be easily
computed. The Jacobian of system (4) is

(

dµxd−1 2ω
√
a2 cos(2ωt)γ

−(ξ/x̄)dµxd−1 1− (ξ/x̄)2ω
√
a2 cos(2ωt)γ

)

.

When ω = ω−
k , the two eigenvalues are λ1 = 1 and λ2 = dµxd−1 which is less than unity in magnitude.

For ω slightly above ω−
k , λ1 is less than unity if t(ω) > t(ω−

k ) and greater than unity otherwise, while
λ2 is positive and less than unity if ω is close enough to ω−

k . Accordingly, we have proved the following
proposition.

12



Proposition 3.1 System (4) undergoes a saddle-node bifurcation at ω = ω−
k and a stable fixed point

(x(ω), t(ω)) exists in ω > ω−
k for |ω − ω−

k | sufficiently small.

A similar argument applies to the right-hand end ω = ω+
k of the kth frequency-locking interval where

another saddle-node bifurcation occurs and the stable and unstable fixed points disappear. These saddle-
node bifurcations correspond to the ends of the segments of curves shown in Figures 5 and 6.

From Figure 5, it appears that there exists a separate attracting invariant set near x = 0.0022. Since
x(ω) crosses this value as ω increases for each fixed k, the question arises as to how the dynamics of the
system change when the stable fixed point (x(ω), t(ω)) passes near the invariant set. We analyse this
situation in the next section.

3.2 Global bifurcations of the system

We now turn to investigating the dynamics near the centre of the kth frequency-locking window. As shown
in Figure 7, the stable fixed point (x(ω), t(ω)) moves from below to above the other attracting invariant
set when ω increases. This transition is mediated by global bifurcations, and in fact we show, at least
asymptotically, that the bifurcation structure is that of the well-known forced damped pendulum.

Let (x̂, ωk) be values of x and ω at the centre of the kth frequency-locking interval, i.e. we define them
to satisfy

{

x̂ = µx̂d + γ

µ3 − ξ log x̂ = kπ
ωk

.

Since we are working in the limit ǫ ≪ 1, we may approximate ξ = 1
e (1 + c/e + c2/e2) ≈ 3/e. Now

consider values of (x, ω) near (x̂, ωk). We define the new variables (y, λ) as follows. Let xn = x̂(1 + yn)
and µ3ω − (3ω/e) log x̂ = kπ + (3ω/e)λ; we consider |y| and |λ| to be small. We also define sn = 2ωtn
and substitute all these into (4). We obtain

xn+1 = x̂(1 + yn+1) = µx̂d(1 + yn)
d + γ(1 +

√
a2 sin sn),

= (x̂− γ)(1 + dyn +O(y2n)) + γ(1 +
√
a2 sin sn),

= (x̂− γ)(1 + yn) + (x̂− γ)
(

ǫyn +O(y2n)
)

+ γ(1 +
√
a2 sin sn).

Dropping O(y2n) and O(ǫy) terms we obtain

yn+1 − yn = x̂−1γ(−yn +
√
a2 sin sn).

For the time coordinate, using (4) we obtain

2ω(t̄− t) ≡ sn+1 − sn = 2ωµ3 −
6ω

e
(log x̂+ log(1 + yn+1)),

= 2ωµ3 −
6ω

e
(log x̂+ yn+1) +O(y2n+1)

≈ 6ω

e
λ− 6ω

e
yn+1.

Therefore,

yn+1 − yn
x̂−1γ

= −yn +
√
a2 sin sn,

sn+1 − sn
x̂−1γ

=
6ω

x̂−1γe
(λ− yn+1) .

Since γ1/p ≤ x̂ ≤ xm for some fixed p > 1, we have x̂−1γ → 0 if (ǫ, γ) → 0 within Φp (see section 2.4).
Hence, these difference equations are well approximated by the differential equations

{

ẏ = −y +
√
a2 sin s,

ṡ = η2 (λ− y) ,
(6)
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Figure 7: Iterates of the 2D map (4) from many initial conditions at (a) ω = 0.05, (b) ω = 0.053 and
(c) ω = 0.056. Parameters are c = 0.2001, e = 0.2, µ3 = 27 and γ = 2 × 10−5. (a) and (c) show that a
stable fixed point exists alongside the invariant curve. As ω increases, the stable fixed point moves from
below to above the invariant curve. The dynamics in parts (a), (b) and (c) of this figure correspond to
the sketches in figure 8 parts (b), (d) and (f) respectively.

where η2 = 6ω/(x̂−1γe) is a parameter that we formally require to remain O(1) in the limit. Strictly
speaking, this would demand varying k as we take γ and ǫ smaller; for fixed k we find that η increases,
albeit slowly, as γ → 0. This increase in η can be estimated asymptotically as follows. As x̂ → 0, for any
fixed k, we find ωk → 0, indeed ωk ∼ −ekπ/(3 log x̂). Suppose that x̂ = γ1/p for some p > 1. Then

η2 ∼ − 2pkπ

γ(p−1)/p log γ
, (7)

which increases without bound as γ → 0 for any fixed p > 1. For the values of ǫ and γ that we have
investigated numerically the agreement between the dynamics of the differential equations and the 2D
map remains good over a range of k. By way of illustration, Figure 9 shows that the ODE system (6)
possesses very similar dynamics to the map system (4) near ωk for k = 2. Here, we compute ωk = 0.053
and x̂ = 2.2 · 10−3, using the parameters c = 0.2001, e = 0.2, µ3 = 27 and γ = 2× 10−5.

Combining the two equations in (6), we obtain

s̈ = −η2ẏ = η2y − η2
√
a2 sin s,

= −ṡ+ η2λ− η2
√
a2 sin s.

After rescaling time derivatives by d/dt → ηd/dt we obtain the canonical equation for a damped pendulum
with a constant applied torque:

s̈+ η−1ṡ+
√
a2 sin s = λ. (8)

Physically, for the pendulum, the η−1ṡ term corresponds to linear friction: oscillations are strongly
damped when η is small. The λ term corresponds to the constant applied torque. The dynamics of
equation (8) are quite simple and have been fully investigated ([11, 5]). If |√a2

−1λ| > 1 then the only
invariant set is a stable periodic orbit. If |√a2

−1λ| < 1 and η−1 is large then only equilibria exist.
However, bistability occurs when |√a2

−1λ| < 1 and η−1 is small. In this case, the stable equilibrium and
periodic orbit coexist. Figure 10 shows the schematic bifurcation diagram for (8).

To summarise, this analysis indicates that the 2D map (4) can be well approximated by the ODE (8)
in the case ǫ near zero, i.e. within the distinguished limit ǫ → 0, γ → 0 such that x̂−1γ → 0 as discussed in
section 2.4, and in which η remains O(1). Within this asymptotic limit we would expect the bistable case
in which we have coexistence of a stable equilibrium and a stable periodic orbit to arise for η sufficiently
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Figure 8: Sketch phase portraits in the (s, y) plane for the system (6) corresponding to the cases λ < 0:
(a), (b) and (c); λ = 0: (d); and λ > 0: (e), (f) and (g). Red dots denote fixed points: one stable
(filled circle) and one unstable (unfilled circle). The thin dashed line denotes y = 0. The one-dimensional
invariant curve exists in (a), (b), (f) and (g) near y = 0 and is coloured red. The blue curves are the
stable and unstable manifolds of the unstable fixed point. As ω increases, i.e. λ moves from negative to
positive, a pair of fixed points appears via a saddle-node bifurcation: (a)→(b); the system then undergoes
a global bifurcation (shown in (c)) when the invariant curve disappears; the fixed points then move from
below to above the line y = 0: (c),(d) and (e); a second global bifurcation takes place (shown in (e)) and
the invariant curve reappears; the pair of fixed points then disappears again via a second saddle-node
bifurcation: (f)→(g).

large, therefore this case dominates at small ǫ. At larger ǫ, η decreases and we move out of the bistable
case. These observations agree with the numerical results shown in figures 5 and 15 here, and also with
figures 2 and 3 in [13].

Therefore, we have proved the following proposition:

Proposition 3.2 The dynamics of the system (4) are asymptotically equivalent to the dynamics of a
damped pendulum with constant torque (8) near the centres of each of the frequency-locking intervals
[ω−

k , ω
+
k ] when the parameters ǫ and γ are both sufficiently small as long as (ǫ, γ) ∈ Φp for some p > 1.

3.3 The dynamics for ω < ω−
1

For any fixed ǫ and γ there exists a minimum frequency ω at which frequency locking is possible: this is
the left-hand end of the first interval, denoted ω−

1 above. In this subsection we investigate the dynamics
for forcing frequencies smaller than this: 0 ≤ ω < ω−

1 . We are able to prove that if ω is sufficiently small
then the maximal attractor for the dynamics is an invariant curve. This ensures, for example, that the
bistable dynamics of the previous subsection cannot occur.

We first prove a theorem analogous to that proved by Afraimovich, Hsu and Lin [2] (and stated here as
Theorem 5.1) which provides a sufficient condition for the existence of an invariant curve as the maximal
attractor for their map, which took the form (20).

Consider the following system (x̄, θ̄) = F (x, θ) defined by:

{

x̄ = µxd + γ(1 + a sin θ),
θ̄ = θ + ω̃ − η̃ log x̄.

(9)

Fix γ and (without loss of generality) set µ = 1. Recall from section 2.4 that x̂ satisfies the equation
x̂ = x̂d + γ and suppose x̂ is of order γ1/p for some p > 1, so that x̂ ≫ γ; this can be done by letting d
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Figure 9: The dynamics of the system (6) at (a) ω = 0.05 (λ = −0.3725), (b) ω = 0.053 (λ = 0) and
(c) ω = 0.056 (λ = 0.3725). Parameters are c = 0.2001, e = 0.2, µ3 = 27 and γ = 2 × 10−5. We take
ωk = 0.053 and x̂ = 2.2 × 10−3. The curves are trajectories from three initial conditions.

be close enough to 1. Let A = 2a/(1 − dx̂d−1). We begin by proving that

D = {(x, θ) : 0 < x̂−Aγ ≤ x ≤ x̂+Aγ, 0 ≤ θ ≤ 2π} , (10)

is an invariant region for F .

Lemma 3.1 The annular region D ⊂ R× S1 is forward-invariant under iteration of the map F .

Proof: Suppose that (x, θ) ∈ D, so that in particular x < x̂+Aγ, then by substituting for x̂ and Taylor
expanding we obtain

x̄ ≤ (x̂+Aγ)d + γ(1 + a sin θ) = x̂d +Aγdx̂d−1 + γ + γa sin θ +O(γ2),
≤ x̂+Aγdx̂d−1 + γa sin θ +O(γ2),
≤ x̂+ γ(Adx̂d−1 + a) +O(γ2) = x̂+ γ

(

a− adx̂d−1 + 2adx̂d−1
)

/
(

1− dx̂d−1
)

+O(γ2),
≤ x̂+ γ

(

a+ adx̂d−1
)

/
(

1− dx̂d−1
)

+O(γ2) < x̂+Aγ +O(γ2),

since dx̂d−1 < dxd−1
m = 1 by the definition of xm in section 2.4. Similarly, x̂−Aγ provides a lower bound

for x̄ of F in D since

x̄ ≥ (x̂−Aγ)d + γ(1 + a sin θ) = x̂d − γdµx̂d−1A+ γ + γa sin θ +O(γ2),
≥ x̂− γdx̂d−1A+ γa sin θ +O(γ2),
≥ x̂− γ(dx̂d−1A+ a) +O(γ2) = x̂− γ

(

a+ adx̂d−1
)

/
(

1− dx̂d−1
)

+O(γ2) > x̂−Aγ +O(γ2).

Hence D is a forward-invariant region for the map F . �

This lemma implies the existence of an attractor for F in D. However, we cannot at the moment
identify what it looks like. The ‘Annulus Principle’ provides sufficient conditions for F to possess an
invariant closed curve as its maximal attractor. We define the maximal attractor of F in D to be
∩∞
n=1F

n(D).

Theorem 3.1 (‘Annulus Principle’ [1]) Let Ψ : (x, θ) 7→ (x̄, θ̄), x ∈ R
k, θ ∈ T

ℓ, be a map of the form

x̄ = f(x, θ), θ̄ = θ + g(x, θ) (mod 2π),

where f, g are differentiable functions which are 2π-periodic in θ = (θ1, . . . , θℓ). Assume that Ψ maps
an annulus D = {(x, θ) : |x| ≤ r0}, for some r0 > 0, into its interior. Define the norm for vectors or
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Figure 10: Bifurcation diagram for the forced pendulumwith torque (8) which is equivalent to the Poincaré
map (4) for small ǫ. ωk denotes the centre of the kth frequency-locking interval in ω and λ ∝ ω − ωk.
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matrices in D: ‖ · ‖ = sup(x,θ)∈D | · |, where | · | is the relevant Euclidean norm. If

(a) ‖(I + gθ)
−1‖ < ∞,

(b) ‖fx‖ < 1,

(c) 1− ‖(I + gθ)
−1‖ · ‖fx‖ > 2

√

‖(I + gθ)−1‖2 · ‖gx‖ · ‖fθ‖,
(d) 1 + ‖(I + gθ)

−1‖ · ‖fx‖ < 2‖(I + gθ)
−1‖,

where I is the ℓ×ℓ identity matrix and subscripts indicate differentiation with respect to the corresponding
variables, then the maximal attractor in D is an invariant M -dimensional torus which is the graph of a
smooth function x = h(θ).

We use the Annulus Principle to prove the following theorem concerning the dynamics of (9), setting
µ = 1 without loss of generality.

Theorem 3.2 Suppose d and γ take values so that x̂ ≫ γ. Then there exists a constant δ, depending on

d and γ, such that if η̃a < δ and a < (xm−x̂)(1−dx̂d−1)
2γ , then there exists an invariant closed curve as the

maximal attractor for F in D.

Recall that (in section 2.4) xm is defined by the relation dµxd−1
m = 1.

Proof: Referring to (9) we set f(x, θ) = xd + γ(1 + a sin θ), g(x, θ) = ω̃ − η̃ log x̄, M = x̂ +
2aγ/

(

1− dx̂d−1
)

≡ x̂ + Aγ and m = x̂ − 2aγ/
(

1− dx̂d−1
)

≡ x̂ − Aγ. Note that if a < (xm − x̂)(1 −
dx̂d−1)/(2γ) then it follows immediately that M < xm.

Let (x, θ) ∈ D. We proceed to check each of the conditions (a)-(d) in turn.

(a) We compute that

|gθ| =
∣

∣

∣

∣

− γη̃a cos θ

xd + γ(1 + a sin θ)

∣

∣

∣

∣

.
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It is easy to prove that for each fixed x, the maximal value of the right hand side in this last equality
when varying θ is

η̃aγ
√

(µxd + r)2 − a2γ2
,

which is certainly less than 1 for η̃a small enough. In this case,

‖(I + gθ)
−1‖ =

(

1− γη̃a
√

(md + γ)2 − a2γ2

)−1

< ∞

always holds, and moreover ‖(I + gθ)
−1‖ → 1 as η̃a → 0.

(b) We compute that ‖fx‖ = ‖dxd−1‖ ≤ dMd−1 < dxd−1
m = 1 since x̂ is smaller than xm and dxd−1

m = 1
by the definition of x̂ and xm in section 2.4.

(c) We compute that

‖gx‖ = ‖η̃ dxd−1

xd + γ(1 + a sin θ)
‖ < η̃

dMd−1

m
,

since xd + γ(1 + a sin θ) > m by Lemma 3.1. We observe also that ‖fθ‖ ≤ aγ. By letting η̃a → 0,
‖(I + gθ)

−1‖ will tend to 1 and ‖gx‖‖fθ‖ will tend to 0. Thus the third condition for the ‘Annulus
Principle’ holds.

(d) Since ‖(I + gθ)
−1‖(2 − ‖fx‖) → 2 − ‖fx‖, which is greater than unity, as η̃a → 0, the fourth

condition also holds.

Hence, the conditions of Theorem 3.1 are met as long as η̃a sufficiently small, and so the result is
proved. �

In our case, referring back to (4), we have θ = 2ωt, a =
√
a2 = e/

√
e2 + 4ω2 and η̃ = 2ωξ =

2ω(e2 + ce + c2)/e3. Note that the definition of the invariant set D in (10) depends implicitly on ω
through a, however since

√
a2 ր 1 as ω ց 0, we can obtain an invariant set D0 which is independent of

ω by replacing a by unity in the definition of A before equation (10). Then, because η̃a = 2ωξ
√
a2 tends

to 0 as ω → 0, we have the corollary below.

Corollary 3.1 Suppose d and γ are such that x̂ ≫ γ. Then there exists an ω0, depending on d and
γ, such that for all ω < ω0, the system of equations (4) has an invariant closed curve as its maximal
attractor in D0.

4 The strongly attracting regime: γ ≪ 1 with γǫ ≪ 1

In this section we consider the dynamics of (3) when d is not asymptotically close to unity, equivalently
ǫ := d − 1 is not small, so that γǫ ≪ 1. By the results in section 2.4, in this case the xd term in the
first equation of (3) is asymptotically smaller than the other terms which are O(γ), and in the absence
of perturbation (i.e. γ = 0) the RHC is strongly attracting. Therefore the Poincaré map (3) can be
approximated by dropping the xd term to give















x̄ = f1(x, t) = γ [µ1 + µ2(−a1 cos(2ωg) − b1 sin(2ωg))
−µ4(−a1 cos(2ω(t̄− δ3))− b1 sin(2ω(t̄− δ3)))
−µ5(−a2 cos(2ωt̄)− b2 sin(2ωt̄))] ,

t̄ = f2(x, t) = g − γξ/(2e)[1 − a2 cos(2ωt) + b2 sin(2ωt)]x
−1,

(11)
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Figure 11: The dynamics of the ODEs (1) as ω → ∞, for γ = 10−6. The range of return times T for
trajectories reduces as ω increases, tending, as ω → ∞, to the return time expected for the RHC subjected
only to the time-averaged perturbation; this value is indicated by the blue dot at ω ≈ 0.43 and agrees
with figure 1.

where g = t+ µ3 − ξ log x.
This system turns out to be a little more complicated than (4) which was considered in the previous

section. To begin with we consider with two asymptotic cases: ω ≫ 1 (section 4.1) and ω ≪ 1 (sec-
tion 4.2). In general, both cases display circle map dynamics. In section 4.3 we illustrate the dynamics
for intermediate values of ω numerically since detailed analytical study appears not to be possible.

4.1 The dynamics for large ω

For the original ODEs (1) we might intuitively expect that, in the limit ω → ∞, the time-periodic forcing
term has an effect equivalent to that of the time-averaged perturbation term γ(1 − x)/2.

From (11)1, recalling that a1 = c2/(c2 + 4ω2), b1 = 2cω/(c2 + 4ω2), a2 = e2/(e2 + 4ω2), and b2 =
2eω/(e2 + 4ω2), we deduce that, as ω → ∞, x̄ ≈ µ1γ + O(γ/ω). Substituting this into (11)2 indicates
that the return time T = t̄− t becomes

T = µ3 − ξ log(µ1γ +O(γ/ω)) − γξ/(2e) [µ1γ +O(γ/ω)]−1 ,
= µ3 − ξ/(2eµ1)− ξ log(µ1γ) +O(γ/ω),
∼ C1 − C2 log γ,

where C1 = µ3 − ξ/(2eµ1)− ξ log µ1 and C2 = ξ are constants. The result of this calculation is therefore
exactly that discussed above in section 2.2 and illustrated in figure 1.

We turn now to the dynamics of (11) for finite ω. Substituting x = µ1γ into (11)2 we obtain

t̄ = t+ µ3 − ξ log(µ1γ)−
ξ

2eµ1
(1−√

a2 sin(2ωt)),

= t+ ν +
ξ
√
a2

2eµ1
sin(2ωt),

where for convenience we define the constant ν = µ3 − ξ log(µ1γ) − ξ
2eµ1

. We tidy up by rescaling time,
letting s = ω

π t, and observing that
√
a2 ∼ e

2ω when ω ≫ 1. We obtain

s̄ = s+
ω

π
ν +

ξω
√
a2

2πeµ1
sin(2πs),

≈ s+
ω

π
ν +

ξ

4πµ1
sin(2πs), (12)
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which is the canonical 2-parameter family of circle maps

θ̄ = θ + α+
β

2π
sin(2πθ),

which are invertible if β < 1 and noninvertible if β > 1. Comparing (12) to the canonical family, we see
that passing to the limit ω → ∞ is equivalent to letting α → ∞ at fixed β = ξ/(2µ1) in the canonical
family. Therefore, we have proved the following proposition:

Proposition 4.1 For large ω there exists a constant K near ξ/2 such that (i) if µ1 > K then system (3)
is equivalent to the canonical family of invertible circle maps, and (ii) if µ1 < K then it is equivalent to
a family of noninvertible circle maps.

The reduction to a circle map indicates that there is an invariant curve for the 2D map; to a first
approximation it is just the horizontal line x = µ1γ in the (t, x) plane. Fixed points for the circle map
correspond to periodic orbits near the RHC for the ODEs (1). Proposition 4.1 indicates whether the circle
map is expected to be invertible or non-invertible; this depends on the ratio ξ/(2µ1). ξ depends only on
the eigenvalues c and e, but µ1 depends on the global parts of the dynamics, away from neighbourhoods
of the equilibria; these will also vary if we vary c and e. So it is not possible to conclude directly, for
example, that if c and e are large (so that ξ is small) then β will be less than unity, and the circle map
will be invertible.

4.2 The dynamics for ω near 0

In this section we consider the opposite limiting case, i.e. ω → 0. We recall that a1 = c2/(c2 + 4ω2)
and a2 = e2/(e2 + 4ω2) so they both tend to unity as ω → 0. In addition, b1 = 2cω/(c2 + 4ω2) and
b2 = 2eω/(e2 +4ω2) both tend to zero as ω → 0. The map (11) can then be easily simplified by dropping
the terms with coefficients b1 and b2. Comparisons with numerical simulations show that an even simpler
nonlinearity is sufficient to capture the dynamics at small ω. Iterates of the map lie close to an invariant
curve that can be well approximated by x = µ1γ(1−

√
a1 cos(2ωt)). Substituting this expression for x(t)

into (11), the dynamics can be reduced to the circle map

t̄ = t+ ν − ξ log(1−√
a1 cos(2ωt)),

where the constant ν = µ3− ξ log(µ1γ)− ξ
2eµ1

. For convenience we rescale t by writing s = ω
π t so that the

circle map becomes

s̄ = h(s) := s+
ω

π
ν − ω

π
ξ log (1−√

a1 cos(2πs)) . (13)

Figure 12 shows that the dynamics of (13) match the dynamics of the ODEs very well. We observe
the existence of a sequence of intervals in ω containing period n orbits, apparently for all natural numbers
n in order, as ω decreases to zero. The maximum return time of orbits appears to increase without bound
as ω → 0, indicating that this is a different regime of circle map dynamics to that investigated at large
ω. The constants in (13) were set to the values µ1 = 9.6 and µ3 = 17. At c = 0.25, e = 0.2 and γ = 10−6,
therefore we obtain ξ = 19.1 and ν = 232.3.

For example, equation (13) possesses the property that there are no values of ω for which it is a
homeomorphism of the circle. More precisely, we can compute directly that the equation h′(s) = 1 −
2ωξ

√
a1 sin(2πs)

1−√
a1 cos(2πs)

= 0 has a solution for all ω: h′(s) = 0 if and only if

√
a1 cos(2πs) + 2ωξ

√
a1 sin(2πs) = 1,

which holds if a1 + 4ω2ξ2a1 > 1. This inequality simplifies to demanding cξ > 1. Since cξ = (c/e)(1 +
c/e + (c/e)2) > 3 the inequality holds (for all ω) throughout the parameter regime of interest (where
c/e > 1 always).
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Figure 12: Dynamics for ω ∈ [10−3, 10−2] for (a) the map (13) and (b) the ODEs (1). Periodic solutions
of increasing periods appear as ω decreases. Each period-k solution appears in a saddle-node bifurcation
and then appears to undergo a sequence of period-doubling bifurcations. This is an indication that
the systems display quantitatively identical chaotic dynamics over intervals in ω. Parameter values are
c = 0.25, e = 0.2, and γ = 10−6, and for the map µ1 = 9.6, µ3 = 17; and therefore ν = 232.3. 50 points
are plotted for each of 103 values of ω, logarithmically equally spaced over the interval [10−3, 10−2].

Noninvertible circle maps of this kind demonstrate more complicated, and often chaotic, dynamics as
compared to their homeomorphism counterparts. A central observation is that, for fixed coefficients, they
may not possess a unique rotation number but instead have a continuum of rotation numbers; a rotation
interval.

We recall the definition of the rotation number of an orbit of a C1 circle map f : S1 → S1 with initial
point s0 ∈ S1:

ρ(f, s0) = lim
n→∞

fn(s0)− s0
n

.

Rotation numbers form a closed subset of [0, 1], and for monotone maps, i.e. those satisfying f ′(s) ≥ 0,
it can be shown that the rotation number is unique, i.e. independent of the choice of initial condition s0.
For non-monotone circle maps we may not have uniqueness, and hence an interval of rotation numbers
may exist ([29, 27, 8]). Assuming that f is orientiation-preserving, the rotation interval for f is defined
by ρ(f) = [ρ(f−), ρ(f+)], where f−(s) := infy≥s{f(y)} defines a monotone function which is pointwise
less than or equal to f(s) and, likewise, f+(s) := supy≤s{f(y)} defines a monotone function which is
pointwise greater than or equal to f(s). Since f− and f+ are (from the definitions) monotone, ρ(f−) and
ρ(f+) must themselves be single values, not intervals.

For any rotation number within the rotation interval ρ(f) there exists an initial point s0 whose orbit
has that rotation number. Since orbits are periodic if and only if they have rational rotation numbers, the
existence of a rotation interval implies the existence of countably many periodic orbits at that parameter
value.

Figure 13 illustrates the appearance of rotation intervals for the map (13), indicating the intervals in
ω over which (13) has infinitely many periodic solutions. We compute figure 13 by calculating numerically
the rotation numbers of f− and f+ for each ω.
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Figure 13: Rotation intervals for the map h(s), defined in (13). The figure shows the maxmimum (green)
and minimum (blue) rotation numbers possible at each ω. The existence of a nontrivial rotation interval
indicates the existence of infinitely many periodic solutions at this value of ω.

Moreover, MacKay and Tresser [26] proved that the existence of a non-trivial rotation interval for f
implies topological chaos. Therefore (13) certainly has chaotic dynamics at those values of ω for which
it has a non-trivial rotation interval. Of course, this condition is sufficient but not necessary: there may
also be (unstable) chaotic invariant sets at other values of ω, where for example they coexist with an
attracting periodic orbit.

Figure 14 illustrates the Arnol’d tongue structure for the 2-parameter map s̄ = φα,β(s) ≡ s + α −
β log(1 −√

a1 cos(2πs)) where we define a1 = c2/(c2 + 4(πβ/ξ)2). As already discussed, the form of the
nonlinearity makes the map φα,β(s) noninvertible for all positive values of β. The red curves in figure 14,
computed numerically, indicate the locations of saddle-node bifurcations for the first few periodic orbits
of interest: a period-n orbit with rotation number ρ = 1/n exists between the curves labelled P+

n and P−
n

which meet at the point (1/n, 0) on the α-axis. The purple curves Hn indicate the location of homoclinic
bifurcations involving the period-n orbit. As discussed in [8], a homoclinic bifurcation occurs when the
set of preimages of an unstable period-n orbit of a map contains the critical point (i.e. its minimum or
maximum), and this homoclinic bifurcation gives rise to chaotic dynamics. To understand the dynamics
of our original map h(s), defined in equation (13), we therefore follow the one-parameter family indicated
by the sloping blue line on which β = ξα/ν. Equivalently, points on this line are parameterised by ω since
α = ων/π and β = ωξ/π. Putting together information from figures 13 and 14 indicates that, as ω → 0,
each period-n solution exists over an interval α ∈ [P−

n , P+
n ] and infinitely many periodic solutions appear

and coexist when α ∈ [P−
n , Hn). This period-n orbit then disappears when we cross the line P−

n with α
and β decreasing.

This intuition from numerical computations can be confirmed analytically by considering the dynamics
of the 2-parameter map φα,β(s) at small β. More precisely, we can show that for all integer n there exists
an interval in ω within which a period-n orbit exists, as follows. Consider the 2-parameter circle map
φα,β(s) ≡ s+α+ βp(s), where p(s) is 1-periodic. It is clear that a period n solution exists when α = 1/n
and β = 0. We therefore Taylor expand α = 1/n+aβ+ bβ2+O(β3) and estimate the region of the (α, β)
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Figure 14: The boundary curves of the Arnol’d tongues (P−
n and P+

n , red) and the homoclinic bifurcation
curves (Hn, purple) of the map φα,β(s). The diagonal (blue) line β = ξα/ν indicates the set of points
for which (α, β) = (ωπ ν,

ω
π ξ), which describes the case of the map (13). Period-n solutions exist along

segments of the blue line that lie between P−
n and P+

n . Infinitely many periodic solutions exist on the
segments of the blue line that lie between P−

n and Hn.

within which a period-n orbit exists. By induction we see that

φn(s) = s+ nα+ β

(

n−1
∑

k=0

p
(

φk(s)
)

)

.

Substituting the above Taylor expansion for α into the equation φn(s) = s+ 1, we obtain

a = − 1

n

n−1
∑

k=0

p

(

s+
k

n

)

and b = − 1

n

n−1
∑

k=1

p′
(

s+
k

n

)

(

ka+
k−1
∑

l=0

p

(

s+
l

n

)

)

.

Since in our case α = ων/π, β = ωξ/π and p(s) = − log(1−√
a1 cos(2πs)) we see that the approximation

α = 1/n+ aβ+O(β2) yields the following necessary condition for the existence of a period-n orbit, up to
O(ω2); there exists a period-n orbit if there exists s that satisfies

ω

π
ν =

1

n
+

1

n

n−1
∑

k=0

log

(

1−√
a1 cos

(

2π

(

s+
k

n

)))

ωξ

π
.

Rearranging, we write this condition as

(

ων

π
− 1

n

)

nπ

ωξ
=

n−1
∑

k=0

log

(

1−√
a1 cos

(

2π

(

s+
k

n

)))

. (14)

A necessary condition for the existence of a period-n solution can now be deduced by considering upper
and lower bounds for the right-hand side of (14). Expanding

√
a1 = 1− 2ω2/c2 +O(ω4) up to the same
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order of approximation as used in (14), and substituting, we see that

n log

(

2ω2

c2

)

≤
n−1
∑

k=0

log

(

1−√
a1 cos

(

2π

(

s+
k

n

)))

≤ n log 2. (15)

The first of these inequalities leads to the (implicit) lower bound

2ξω log ω +
π

n
≤ ω

[

ν − ξ log
(

2/c2
)]

, (16)

while the second inequality leads to the upper bound

ω ≤ π

n(ν − ξ log 2)
. (17)

These inequalities are consistent with the numerical computations presented in figure 14; in this specific
case we have ν ≈ 232.3 which is much larger than ξ log 2 ≈ 19.1 and so (17) describes the near-vertical
right-hand sides of the tongues, while (16) describes the clearly more curved left-hand sides.

4.3 The dynamics for intermediate values of ω

Within our original Poincaré map (11), there are two sources of nonlinearity: the terms with the coefficient
µ2 that depend on the combination g originate in the local maps that we constructed to describe the
dynamics in the neighbourhoods of the axes, while the terms with coefficients µ4 and µ5, containing ωt̄
originate in the global maps.

For values of ω that are not obviously close either to the limit of small or large ω, the dynamics of (11)
are affected in complicated ways by the combination of terms originating in the local and global parts
of the Poincaré map construction and it is not clear how to further simplify the form of our Poincaré
map. Therefore our discussion in this section will rest in large part on numerical results. Figure 15
shows numerical simulations of the underlying time-periodically forced ODE system and the iteration of
the 2D Poincaré map (11) in the case : c = 0.25, e = 0.2 and γ = 10−6. For the map we choose the
parameter values µ1 = 9.6, µ2 = 0.3, µ3 = 17, µ4 = 26.4 and µ5 = −35.7; there is clearly extremely good
quantitative agreement, notwithstanding the fact that there are five undetermined parameters. In the
intermediate regime, the main features of the dynamics of the ODEs (1) as well as the Poincaré map (11)
are a sequence of non-overlapping intervals in ω within which we clearly have frequency-locking, and
separated by regions within which there are complicated, possibly chaotic, dynamics. At the ends of the
frequency-locking intervals, the periodic orbit undergoes a saddle-node bifurcation and then disappears.
There is no bistability, and the dynamics is that of a circle map. Figure 16 confirms this assertion:
denoting tn mod π/ω by tn for simplicity, we plot tn+1 against tn for fixed ω = 0.0428, c = 0.25 and
e = 0.2 (other parameter values are the same as in Figure 15).

In section 4.1 and 4.2 we have shown that our Poincaré map is well approximated by different families
of circle maps in different limits: s̄ = s + ω

π ν + ξ
4πµ1

sin(2πs) for large ω, and s̄ = s + ω
π ν − ω

π ξ log(1 −√
a1 cos(2πs)) for ω near 0. There is a transition between these two families when ω increases from

near 0 to large values. Since our numerical simulations indicate a value for µ1 around 9.6, and therefore
ξ/(2µ1) ≈ 0.16, there is a transition at intermediate ω at which the circle map becomes invertible. We
remark that the period-doubling bifurcations which can be seen within the frequency-locking intervals at
small ω in Figure 15 must disappear before the circle map becomes invertible, as ω increases; this is a
well-known feature of circle map dynamics, see for example [39].

To further examine, numerically, this transition from noninvertible to invertible circle map dynam-
ics we applied the ‘0-1 test for chaos’ developed by G.A. Gottwald and I. Melbourne [15, 16] which
distinguishes in a computationally cheap and reliable way between regular and chaotic dynamics in a
(low-dimensional) deterministic system. We refer readers to these references for a detailed discussion of
the test and the underlying theory. The test indicates a transition at around ω ≈ 0.13 from a noninvertible
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Figure 15: Frequency locking windows for the ODEs (1) (upper plot) and in the Poincaré map (11) (lower
plot) when c = 0.25, e = 0.2 and γ = 10−6. The parameters in the Poincaré map are: µ1 = 9.6, µ2 = 0.3,
µ3 = 17, µ4 = 26.4 and µ5 = −35.7.

map at smaller ω (i.e. for which the intervals of complicated dynamics between frequency-lockings contain
chaotic dynamics) to an invertible one at larger ω, for which these intervals between frequency-lockings
do not contain chaotic dynamics.

5 Discussion

5.1 Comparison with the results of Afraimovich et al [2]

In this section we discuss the complementary results obtained by V. S. Afraimovich et al.[2] for a very
similar problem. We show that the theorems proved in [2] support our numerical and asymptotic conclu-
sions, and that our results extend the analyses provided there. Specifically, Afraimovich et al considered
the dynamics of the ODEs

ẋ1 = x1(1− x1 − α1x2 − β1x3) + γϕ1(t)
ẋ2 = x2(1− β2x1 − x2 − α2x3) + γϕ2(t)
ẋ3 = x3(1− α3x1 − β3x2 − x3) + γϕ3(t)

, (18)

where the ϕj(t) are smooth and positive 2π-periodic functions, so that the octant of R
3 in which

x1, x2, x3 > 0 is forward-invariant for the dynamics. They define the eigenvalues λj1 = 1− βj , λj2 = −1
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Figure 16: Circle-map-like dynamics in the ODEs (1). We plot tn+1 against tn for fixed parameters
ω = 0.0428, c = 0.25 and e = 0.2.

and λj3 = 1− αj for j = 1, . . . , 3. Then the system becomes

ẋ1 = x1(1− (x1 + x2 + x3) + λ13x2 + λ11x3) + γϕ1(t)
ẋ2 = x2(1− (x1 + x2 + x3) + λ21x1 + λ23x3) + γϕ2(t)
ẋ3 = x3(1− (x1 + x2 + x3) + λ33x1 + λ31x2) + γϕ3(t)

, (19)

which is clearly a generalisation of our problem in which the eigenvalues at each equilibrium point on
an axis, when γ = 0, are related to each other by symmetry. Our symmetric version is recovered if we
set, for example, λ13 = λ23 = λ33 = e > 0 and λ11 = λ21 = λ31 = −c < 0. Note that [2] only consider
2π-periodic perturbations and do not use the perturbing frequency as a bifurcation parameter as we do; an
additional (minor) difference is that we explicitly consider only a perturbation to one variable instead of
all three. After some detailed calculations, and implicitly taking the perturbation functions ϕj(t) ∝ sin t,
[2] produce the following model 2D map

{

x̄ = A(Bx+ γ(1 + a sin t))d

t̄ = t+ ω̄ − ξ log(Bx+ γ(1 + a sin t)), (mod 2π)
, (20)

where as before, ξ = e2+ce+c2

e3 and d = (c/e)3. A, B and ω̄ are positive parameters that depend on local
and global characteristics of trajectories in the original ODEs (18) or, equivalently, (19). The parameter
0 < a < 1 is the amplitude of the sinusoidal perturbation as it affects the global part of the map from a
neighbourhood of the point (0, 0, 1) to a neighbourhood of (0, 1, 0). Interestingly, although perturbations
to the other two global maps are included, these perturbations do not contribute at leading order in the
return map since the perturbations are contracted as trajectories pass through neighbourhoods of (1, 0, 0)
and (0, 0, 1).

In the derivation of (20), x is a coordinate measuring distance from the unstable manifold of one of
the equilibrium points that exist when γ = 0, whereas in our maps x represents distance to the stable
manifold. This difference is purely a matter of definition, and the change of variable x = yd applied
to (20) transforms it into a map that is close to the form (4). A further point of interest in the derivation
is the apparent neglect, in the derivation provided in [2], of the effect of periodic perturbations on the
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local maps as well as in the global maps. It is surprising that this omission does not change the form of
the return map; in this sense it appears rather robust. However, our calculation is perhaps of broader
applicability since Afraimovich’s results are presented always in what we term the strongly attracting, or
‘ǫ large’, regime, i.e. γǫ ≪ 1 as well as γ ≪ 1. In this regime we have discussed reductions of the dynamics
to that of a circle map that is non-invertible at small ω and invertible at larger ω. These observations
agree with the first of two theorems that Afraimovich et al prove concerning the dynamics of (20). Using
the ‘Annulus Principle’, they prove the following theorem:

Theorem 5.1 (Afraimovich et al. [2]) If d > 1, γ ≪ 1 and 0 < a < 1/(
√

1 + ξ2), then there is an
invariant closed curve as the maximal attractor x(t) for equation (20).

We note that the small-a regime corresponds to the case in which the forcing frequency ω is large, so
this result agrees with our observation that at large ω the dynamics is that of an (invertible) circle map.

The second theorem proved by Afraimovich et al. concerns a different regime for the dynamics:

Theorem 5.2 (Afraimovich et al. [2]) If d > 1, γ ≪ 1 and (exp(10π/ξ) − 1)/(exp(10π/ξ) − (1/10)) <
a < 1, then there exists robust chaos in the sense of a hyperbolic invariant closed set Λ such that the
dynamics on Λ is topologically conjugate to the Bernoulli shift on two symbols.

That is, for a sufficiently close to 1 we have chaotic dynamics. Although we do not discuss this regime
in detail in this paper, this result confirms our numerical observations, reported in [13] and [41] of two-
dimensional chaotic dynamics when the eigenvalue ratio c/e, equivalently the exponent d, is sufficiently
large, for example the regime denoted ‘Region I’ in [41]. The reliance on the ‘strongly attracting’ limit
in [2] means that they did not explore the limit ǫ ≪ 1, γǫ ∼ 1 in which the bistability that we report in
section 3 arises.

5.2 Comparison with a heteroclinic system perturbed by constant and periodic forc-
ing

We briefly comment in this section on a straightforward extension of our analysis to the case in which
the robust heteroclinic cycle is perturbed by a symmetry-breaking constant term plus a time-periodic
perturbation. The case of a constant term alone is well known, and therefore this combination enables us
to show how the bifurcation structure we observe in earlier sections is related to the constant perturbation
case.

We consider a time-periodic perturbation to the first coordinate in the (more general) form (1 −
x)(δ(f(2ωt)−A) + γA) where δ and γ are introduced as independent parameters, and A = 1

P

∫ P
0 f(t′)dt′

is the time average of f , assumed periodic with period P . The system (1) becomes







ẋ = x(1− (x+ y + z)− cy + ez) + (1− x)(δ(f(2ωt) −A) + γA)
ẏ = y(1− (x+ y + z)− cz + ex)
ż = z(1 − (x+ y + z)− cx+ ey)

. (21)

In this formulation, for a given f , γ describes the amplitude of the constant term in the perturbation,
while δ controls the amplitude of the time-periodic fluctuations around the constant. When δ = 0 we have
a purely constant perturbation and hence we expect a long-period periodic orbit to form (with a period
independent of ω). In the opposite limiting case, where δ = γ, we recover the original system (1). To
preserve the forward-invariance of the positive orthant we restrict our attention to the range 0 ≤ δ ≤ γ.

In this subsection we briefly show how our results from earlier sections are modified when this new
perturbation ansatz is used. The details of the analysis are omitted since in all cases they follow that
presented previously.
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5.2.1 Periodic orbit in the constant perturbation case δ = 0

First we prove that there exists a periodic attractor for δ = 0. To derive the Poincaré map in this case
we need only to refer to the general expression for the Poincaré map given by (47) in the Appendix, and
substitute A for the function f(2ωt). After straightforward calculation of L1(x, t), L2(x, t) and observing
that (since the unstable manifold of P ′

2 is time-independent in this case), G1(x, t) and G2(x, t) are constant,
we obtain the Poincaré map

f1(x, t) = µxd + [ν3 + ν4x
d]γ +O(γ2)

= µxd + ν3γ +O(γ1+d, γ2),

f2(x, t) = t+ µ3 − ξ log x+
ξA

e
(1/h − x)γ

= t+ µ3 − ξ log x+O(γ), (22)

where ν3 and ν4 are constants. Note that the first component has decoupled at leading order. Therefore,
since d > 1 there is clearly an attracting fixed point x0 = f1(x0) for γ small enough. This implies the
existence of a periodic attractor for the corresponding system (21) with period approximately µ3−ξ log x0.
For δ > 0 we therefore expect to have a periodic oscillator that is periodically perturbed.

For comparison with previous sections, we consider the case f(2ωt) = sin2(ωt). Following the method
described in detail in the Appendix, the Poincaré map for system (21) with f(2ωt) = sin2(ωt) is:

x̄ = f1(x, t) = µxd + γµ1 + δ [µ2(−a1 cos(2ωg) − b1 sin(2ωg))

−µ4(−a1 cos(2ω(t̄− δ3))− b1 sin(2ω(t̄− δ3)))

−µ5(−a2 cos(2ωt̄)− b2 sin(2ωt̄))] +O(γ2) (23)

t̄ = f2(x, t) = t+ µ3 − ξ log(x)− ξ

2e
[γ − δ (a2 cos(2ωt) + b2 sin(2ωt))] x

−1 +O(γ2) (24)

We now comment in turn on the strongly and weakly attracting cases in which γǫ ≪ 1 (ǫ is ‘large’) or
γǫ ∼ 1 (ǫ is near zero), respectively.

5.2.2 The strongly attracting case

In the limit in which ǫ is of order unity, i.e. γǫ ≪ 1, and when ω is small, (23) can be simplified as in section
4.2, noting that the xd term can be ignored at leading order, and simplifying the various coefficients, to
write f1(x, t) in the form

x̄ = f1(x, t) = µ1(γ − δ
√
a1 cos(2ωt̄)).

Substituting this expression for the invariant curve x = µ1(γ − δ
√
a1 cos(2ωt̄)) into (24) and letting

s = ωt/π, we obtain the one dimensional map:

s̄ = h(s) = s+
ω

π
ν − ω

π
ξ log(1− γ−1δ

√
a1 cos(2πs)), (25)

where ν = µ3− ξ log(µ1γ)− ξ/(2eµ1). The map (25) is invertible if and only if the equation h′(s) = 0 has
no solution. By direct computation,

h′(s) = 1 +
2ωξγ−1δ

√
a1 sin(2πs)

1− γ−1δ
√
a1 cos(2πs)

,

and so the condition h′(s) = 0 can be satisfied if and only if

(γ−1δ)2 <
c2 + 4ω2

c2 + 4ω2c2ξ2
. (26)
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Figure 17: Log-linear plot showing the emergence of frequency locked periodic orbits in (21) at small
ω as δ increases, for γ = 10−6. (a) δ = 9.99 × 10−7 = 0.999γ; (b) δ = 9.5 × 10−7 = 0.95γ, and (c)
δ = 10−7 = 0.1γ.

Since the expression on the right-hand-side of (26) tends to unity from below as ω → 0, we conclude that,
given any fixed δ/γ < 1, (25) is invertible for all sufficiently small ω. Moreover, if δ ≪ γ, (25) is very
close to the rigid rotation s̄ = s+ ω

π ν and we expect that any periodic solution will exist over an interval
in ω that has a width that scales linearly with δ as δ tends to zero. Figure 17(c) illustrates the emergence
of frequency-locking and complicated dynamics in (21) as δ increases.

We discuss the case ω → ∞ by a similar argument, following section 4.1. Taking ω large enough such
that a1 and a2 are both small, of order γ, we can guarantee that (23) yields x ≈ µ1γ since both the xd

term and the t-dependent terms are smaller. Substituting this into (24), we have

t̄ = t+ ν + γ−1δ
ξ
√
a2

2eµ1
sin(2ωt),

where ν = µ3 − ξ log(µ1γ) − ξ
2eµ1

. Since
√
a2 ≈ e

2ω when ω is large, by letting s = ω
π t, this equation

becomes

s̄ ≈ s+
ω

π
ν +

ξ

4πµ1
γ−1δ sin(2πs),

which is clearly an invertible circle map for all small enough δ.
To summarise, we can guarantee that the dynamics of (21), for any fixed δ < γ, is equivalent to an

invertible circle map both for ω sufficient close to zero and for ω sufficiently large. For intermediate values
of ω we expect that the map is always invertible for sufficiently small δ, but we have not proved this.
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5.2.3 The weakly attracting case

In the weakly attracting case, in which ǫ is small, so that γǫ ∼ 1, we follow the discussion set out in
section 3.2 to obtain the following simplification of (23) - (24):

{

x̄ = µxd + µ1 [γ + δ(−a2 cos(2ωt) + b2 sin(2ωt))]
t̄ = t+ µ3 − ξ log x̄

,

which can be simplified as before, by redefining γ and shifting t (and absorbing this shift into µ3), to give

{

x̄ = µxd + γ
(

1 + γ−1δ
√
a2 sin(2ωt)

)

t̄ = t+ µ3 − ξ log x̄
,

The analysis in section 3.2 for the dynamics within the frequency-locking intervals applies directly here,
replacing

√
a2 by γ−1δ

√
a2. As a result, (21) is seen to be equivalent to the forced damped pendulum

with torque:
s̈+ η−1ṡ+

√
a2 sin s = γδ−1λ, (27)

where η2 = 6ωx̂
γe as previously. Referring to Figure 10, if |λ| < γ−1δ

√
a2 then there is the possibility of

frequency locking. If |λ| > γ−1δ
√
a2 then the only attractor for (27) is a stable periodic orbit. In the

same way as noted above, the width of these intervals of frequency locking also decreases linearly with δ.

6 Conclusion

In this paper we discuss the dynamics in the vicinity of a robust heteroclinic cycle perturbed by a small
amplitude time-periodic forcing function. Given the well known analyses of perturbations of robust
heteroclinic cycles by both constant terms and in the presence of noise, it is perhaps surprising that
so few papers consider the periodically forced case. We present analytic and numerical studies of the
dynamics of our model system which is based on the traditional Guckenheimer–Holmes heteroclinic cycle,
perturbed externally by a non-negative time-periodic forcing function with amplitude γ. The rationale
for these specific choices are that they are the simplest situation, avoiding switching around heteroclinic
networks, or at least around group orbits of heteroclinic cycles, and the availability of previous work
by other authors for comparison. We use the frequency ω of the perturbation function as the principle
bifurcation parameter; the second key parameter is the saddle index d of the robust heteroclinic cycle. Our
results provide explanations of the frequency-locking phenomena reported by earlier authors, in particular
by Rabinovich et al [35].

We begin by presenting a systematic calculation of the Poincaré map for the robust heteroclinic cycle
subjected to a non-negative periodic forcing function f(2ωt). By including the time-dependent terms
through all steps in the calculation, we obtain Poincaré map that can be quantitatively compared to the
dynamics of the original non-autonomous differential equations. The comparison shows that the return
map captures the dynamics strikingly well.

Our results, together with those of Afraimovich et al [2] and our earlier work [13] show that there
are three distinct regimes for the dynamics, in terms of the two parameters γ and ǫ := d − 1 > 0.
ǫ measures the strength of attraction of the robust heteroclinic cycle in the absence of perturbations.
Without perturbations, the case ǫ = 0 corresponds to a resonant bifurcation of the robust heteroclinic
cycle. The key results of the paper concern two of the three regimes: throughout the paper we consider
the perturbation amplitude γ to be sufficiently small that O(γ2) contributions are negligible. But there
remains the question of distinguished limits and interplay between the two small parameters γ and ǫ. We
define a ‘weakly attracting’ case through a distinguished limit in which ǫ becomes small at a sufficiently
fast rate that γǫ ∼ 1 in the limit γ → 0. Informally we refer to this as considering ‘ǫ near 0’. We define a
‘strongly attracting’ case through the limit in which ǫ is held fixed as γ → 0. This is informally referred
to as the case ‘ǫ of order unity’. More technically, the ‘ǫ near 0’ regime arises when, for a given γ, ǫ is
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small enough that the xd term in the first coordinate of the Poincaré map plays a leading-order role. In
other words the two cases are distinguished asymptotically by the size of γǫ: either both quantities are
close to zero, such that γǫ ∼ 1 or ǫ is large enough that γǫ ≪ 1.

In the weakly attracting case the map contains both stable fixed points and stable 1-dimensional invari-
ant curves; the dynamics essentially alternates between these as ω varies. Thus for the non-autonomous
ODEs, orbits may either fluctuate by small amounts near the periodic orbit of an amplitude that would
be anticipated from considering just the time-averaged value of the forcing function, or orbits may be
frequency-locked and have a period that varies substantially away (both above and below) the period that
one would expect from the time-averaged forcing function. This behaviour in some sense demonstrates
the sensitivity of the robust heteroclinic cycle, near the resonant bifurcation, to perturbations; periodic
orbits with wide variation in periods may exist even if the system parameters are varied only by small
amounts. It is also possible that these two scenarios (frequency-locked periodic orbits and orbits that
fluctuate close to the period expected from the time-averaged estimate) overlap as ω is varied; substantial
bistability arises. We explain how this can come about by showing that the model map, and therefore the
original ODE problem, can be reduced to a second-order nonlinear ODE describing a damped pendulum
with constant torque; this is a well known nonlinear oscillator problem.

In the strongly attracting case, for which ǫ remains fixed in the limit γ → 0 so that γǫ ≪ 1, the
bistability described for the weakly attracting case disappears. We observe dynamics that is typical of
a circle map, see, for example, Figure 15. We show the equivalence of the dynamics to that of a circle
map, and we discuss whether the circle map is likely to be invertible or non-invertible; this depends on
ω and the parameters in the map. For large enough ω we show that the circle map will be invertible
and so the complicated dynamics indicated there may be quasiperiodic but is not chaotic. At small ω
we present strong numerical evidence for the existence of chaos through estimation of the form of the
map, showing directly that it is non invertible, through applying the ‘0-1 test’ for chaos and through the
direct calculation of non-trivial rotation intervals that are another sufficient condition for the existence of
chaotic dynamics.

We compare our results with those found in previous work in section 5.1; these results are largely
complementary. Afraimovich et al. [2] showed the existence of the regime we refer to as the strongly
attracting case and showed the existence of a third regime, in which chaotic dynamics arises for the two-
dimensional return map. This third regime was noted in our previous work [13] and we do not discuss it
in detail here. Afraimovich et al. did not discuss the weakly attracting case; the existence and analysis
of this regime is novel. We also provide a more detailed study of the strongly attracting regime, using
the forcing frequency ω as our principal bifurcation parameter. More generally, the comparison with
the results of Afraimovich et al [2] links our work to the Poincaré maps used to describe the dynamics
near a periodically-perturbed homoclinic orbit in a non-symmetric continuous time dynamical system. A
review of this theory is given by Shilnikov et al. [39]; for such a case, they argue that the dynamics are
generically described by 2D maps of the form (20). After applying the Annulus Principle they present the
different routes by which the dynamics may become chaotic, and described by non-invertible circle maps.
We conclude that the dynamics near RHCs has qualitative features in common with that near homoclinic
orbits in general, at least in the strongly attracting regime. Bifurcation diagrams very similar to those
we compute in figure 15 have been observed experimentally, for example in digital phase-locked loops, as
discussed by Lichtenberg and Lieberman [25] (see their section 7.4, pp 532–536 and references therein).

In section 5.2 we link our results with those of a robust heteroclinic cycle perturbed only by a constant,
time-independent perturbation. We show that when the amplitude of the time-dependent fluctuations is
reduced below the amplitude of the constant part of the perturbation, the widths of the frequency-locking
intervals, and the variation in possible periods of orbits to which frequency-locking may occur, shrinks
rapidly. We conclude that it is the feature of this forcing term, having fluctuations that are as large as
its mean, that allows the wide range of dynamical behaviour that we observe and analyse here.

Many questions remain for future work; some are highlighted above. One obvious question is to
remove the non-negativity constraint on the forcing function and allowing trajectories to switch around a
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heteroclinic network. Questions concerning the quantitative effect of different forcing terms would also be
of interest; in the limit one might imagine a periodic sequence of sharp pulses that would allow an accurate
estimation of a, perhaps simpler, Poincaré map in the limit of Dirac delta functions. More broadly, given
that one might initially anticipate circle-map-like dynamics for the periodic pertubation of a RHC, the
weakly attracting regime might well arise in more complex problems, with circle map dynamics near
heteroclinic cycles only when they are well away from resonant bifurcations. More surprising still is the
presence of chaotic dynamics in the 2D return map when the RHC is even more strongly attracting. It
would be of substantial interest to see if these three regimes (which individually are quite generic kinds
of dynamical system) arise in other perturbed RHC problems.
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Appendix

In this appendix we present a detailed derivation of the Poincaré map for the system (1):







ẋ = x(1− (x+ y + z)− cy + ez) + γ(1− x)f(2ωt)
ẏ = y(1− (x+ y + z)− cz + ex)
ż = z(1− (x+ y + z)− cx+ ey)

,

where f is a continuously differentiable non-negative 2π-periodic function, 0 < γ ≪ 1 and 0 < e < c < 1.
Let the two cross sections near P1 = (1, 0, 0) be

H in
1 = {(x, y, z) : |x− 1| ≤ h, 0 ≤ y ≤ h, z = h},

and
Hout

1 = {(x, y, z) : |x− 1| ≤ h, y = h, 0 ≤ z ≤ h},
where h is a small constant. We define cross sections near P2 = (0, 1, 0) and P3 = (0, 0, 1) similarly, see
Figure 2. We construct local maps by integrating the linearisations of the dynamics near P1, P2 and P3,
and we estimate global maps by using C1−diffeomorphisms between neighbourhoods of the Pj . At each
step, we calculate not only the point where an orbit hits each cross section but also the length of time
that the orbit takes between cross sections. Although the time spent on global parts of the Poincaré map
is small compared with the time spent near the points Pj , especially when γ is small, it is taken into
account in the calculations: we denote the time (to leading order in γ) that elapses during the global
maps by the three constants δ1, δ2 and δ3.

For each local and global map we compute the terms at leading order and at O(γ). For notational
convenience, variables without suffices will be treated as depending only on time t. Variables with suffices,
corresponding to values of the variables on a cross section, will be treated as functions of γ.

A.1 The local map H in
3 → Hout

3

We begin by deriving the local map from H in
3 to Hout

3 . Let (x1, h, z1) ∈ H in
3 , near P3, be the initial point

of a specific orbit at the initial time t = s. Suppose that this orbit intersects Hout
3 at (h, y2, z2) at time
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t = T1(γ). Since the trajectory is close to P3, we write z(t) = 1+w(t) and set z1 = 1+w1. The linearized
system is







ẋ = ex+ γf(2ωt)
ẏ = −cy
ż = ẇ = −w − (1 + c)x+ (e− 1)y

Integrating this system from H in
3 to Hout

3 , we obtain















h = x1e
e(T1(γ)−s)

(

1 + γ 1
x1

∫ T1

s e−e(τ−s)f(2ωτ)dτ
)

y2 = he−c(T1(γ)−s)

w2 = w1e
−(T1(γ)−s)

(

1 + 1
w1

∫ T1

s eτ−s(−(1 + c)x(τ) + (e− 1)y(τ))dτ
)

(28)

From the first equation of (28) it is clear that (setting γ = 0)

T1(0) = s+ log (h/x1)
1/e . (29)

Differentiating the first equation of (28) with respect to γ and setting γ = 0, we get

0 = eee(T1(0)−s)x1T
′
1(0) + ee(T1(0)−s)

∫ T1(0)

s
e−e(−s+τ)f(2ωτ)dτ,

which implies

T ′
1(0) = −x−1

1

1

e

∫ T1(0)

s
e−e(τ−s)f(2ωτ)dτ. (30)

Hence we obtain

T1(γ) = s+ log

(

h

x1

)1/e

− γ

[

x−1
1

1

e

∫ T1(0)

s
e−e(τ−s)f(2ωτ)dτ

]

+O(γ2).

Similarly, from the second equation of (28), we can easily verify that y2 |γ=0= h (h/x1)
−c/e and

y′2(0) = he−c(T1(0)−s)(−cT ′
1(0)) = x

−1+c/e
1

(c

e

)

h1−c/e

∫ T1(0)

s
e−e(τ−s)f(2ωτ) dτ. (31)

Therefore

y2(γ) = h1−c/ex
c/e
1 + γ

[

x
−1+c/e
1

(c

e

)

h1−c/e

∫ T1(0)

s
e−e(τ−s)f(2ωτ)dτ

]

+O(γ2).

To derive w2(γ), we first note that, (using integration by parts)

∫ T1(γ)

s
eτ−sx(τ) dτ = eτ−sx(τ) |T1(γ)

s −
∫ T1(γ)

s
eτ−sẋ(τ) dτ

= eT1(γ)−sh− x1 −
∫ T1(γ)

s
e eτ−sx(τ) dτ − γ

∫ T1(γ)

s
eτ−sf(2ωτ) dτ,

and

∫ T1(γ)

s
eτ−sy(τ) dτ = eτ−sy(τ) |T1(γ)

s −
∫ T1(γ)

s
eτ−sẏ(τ) dτ

= eT1(γ)−sy2(γ)− h+ c

∫ T1(γ)

s
eτ−sy(τ) dτ.
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Tidying up, we obtain

∫ T1(γ)

s
eτ−sx(τ) dτ =

1

1 + e

(

eT1(γ)−sh− x1 − γ

∫ T1(γ)

s
eτ−sf(2ωτ) dτ

)

,

∫ T1(γ)

s
eτ−sy(τ) dτ =

1

1− c

(

eT1(γ)−sy2(γ)− h
)

.

So for w2(γ) we obtain

w2(γ) = e−(T1(γ)−s)

[

w1 −
1 + c

1 + e

(

eT1(γ)−sh− x1 − γ

∫ T1(γ)

s
eτ−sf(2ωτ) dτ

)

+
e− 1

1− c

(

eT1(γ)−sy2(γ)− h)
)

]

,

which implies that

w2(0) = (
h

x1
)−1/e

[

w1 −
1 + c

1 + e

(

(
h

x1
)1/eh− x1

)

+
e− 1

1− c

(

(
h

x1
)1/e−c/eh− h

)]

≈ −1 + c

1 + e
h,

and

w′
2(0) = −es−T1(0)

[

w1 −
1 + c

1 + e
(e−s+T1(0)h− x1)−

1− e

1− c
(−h+ e−s+T1(0)y2(0))

]

T ′
1(0)

+es−T1(0)

[

−1 + c

1 + e

(

−
∫ T1(0)

s
e−s+τf(2ωτ)dτ + e−s+T1(0)hT ′

1(0)

)

−1− e

1− c

(

e−s+T1(0)y2(0)T
′
1(0) + e−s+T1(0)y′2(0)

)

]

. (32)

Note that the terms involving y2(0) and e−s+T1(0)h cancel out, and that the terms x1 and w1 in the
first bracket can be assumed to be far smaller than h. Hence the most important contributions are the
remaining three terms in (32):

w′
2(0) ≈ −es−T1(0) 1− e

1− c
hT ′

1(0)−
1− e

1− c
y′2(0) +

1 + c

1 + e
h−1/ex

1/e
1

∫ T1(0)

s
e−s+τf(2ωτ) dτ.

Using (29) and (31), the first term in the above equation is

−
(

h

x1

)−1/e 1− e

1− c
hT ′

1(0),

while the second term is

−c
1− e

1− c
h

(

h

x1

)c/e

T ′
1(0),

which is far larger than the first term since c/e > 1 and x1 ≪ 1. It follows that

w′
2(0) ≈ −x

−1+c/e
1

c(1− e)

e(1− c)
h1−c/e

∫ T1(0)

s
e−e(τ−s)f(2ωτ) dτ +

1 + c

1 + e
h−1/ex

1/e
1

∫ T1(0)

s
e−s+τf(2ωτ) dτ.

Therefore, to summarise

T1(γ) = s+ log(
h

x1
)1/e − γ

[

x−1
1

1

e

∫ T1(0)

s
e−e(τ−s)f(2ωτ)dτ

]

+O(γ2), (33)

y2(γ) = h1−c/ex
c/e
1 + γ

[

x
−1+c/e
1

c

e
h1−c/e

∫ T1(0)

s
e−e(τ−s)f(2ωτ)dτ

]

+O(γ2), (34)
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z2(γ) = 1− 1 + c

1 + e
h+ γ

[

−x
−1+c/e
1

c(1− e)

e(1− c)
h1−c/e

∫ T1(0)

s
e−e(τ−s)f(2ωτ) dτ (35)

+x
1/e
1

1 + c

1 + e
h−1/e

∫ T1(0)

s
e−s+τf(2ωτ)dτ

]

+O(γ2). (36)

A.2 The global map Hout
3 → H in

1

Now we consider the first of the global maps. Suppose that the unstable manifold of P ′
3 intersects Hout

3

and H in
1 at (h, 0, ζ2(t, γ)) and (ξ3(t, γ), 0, h), respectively. For simplicity, we use ζ2 and ξ3 to denote

ζ2(t, γ) and ξ3(t, γ), and ζ20, ξ30 to denote ζ2(T1(0), 0) and ξ3(T1(0), 0) throughout all that follows.
We Taylor expand the diffeomorphism between Hout

3 and H in
1 near the point (h, 0, ζ2(T1(γ), γ)) and

suppose that the trajectory starting at (h, 0, ζ2(t1, γ)) takes a time δ1 to arrive at (ξ3(t2, γ), 0, h). The
first order Taylor estimate gives us the affine map (h, y2, z2) → (x3, y3, h):

{

x3 ≈ ξ3(T1(γ) + δ1, γ) +A11(T1(γ), γ)y2 +A12(T1(γ), γ)(z2 − ζ2(T1(γ), γ))
y3 ≈ B11(T1(γ), γ)y2

,

where A11, A12 and B11 are smooth functions of T1(γ) and γ which, generically, are non-zero for all small
enough γ, and where δ1 denotes the time taken to travel from Hout

3 to H in
1 . We introduce the additional

notation A110 = A11(T1(0), 0), A120 = A12(T1(0), 0) and B110 = B11(T1(0), 0). Substituting (33) - (36)
into the above expressions for x3 and y3 gives

x3 = ξ30 +A110h
1−c/ex

c/e
1 +A120

(

1− 1 + c

1 + e
h− ζ20

)

+ γ

[

∂ξ3
∂γ

(T1(0) + δ1, 0)

+
∂A11

∂γ
(T1(0), 0)h

1−c/ex
c/e
1 +

∂A12

∂γ
(T1(0), 0)

(

1− 1 + c

1 + e
h− ζ20

)

−A120
∂ζ2
∂γ

(T1(0), 0) −A120x
−1+c/e
1

c(1− e)

e(1− c)
h1−c/e

∫ T1(0)

s
e−e(τ−s)f(2ωτ) dτ

+A120x
1/e
1

1 + c

1 + e
h−1/e

∫ T1(0)

s
e−s+τf(2ωτ) dτ

]

+O(γ2), (37)

and

y3 = B110h
1−c/ex

c/e
1 + γ

[(

∂B11

∂t
(T1(0), 0)T

′
1(0) +

∂B11

∂γ
(T1(0), 0)

)

h1−c/ex
c/e
1

+B110x
−1+c/e
1

(c

e

)

h1−c/e

∫ T1(0)

s
e−e(τ−s)f(2ωτ) dτ

]

+O(γ2), (38)

where we use the fact that

ξ3(T1(γ) + δ1, γ) = ξ30 +
[

∂ξ3
∂t (T1(0) + δ1, 0)T

′
1(0) +

∂ξ3
∂γ (T1(0) + δ1, 0)

]

γ

= ξ30 +
∂ξ3
∂γ (T1(0) + δ1, 0)γ,

since ∂ξ3
∂t (T1(0) + δ1, 0) = limδ→0[ξ3(T1(0) + δ + δ1, 0) − ξ3(T1(0) + δ1, 0)]/δ = 0, and similarly in other

terms. The x
c/e
1 terms in (37) can be ignored since c/e > 1 and x1 ≪ 1. As for (38), using (30), we need

to compare the size of x
c/e
1 and x

−1+c/e
1

∫ T1(0)
s e−e(τ−s)f(2ωτ)dτ . We observe that, since

∫ T1(0)

s
e−e(τ−s)f(2ωτ) dτ ≥

∫ s+1

s
e−e(τ−s)f(2ωτ) dτ ≥ e−e

∫ s+1

s
f(2ωτ) dτ ≫ x1,
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for small enough γ, the x
c/e
1 term in (38) can be ignored. Putting all the leading order and O(γ) terms

together, we have

x3 = A130 + γ

[

A140 −A120x
−1+c/e
1

c(1− e)

e(1− c)
h1−c/e

∫ T1(0)

s
e−e(τ−s)f(2ωτ) dτ

+A120x
1/e
1

1 + c

1 + e
h−1/e

∫ T1(0)

s
e−s+τf(2ωτ) dτ

]

+O(γ2), (39)

y3 = B110h
1−c/ex

c/e
1 + γB110

[

x
−1+c/e
1

(c

e

)

h1−c/e

∫ T1(0)

s
e−e(τ−s)f(2ωτ) dτ

]

+O(γ2), (40)

where A120, A130, A140 and B110 are constants. Trajectories pass through this point at a time T1(γ) + δ1.

A.3 The local map H in
1 → Hout

1

From this subsection onwards, we will omit most of the details and describe only the main ideas of
the calculation. The details are worked out exactly as shown in the previous two subsections. Let
x(t) = 1 + u(t), x3 = 1 + u3 and x4 = 1 + u4, where y3, u3 ∼ O(γ). For a trajectory near the P1(1, 0, 0),
the dynamics of the system is approximated by the linearized system







ẋ = u̇ = −u− (1 + c)y + (e− 1)z
ẏ = ey
ż = −cz

Integrating the linearised dynamics from H in
1 to Hout

1 we obtain the following map from H in
3 to Hout

1 ,
keeping terms up to order γ, as before:



















T2(γ) = s+ δ1 + log(B−1
110h

1+c/ex
−1−c/e
1 )1/e − γ

[

x−1
1

e+c
e2

∫ T1(0)
s e−e(τ−s)f(2ωτ) dτ

]

z4(γ) = h1−c2/e2B
c/e
110x

c2/e2

1 + γ
[

x
−1+c2/e2

1 B
c/e
110h

1−c2/e2
(

c2

e2

)

∫ T1(0)
s e−e(τ−s)f(2ωτ) dτ

]

x4(γ) = 1− 1+c
1+eh+ γ

[

x
−1+c2/e2

1
c2(1−e)
e2(1−c)B

c/e
110h

1−c2/e2
∫ T1(0)
s e−e(τ−s)f(2ωτ) dτ

]

. (41)

A.4 The global map Hout
1 → H in

2

Suppose that the unstable manifold of P1 intersects Hout
1 and H in

2 at (ξ4(t, γ), h, 0) and (h, η5(t, γ), 0),
where ξ4 and η5 are smooth functions of t and γ as before. The affine map (x4, h, z4) → (h, y5, z5) takes
the form

{

y5 = η5(T2(γ) + δ2, γ) +A21(T2(γ), γ)(x4(γ)− ξ4(T2(γ), γ)) +A22(T2(γ), γ)z4(γ) +O(γ2)
z5 = B22(T2(γ), γ)z4(γ) +O(γ2)

,

for some coefficients A21, A22 and B22 which, generically, are non-zero for all small enough γ. Here δ2
denotes the time taken to travel from Hout

1 → H in
2 . Substituting (41) into the above expressions we obtain











































y5(γ) = η50 +A210(x4(0) − ξ40) +A220z4(0) + γ
[

∂η5
∂γ (T2(0) + δ2, 0) +

∂A21

∂γ (T2(0), 0)(x4(0) − ξ40)

+A210(x
′
4(0)− ∂ξ4

∂γ (T2(0), 0)) +A220z
′
4(0) +

∂A22

∂γ (T2(0), 0)z4(0)
]

+O(γ2)

= A230 + γ
[

A24(T2(0), 0) + x
−1+c2/e2

1 A250B
c/e
110h

1−c2/e2 c2

e2

∫ T1(0)
s e−e(τ−s)f(2ωτ) dτ

]

+O(γ2)

z5(γ) = B220B
c/e
110h

1−c2/e2x
c2/e2

1 + γ
[

∂B22

∂γ (T2(0), 0)z4(0) +B220z
′
4(0)

]

+O(γ2)

= B220B
c/e
110h

1−c2/e2x
c2/e2

1 + γ
[

x
−1+c2/e2

1 B220B
c/e
110h

1−c2/e2 c2

e2

∫ T1(0)
s e−e(τ−s)f(2ωτ) dτ

]

+O(γ2).

(42)
Trajectories hit the cross-section H in

2 at time t = T2(γ) + δ2.
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A.5 The local map H in
2 → Hout

2

In a similar fashion to before, we let y(t) = 1 + v(t), y5 = 1 + v5 and y6 = 1 + v6. The linearized system
near P2 takes the form







ẋ = −cx+ f(2ωt)γ
ẏ = v̇ = −v + (e− 1)x− (c+ 1)z
ż = ez

As in previous subsections, we integrate this linearised system and obtain







































T3(γ) = s+ δ1 + δ2 + log(B−1
220B

−1−c/e
110 h1+c/e+c2/e2x

−1−c/e−c2/e2

1 )1/e

−γ
[

x−1
1

e2+ce+c2

e3

∫ T1(0)
s e−e(τ−s)f(2ωτ)dτ

]

+O(γ2)

x6(γ) = h1−c3/e3B
c/e
220B

c2/e2

110 x
c3/e3

1 + γ
[

e−c(T3(0)−T2(0)−δ2)
∫ T3(0)
T2(0)+δ2

ec(τ−T2(0)−δ2)f(2ωτ) dτ
]

+O(γ2)

y6(γ) = 1− 1+c
1+eh+ 1−e

1−cγ
[

e−(T3(0)−T2(0)−δ2)
∫ T3(0)
T2(0)+δ2

eτ−T2(0)−δ2f(2ωτ) dτ

−e−c(T3(0)−T2(0)−δ2)
∫ T3(0)
T2(0)+δ2

ec(τ−T2(0)−δ2)f(2ωτ) dτ
]

+O(γ2).

(43)

A.6 The global map Hout
2 → H in

3

We suppose that the unstable manifold of P ′
2 intersects Hout

2 and H in
3 at (ξ6(t, γ), η6(t, γ), h) and

(ξ7(t, γ), h, ζ7(t, γ)), respectively. Note that the forms of these two intersection points are slightly dif-
ferent to ones discussed previously since the plane {x = 0} is not invariant. At leading order the map
(x6, y6, h) → (x7, h, y7) takes the form















x7 = ξ7(T3(γ) + δ3, γ) +A31(T3(γ), γ)(x6(γ)− ξ6(T3(γ), γ))
+A32(T3(γ), γ)(y6(γ)− η6(T3(γ), γ)) +O(γ2)

z7 = ζ7(T3(γ) + δ3, γ) +B31(T3(γ), γ)(x6(γ)− ξ6(T3(γ), γ))
+B32(T3(γ), γ)(y6(γ)− η6(T3(γ), γ)) +O(γ2)

,

where A31, A32, B31 and B32 are smooth functions both of T3(γ) and of γ which genertically remain
non-zero for all small γ. δ3 is the time taken to move from Hout

2 to H in
3 . Substituting (43) into these

expressions we obtain

x7(γ) = µx
c3/e3

1 + ξ7(T3(γ) + δ3, γ)−A310ξ6(T3(γ), γ)

+γ
[

A310e
−c(T3(0)−T2(0)−δ2)

∫ T3(0)
T2(0)+δ2

ec(τ−T2(0)−δ2)f(2ωτ) dτ + ∂A32

∂γ (1− 1+c
1+eh− η60)

]

,
(44)

where µ is a constant which depends only on the form of the perturbation function f .
Since ξ6 and ξ7 are the x-coordinates of the intersections of the unstable manifold of P ′

2 with the cross
sections Hout

2 and H in
3 , respectively, we may approximate ξ6 and ξ7 through affine maps of xP ′

2
and xP ′

3
,

where xP ′

2
and xP ′

3
denote the x-coordinates of P ′

2 and P ′
3, respectively. It is straightforward to derive

that

xP ′

2
= γ

1

ecπ/ω − 1

∫ π/ω

0
ecτf(2ω(t+ τ)) dτ,

and

xP ′

3
= γ

1

e−eπ/ω − 1

∫ π/ω

0
e−eτf(2ω(t+ τ)) dτ.

Therefore

ξ6(t, γ) = λ1 + γλ2
1

ecπ/ω − 1

∫ π/ω

0
ecτf(2ω(t+ τ)) dτ, (45)
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ξ7(t, γ) = λ3γ + γλ4
1

e−eπ/ω − 1

∫ π/ω

0
e−eτf(2ω(t+ τ)) dτ, (46)

where λ1, λ2, λ3 and λ4 are constants. Substituting (45) and (46) into (44), we have

x7(γ) = µx
c3/e3

1 + γ

[

µ1 + µ2e
−c(T3(0)−T2(0)−δ2)

∫ T3(0)

T2(0)+δ2

ec(τ−T2(0)−δ2)f(2ωτ) dτ

−µ4
1

ecπ/ω − 1

∫ π/ω

0
ecτf(2ω(T3(γ) + τ)) dτ

−µ5
1

e−eπ/ω − 1

∫ π/ω

0
e−eτf(2ω(T3(γ) + δ3 + τ)) dτ

]

,

where the µj are constants. Since neither x7 nor z7 depends on z1 at this order, there is no need to
calculate z7.

A.7 The explicit form of the Poincaré map

Since the expression for x7(γ) depends on T3(γ) which in turn is given in (43) in terms of x1 and s, we
have constructed a map from (x1, s) → (x7, T3 + δ3) which is our Poincaré map. The map takes the form
(x, t) → (x̄, t̄) = F (x, t) = (f1(x, t), f2(x, t)) = (f1(x, t), t + T (x, t)), where

{

f1(x, t) = µxd + γ [µ1 + µ2L1(x, t)− µ4G1(x, t) − µ5G2(x, t)] +O(γ2),
f2(x, t) = t+ µ3 − ξ log x− γξL2(x, t)x

−1 +O(γ2),
(47)

where ξ = e2+ce+c2

e3
, d = c3/e3, µ and the µjs are constants, T (x, t) denotes the time taken for a point (x, t)

to complete one pass around the whole circuit of cross-sections, and the parts of the map are explicitly
given by the expressions

L1(x, t) = e−c(T3(0)−T2(0)−δ2)

∫ T3(0)

T2(0)+δ
ec(τ−T2(0)−δ2)f(2ωτ) dτ, (48)

L2(x, t) =

∫ T1(0)

t
e−e(τ−t)f(2ωτ) dτ, (49)

G1(x, t) =
1

ecπ/ω − 1

∫ π/ω

0
ecτf(2ω(T3(γ) + τ)) dτ, (50)

G2(x, t) =
1

e−eπ/ω − 1

∫ π/ω

0
e−eτf(2ω(T3(γ) + δ3 + τ)) dτ. (51)
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