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Thermal convection in a horizontal fluid layer heated uniformly from below usually pro-
duces an array of convection cells of roughly equal amplitudes. In the presence of a
vertical magnetic field, convection may instead occur in vigorous isolated cells separated
by regions of strong magnetic field. An approximate model for two-dimensional solutions
of this kind is constructed, using the limits of small magnetic diffusivity, large magnetic
field strength and large thermal forcing.

The approximate model captures the essential physics of these localised states, enables
the determination of unstable localised solutions and indicates the approximate region of
parameter space where such solutions exist. Comparisons with fully nonlinear numerical
simulations are made, and reveal a power law scaling describing the location of the saddle
node bifurcation in which the localised states disappear.

1. Introduction

A multitude of dissipative continuum systems undergo pattern-forming instabilities as
the driving for the system is increased. Of these, Rayleigh–Bénard convection and its
variants are of particular importance. Chandrasekhar (1961) discusses the linear theory
for the Rayleigh–Bénard problem with and without a magnetic field. Nonlinear aspects
of pattern formation set in the context of thermal convection are presented by Cross &
Hohenberg (1993), and Hoyle (2006) among many others.

Thermal convection patterns near the onset of the Rayleigh–Bénard instability in a
large domain are typically close to spatially periodic, with a characteristic horizontal
length-scale given by the depth of the fluid layer. Although the preferred planform of con-
vection depends on the precise nature of the upper and lower boundary conditions and the
extent to which the fluid obeys the Boussinesq approximation, for many situations paral-
lel stripe or ‘roll’ patterns are both theoretically predicted and experimentally observed.
More recently it has become apparent that pattern forming systems may form localised
structures, often referred to as ‘dissipative solitons’, rather than spatially periodic pat-
terns. Examples of this phenomenon have been observed in vertically vibrated layers of
granular media (Umbanhowar et al. 1996) (where they were named ‘oscillons’), planar
gas discharge experiments (Strümpel et al. 2001), surface catalysis reactions (Rotermund
et al. 1991) and thermal convection in a binary fluid. Localised states containing of a
number of steady convection cells in a binary fluid have been observed recently in numer-
ical simulations by Batiste and Knobloch (2005). In parallel, there has been considerable
interest in simplified model PDEs, often extensions of the Swift–Hohenberg equation,
Swift & Hohenberg, 1977), that display localised solutions (Sakaguchi & Brand 1996,
Hunt et al. 2000, Coullet et al. 2000).
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Figure 1. (reproduced from Blanchflower, 1999b) Numerical solution of the Boussinesq equa-
tions for thermal convection in a vertical magnetic field at R = 100000, Q = 100000, ζ = 0.1,
σ = 1.0. Domain aspect ratio L = 6.0. (a) Deviations from the background conductive tem-
perature profile, with velocity arrows superposed. (b) Contours of magnetic field strength with
superposed field lines.

Numerical simulations of two-dimensional Boussinesq magnetoconvection with an im-
posed vertical magnetic field, by Blanchflower (1999a,b) showed, surprisingly, that lo-
calised structures were stable for parameter values where regular arrays of convection
cells of equal strengths were expected. Blanchflower referred to these localised states as
‘convectons’. Figure 1 shows a typical localised solution to the Boussinesq equations.

Convectons are closely related to the mechanism of ‘flux expulsion’ by which vigorous
fluid eddies expel the magnetic field from their interior and convect more strongly as a
result (Weiss 1966,1981a,1981b). This process has been observed to occur equally well in
numerical simulations of compressible magnetoconvection (Hurlburt and Toomre 1988).
Motivation for such numerical calculations comes from observations of small bright points
(‘umbral dots’) within the dark central region (‘umbra’) of sunspots, despite the fact that
the magnetic field is much stronger here than in the surrounding ‘quiet’ regions of the
solar surface (Weiss 2002).

Recent theoretical work by Cox and Matthews and co-authors (2000,2001,2003,2004),
in a weakly nonlinear framework, showed that a space-periodic array of identical con-
vection cells may be destabilised by interactions with a dynamically evolving large-scale
mean magnetic field and break up into localised vigorous cells separated by very weak,
or no, convection. As an aside, it should be noted that the same set of weakly nonlinear
amplitude equations were derived by Komarova and Newell (2000) as a model of sand
banks on the ocean floor. While the analysis of Cox and Matthews provides strong sup-
port for the argument that interactions between the mean magnetic field and regular
cellular convection lead to localisation, these calculations are restricted by their weakly
nonlinear nature in two ways. Firstly, the ‘localised’ solutions that result are localised
only on the asymptotically long length-scale of the pattern envelope. Secondly, only small
deviations from a uniform strength imposed field are allowed.

In contrast, this paper attempts to describe truly localised, single cell, states and allows
the large scale field to vary by an order one amount between the non-magnetic vigorously
convecting eddies and the strong magnetic field convection-free regions. We take advan-
tage of the useful observation, made by Blanchflower (1999b), that the nature of these
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localised states is illuminated by a simplified system of PDEs obtained by assuming a
simple sinusoidal form for their vertical structure.

The structure of the paper is as follows. In section 2 we introduce the simplified PDEs
integrated numerically by Blanchflower (1999a,b) and outline a strategy for construct-
ing solutions. In section 3 we compute approximate solutions in each of three regions
using various asymptotic limits. Section 4 shows that the approximate model predicts
the existence of convectons. By varying the magnetic field strength we follow the con-
vecton branches and determine that they terminate in a saddle-node bifurcation, as
conjectured by previous authors. In section 5 we show that the approximate model also
describes branches of multiple-roll convectons and explains numerical observations, made
by Blanchflower, of a sequence of abrupt changes in the number of convection cells. Sec-
tion 6 discusses the region of the parameter space where convectons exist and presents a
numerically-determined scaling law for the location of the saddle-node bifurcations. The
paper closes with a discussion in section 7.

2. Governing equations

We consider an incompressible magnetically conducting fluid in the Boussinesq ap-
proximation (Chandrasekhar 1961). After the usual nondimensionalisation, the govern-
ing equations for a two dimensional flow are (see Knobloch et al. 1981 and Proctor &
Weiss 1982):

∂tω + J [ψ, ω] = −σR∂xθ − σζQ(J [A,∇2A] + ∂z∇
2A) + σ∇2ω, (2.1)

∂tθ + J [ψ, θ] = ∇2θ + ∂xψ, (2.2)

∂tA+ J [ψ,A] = ∂zψ + ζ∇2A, (2.3)

where the Jacobian J [f, g] = ∂xf∂zg−∂zf∂xg. θ(x, z, t) is the temperature perturbation
to the conduction profile T = 1 − z and ψ(x, z, t) is the streamfunction. The velocity
field is given by u = ∇ × (ψ(x, z, t)ŷ) and the scalar vorticity is given by ω = −∇2ψ.
A(x, z, t) is the magnetic flux function, yielding the magnetic field

B = B0 + ∇×Aŷ = (−∂zA, 0, 1 + ∂xA), (2.4)

where B0 = (0, 0, 1) is the nondimensionalised imposed uniform vertical field.
There are four dimensionless parameters: the Prandtl number σ = ν/κ ( viscous /

thermal diffusivity ratio); the magnetic Prandtl number ζ = η/κ (magnetic / thermal
diffusivity ratio); the Chandrasekhar number Q and the Rayleigh number R:

R =
α̂g∆Td3

κν
, Q =

|B0|
2d2

µ0ρ0νη
. (2.5)

The symbols α̂, g and ∆T denote, as is standard, the thermal expansion coefficient,
gravitational acceleration and temperature difference between upper and lower bound-
aries respectively. The boundary conditions taken are the standard ones that allow an
analytical treatment: fixed temperature θ = 0 and a stress-free velocity field ψ = ω = 0
at the upper and lower boundaries z = 0, 1 where the field is constrained to be vertical,
i.e. ∂zA = 0. Periodic boundary conditions are taken in the horizontal.

Numerical simulations and physical intuition indicate that the convecton solutions do
not have a complicated z-dependence. We adopt the simplification that the z-dependence
of each variable may be taken to be just the first Fourier mode that satisfies the upper
and lower boundary conditions. A key part of the formation of convectons would, how-
ever, seem to be the separate evolution of a mean (i.e. z-independent) component of the
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magnetic field and the leading-order z-dependent part. Therefore we follow Blanchflower
and propose the minimal Fourier decomposition ansatz :

ψ = ψ1(x, t) sinπz,

ω = ω1(x, t) sin πz,

θ = θ1(x, t) sinπz + θ2(x, t) sin 2πz,

A = A0(x, t) +A1(x, t) cos πz.

Such a decomposition was first considered by Knobloch et al. (1981). We substitute
these expressions into (2.1) - (2.3) and neglect higher order Fourier modes. The inclusion
of θ2(x, t) provides the leading-order nonlinearity near the onset of convection in the
hydrodynamic Rayleigh–Bénard problem, as in the derivation of the ‘Lorenz equations’
(Lorenz 1963). The truncation results in the following set of PDEs that will be the focus
of the rest of this paper:

∂tω1 = σ(ω′′

1 − π2ω1) − σRθ′1 − σζQπ[(1 +A′

0)(π
2A1 −A′′

1) +A′′′

0 A1], (2.6)

∂tθ1 = θ′′1 − π2θ1 + ψ′

1(1 + πθ2) +
π

2
ψ1θ

′

2, (2.7)

∂tθ2 = θ′′2 − 4π2θ2 +
π

2
(ψ1θ

′

1 − ψ′

1θ1), (2.8)

∂tA0 = ζA′′

0 +
π

2
(ψ1A1)

′, (2.9)

∂tA1 = ζ(A′′

1 − π2A1) + πψ1(1 +A′

0), (2.10)

where primes denote ∂x, and ω1 = π2ψ1−ψ
′′

1 . An illustrative convecton solution to (2.6) -
(2.10) is shown in figure 2. The construction of approximate steady solutions proceeds by
dividing up the spatial domain into three regions: inside the convecton, where the field is
expelled and the flow is vigorous, a thin magnetic boundary layer where the flow becomes
very weak and the field reaches a peak intensity, and an outside region containing a much
wider thermal ‘boundary layer’ where the flow is negligible but the field is still distorted.
In this thermal boundary layer the dominant balance is between the temperature gradient
and the Lorentz force terms in the momentum equation. These impart equal and opposite
vorticity to the flow which allows the fluid to remain stationary. The three regions can be
easily distinguished in figure 2. Numerical simulations indicate that the mean magnetic
field is completely expelled from the inside region: consequently A′

0 = −1 within the
convecton.

We make three general remarks about (2.6) - (2.10). Firstly, numerical results indicate
that in the outside region, to a very high degree of accuracy,

A′

0 =
lc

L− lc
, (2.11)

for a domain of length L and a convecton of width lc (as measured by the distance
between the discontinuities in A′

0). This is due to the imposition of periodic boundary
conditions, and the fact that |ψ1| ≪ 1 in the outside region. Secondly, the rescaling
A1 = ζÂ1 removes odd powers of ζ, showing that a small-ζ expansion (which we will
employ to describe the ‘inside’ region) should proceed by expanding in powers of ζ2.
Thirdly, (2.9) may be integrated directly. This, using (2.11) to determine the constant of
integration, yields

ψ1A1 =
2ζ

π

(

lc
L− lc

−A′

0

)

. (2.12)

Finally, we define the geometric parameter β = (L− lc)/L. An expression that will occur
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Figure 2. Numerical solution to the truncated equations (2.6) - (2.10) for R = 20000,
Q = 14000, ζ = 0.1, σ = 1.0, L = 6.0.

repeatedly is the leading-order value of 1+A′

0 in the outside region: this is 1+lc/(L−lc) =
1/β.

3. Approximate solutions

In this section we discuss approximate solutions of the model system (2.6) - (2.10) that
reflect the physics of the system in the three regions described above. The approximate
solutions for A1(x) are then patched together; the conditions for patching determine
whether convecton solutions are possible for a given combination of parameters.

3.1. The inside region

For the inside region we develop an asymptotic expansion in powers of ζ ≪ 1. Since the
large scale magnetic field is negligible in this region we set A′

0 = −1 at leading order.
As a result (2.6) is linear at leading order and the hydrodynamics is decoupled from the
magnetic field. Formally we expand as follows:

(ψ1, ω1) = (ψ10, ω10) + ζ2(ψ11, ω11) +O(ζ4),

(θ1, θ2) = (θ10, θ20) + ζ2(θ11, θ21) +O(ζ4),

A1 = ζA10 + ζ3A11 +O(ζ5),

A′

0 = −1 + ζ2A′

01 +O(ζ4),
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and take ψ10 = ψ̂0 sin kx where ψ̂0 is a constant. We fix the origin x = 0 to be at the
left-hand edge of the convection cell (at x = 2.5 in figure 2). Then ω10 = β̂2ψ̂0 sin kx

where β̂2 = π2 + k2, and

θ10 =
β̂4ψ̂0

Rk
cos kx. (3.1)

From the temperature equations (2.7) and (2.8) we have

0 = −

(

β̂6ψ̂0

Rk
− kψ̂0

)

cos kx+ πkψ̂0θ20 cos kx+
πψ̂0

2
θ′20 sin kx, (3.2)

0 = θ′′20 − 4π2θ20 −
πβ̂4ψ̂2

0

2R
,

which have the obvious solution θ20 = −β̂4ψ̂2
0/(8πR), constant. Numerical simulations

such as figure 2 show that θ2 attains a constant value across convectons that are suffi-
ciently wide. As θ20 is constant, (3.2) implies

ψ̂2

0 =
8

β̂4

(

R−
β̂6

k2

)

. (3.3)

Finally, from (2.12) we find ψ10A10 = 2/(πβ) and hence

A1 =
2ζ

πβψ̂0

coseckx+O(ζ3). (3.4)

The hydrodynamic equations at O(ζ2) are formidably complicated. Further useful infor-
mation can be extracted from (2.10) at O(ζ2) and from (2.12) at O(ζ3); from (2.10) we
obtain

0 = A′′

10 − π2A10 + πψ10A
′

01,

which can be solved for A′

01. Hence

A′

0 = −1 +
2ζ2

π2βψ̂2
0

(

β̂2

sin2 kx
−

2k2

sin4 kx

)

+O(ζ4). (3.5)

This expression indicates that the expansion in powers of ζ breaks asymptoticity when
x = O(ζ1/2); at this point the second term in the O(ζ2) contribution becomes O(1).

Now we turn to the terms in (2.12) at O(ζ3):

ψ11A10 + ψ10A11 = −
2

π
A′

01. (3.6)

where both ψ11 and A11 are unknown. The later analysis is found to be greatly improved
if the term A11 is included in the solution for A1. Given the difficulties in obtaining
analytically anything more than the leading order terms for ψ1, θ1 and θ2, we elect to
neglect the term ψ11 and solve (3.6) for A11:

A11 = −
2A′

01

πψ10

= −
4

π3βψ̂3
0

(

β̂2

sin3 kx
−

2k2

sin5 kx

)

.

The inside solution (3.4) for A1 is then

A1 =
2ζ

πβψ̂0

coseckx+
4ζ3

π3βψ̂3
0

(

2k2

sin5 kx
−

β̂2

sin3 kx

)

+O(ζ5). (3.7)
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When x = O(ζ1/2) we see that both terms in (3.7) are O(ζ1/2), breaking asymptoticity
at the same point as (3.5) does; this illustrates the importance of A11. We remark that
a similar approach involving taking a very simple solution for the hydrodynamic part of
the problem, but solving in detail for the magnetic field structure, was used by Busse
(1975) in the analysis of spatially periodic convection cells.

The required rescalings to continue the asymptotics when x = O(ζ1/2) can be com-
puted in a straightforward manner, but it appears that nothing can be easily deduced
from the rescaled ODEs.

3.2. The outside region

3.2.1. The limit ζ ≪ 1

The outside region contains the thermal boundary layer and a balance between buoy-
ancy and Lorentz forces in the momentum equation. A natural assumption would be that
|ψ1| ≪ 1 and the leading-order balance in the momentum equation (2.6) is

−Rθ′1 ≈
ζQπ

β
(π2A1 −A′′

1 ), (3.8)

(recall that, at leading order, 1 + A′

0 = 1/β, constant). However there is no consistent
scaling in powers of ζ that removes the ω′′−π2ω terms to higher orders in the momentum
equation, while maintaining the leading-order balance (3.8). This can be seen by the
following argument. Firstly, we demand θ1 = O(ζ0) since the solution for θ1 in the inside
region (3.1) is purely hydrodynamic, and hence independent of ζ, at leading order. Then
from (3.8) we observe that A1 = O(ζ−1). (2.10) then implies

ζ(π2A1 −A′′

1 ) =
π

β
ψ1,

and so ψ1 = O(ζ0). Then (2.12) indicates that

ψ1A1 = ζ

(

lc
L− lc

−A′

0

)

= O(ζ−1), (3.9)

and so the ‘small correction’ to the leading-order approximation A′

0 = lc/(L−lc) is in fact
O(ζ−2)! Hence it is not possible, asymptotically in the limit ζ → 0, to describe a solution
of the form we require for the outside region. It is impossible for the magnetic field to
distort and provide the required Lorentz force to balance the temperature gradient in
this limit.

3.2.2. The limit R≫ 1, Q = O(R)

A consistent leading-order description can, however, be captured in the limit R ≫ 1,
keeping Q = O(R). This is less satisfactory than the small-ζ limit, since it is clear from
numerical results that R and Q do not have to be particularly large for convectons to
exist. We adopt the rescaling

(ω1, ψ1, θ1, θ2, A1) = R−1(ω̃1, ψ̃1, θ̃1, θ̃2, Ã1),

and assume that Q = O(R) and A′

0 = O(1). This yields (dropping the tildes)

0 = −θ′1 −
πζQ

R

[

(1 +A′

0)(π
2A1 −A′′

1 ) +A′′′

0 A1

]

+
1

R
(ω′′

1 − π2ω1), (3.10)

0 =
1

R

(

θ′′1 − π2θ1 + ψ′

1

)

+
1

R2

(

πψ′

1θ2 +
π

2
ψ1θ

′

2

)

, (3.11)

0 =
1

R
(θ′′2 − 4π2θ2) +

π

2R2
(ψ1θ

′

1 − ψ′

1θ1) , (3.12)
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1

R2
ψ1A1 =

2ζ

π

(

lc
L− lc

−A′

0

)

, (3.13)

0 = ζ(A′′

1 − π2A1) + πψ1(1 +A′

0). (3.14)

We expand in powers of R−1:

(ψ1, θ1, A1) = (ψ10, θ10, A10) +R−1(ψ11, θ11, A11) +O(R−2),

A′

0 =
lc

L− lc
+R−2A′

02 +O(R−2),

and consider the leading order terms in (3.10), (3.11) and (3.14):

0 = −θ′10 −
πζQ

βR
(π2A10 −A′′

10), (3.15)

0 = ζ(A′′

10 − π2A10) +
π

β
ψ10, (3.16)

0 = θ′′10 − π2θ10 + ψ′

10. (3.17)

Selecting the solution that decays as x→ −∞ and introducing

h =

√

π4Q

π2Q− β2R
, (3.18)

we obtain the leading order solution

ψ1 = −
β2hRφ̂0

π2Q
ehx +O(R−1), (3.19)

θ1 = φ̂0e
hx +O(R−1), (3.20)

A1 =
βhRφ̂0

πζQ(h2 − π2)
ehx + φ̂1e

πx +O(R−1). (3.21)

From inspecting (3.13) we observe that the assumption R2ζ ≫ 1 is necessary in addition
to our previous assumptions that R ≫ 1 and ζ ≪ 1. This additional assumption is
necessary mathematically but forms no restriction in practice, as typical numerical values
are R ≈ 104 and ζ ≈ 10−1.

3.3. The boundary layer

The boundary layer near x = 0 (the left hand edge of the convection cell) smooths the
transition between the inside region where A′

0 = −1, and the outside region where 1+A′

0

takes the constant non-zero value 1/β. As figure 2 illustrates, the change in the gradient
of A0 is sharp even for ζ = 0.1. A simple functional form for A0(x) within the boundary
layer is proposed: the hyperbola

(

A0 −
lcx

L− lc

)

(A0 + x) = ε, (3.22)

where ε is a small parameter that determines the spatial extent of the magnetic boundary
layer. Such a simple functional form allows analytical progress to be made on the form
of A1(x). Substituting for ψ1 by using (2.12) in (2.10) we obtain

A1(π
2A1 −A′′

1 ) = 2(1 +A′

0)

(

lc
L− lc

−A′

0

)

,
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which becomes, after substituting for A′

0 using (3.22):

A1(π
2A1 −A′′

1) =
2ε

x2 + 4εβ2
. (3.23)

Clearly there are two relevant scalings. There is an ‘outer’ scaling where x ≫ ε1/2 and
an ‘inner’ scaling where x = O(ε1/2). The outer scaling is of little interest here, since we
expect (3.23) to be valid only near x = 0. To examine the inner scaling we introduce a
rescaled variable X defined by x = 2βε1/2X . Now (3.23) becomes

4εβ2π2A2

1 −A1A
′′

1 =
2ε

X2 + 1
, (3.24)

where primes now denote ∂X . We seek a solution in powers of ε that is even about X = 0,
starting with an O(ε0) term since the outside solution, to which we need to match, has
an O(1) variation in A1 caused by the horizontal variation in temperature in the thermal
boundary layer. Let

A1 = A10 + εA11 +O(ε2).

At leading order we obtain

−A10A
′′

10 = 0, (3.25)

and set A10 = α0 constant. A10 contains no linear term because of the symmetry of (3.24).
At O(ε) we obtain

4β2π2α2

0 − α0A
′′

11 =
2

X2 + 1
,

which has the solution

A11 = 2π2β2α0X
2 −

2X

α0

tan−1X +
1

α0

log(1 +X2).

In terms of the original variable x:

A1,bl = α0 +
π2

2
α0x

2 −
ε1/2x

α0β
tan−1

(

x

2βε1/2

)

+
ε

α0

log

(

1 +
x2

4β2ε

)

.

where the subscript bl indicates ‘boundary layer’.

3.4. Patching conditions

The approximate solution contains five undetermined coefficients. These are φ̂0, φ̂1 (in the
outside region), ε, α0 (in the boundary layer) and k (in the inside region). The parameters
R, Q, ζ and L are treated as given. The convecton width is given by lc = π/k, and we
specify the centre of the left-hand boundary layer between inside and outside solutions
to be x = 0. By the symmetry of the convecton there is no need to consider patching
near the right-hand boundary layer at x = lc.

Our five patching conditions are as follows. We patch the outside solution for A1

to the boundary layer solution at a point x = −p < 0, demanding that A1 and A′

1

are continuous. Similarly we patch the boundary layer solution to the inside solution
for A1 at x = p > 0. Note that, by the symmetry of the boundary layer solution,
A′

1,bl(p) = −A′

1,bl(−p) and the inside and outside solutions are directly related to each
other. The fifth condition is that the temperature perturbation θ1 attains equal values
at x = ±p; the temperature perturbation that drives the perturbation to A1 in the
outside region is given by the temperature perturbation excited by the strength of the
convection within the inside region. In total we have five natural patching conditions and
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six unknowns: the patching location p and the five undetermined coefficients. The lack
of an imposed scaling relationship between ε and ζ accommodates the approximations
made in the solutions derived in each region. The patching requirements are expressed
in the following equations.

α0

(

1 +
π2p2

2

)

−
ε1/2p

α0β
tan−1

(

p

2ε1/2β

)

+
ε

α0

log

(

1 +
p2

4εβ2

)

=
βhRφ̂0

πζQ(h2 − π2)
e−hp + φ̂1e

−πp, (3.26)

−π2α0p+
ε1/2

α0β
tan−1

(

p

2ε1/2β

)

=
βh2Rφ̂0

πζQ(h2 − π2)
e−hp + πφ̂1e

−πp, (3.27)

φ̂0e
−hp =

β̂4ψ̂0

Rk
cos kp, (3.28)

α0

(

1 +
π2p2

2

)

−
ε1/2p

α0β
tan−1

(

p

2βε1/2

)

+
ε

α0

log

(

1 +
p2

4εβ2

)

=
2ζ

πβψ̂0

coseckp+
4ζ3

π3βψ̂3
0

(

2k2

sin5 kp
−

β̂2

sin3 kp

)

,

(3.29)

π2α0p−
ε1/2

α0β
tan−1

(

p

2βε1/2

)

= −
2ζk cos kp

πβψ̂0 sin2 kp

−
4kζ3

π3βψ̂3
0

(

10k2 cos kp

sin6 kp
−

3β̂2 cos kp

sin4 kp

)

.

(3.30)

We recall that ψ̂2
0 = 8(R − β̂6/k2)/β̂4, β̂2 = k2 + π2, β = (L − lc)/L and lc = π/k. We

fix p = 0.1: the qualitative nature of the solutions is not affected by this choice.

4. Results for single roll convectons

4.1. Solutions of the patching conditions

In this section we look for numerical solutions of the patching conditions (3.26) - (3.30)
and compare them with solutions of the PDEs (2.6) - (2.10).

We fix parameter values at R = 20000, ζ = 0.1, σ = 1.0 and L = 6.0 and consider
Q = 14000 and Q = 35000. Perhaps surprisingly, for both of these values of Q there exist
two solutions to the patching conditions; these correspond to convectons of different
widths lc, see table 1.

Figures 3 and 4 compare the two solutions of the patching conditions at Q = 14000
with the numerical solution of (2.6) - (2.10). The wider approximate solution is a much
better fit; although the value of lc is substantially too high, it gives excellent agreement
with the height and width of the local maximum of A1 in the boundary layer.

Figure 5 illustrates the approximate solutions for wide and narrow convectons at Q =
35000. We observe that they are now much more similar in form, and this suggests that
they may collide and disappear in a saddle-node bifurcation as Q is increased further.
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Q ε φ̂0 φ̂1 k α0 lc = π/k
14000 wide (stable) 7.481 × 10−5 0.2603 -4.6213 1.1445 0.06038 2.7449
14000 narrow (unstable) 1.715 × 10−4 0.1193 -1.1099 9.3421 0.05397 0.3363

35000 wide (stable) 4.546 × 10−6 0.1634 -1.9261 2.8958 0.02581 1.0849
35000 narrow (unstable) 1.046 × 10−5 0.1619 -1.6919 6.1116 0.03006 0.5140

Table 1. Patching coefficients for wide and narrow convectons at Q = 14000 and Q = 35000.
Other parameters are: R = 20000, ζ = 0.1, σ = 1.0, L = 6.0, p = 0.1.
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Figure 3. Comparison between numerical solution for A1 (solid line) from (2.6) - (2.10), as
shown in figure 2, and the approximate solution using the coefficients in the first line of table 1.
R = 20000, Q = 14000, ζ = p = 0.1, L = 6.0. The left-side and right-side dashed lines are
the outside and inside solutions respectively. The boundary layer solution is shown dot-dashed.
The right-hand boundary layer and outside solution are not shown due to the extreme width
of the model solution, but these are symmetrically related to those shown. Vertical dotted lines
indicate the patching points. (b) is an enlargement of (a).

4.2. Validity and stability of approximate solutions

Various assumptions implicit in the construction of the approximate solutions mean that
not all possible solutions to the patching conditions correspond to convectons.

Without loss of generality, since (2.6) - (2.10) are symmetric under the operation
(ψ1, ω1, θ1, A1) → −(ψ1, ω1, θ1, A1), we may fix α0 > 0 so that A1 > 0 in the boundary

layer and the convection roll circulates clockwise. So we expect φ̂0 > 0 by (3.1), since the

temperature perturbation θ1 > 0 at x = 0, and φ̂1 < 0 because we require A1 to cross
through zero at some point, see (3.21). These conditions are all clearly satisfied by the
solutions found in table 1 above.

Further restrictions on the validity of the approximate solutions are, firstly, that we
require the amplitude ψ̂2

0 to be positive; (3.3) shows that for a fixed R there is a finite

range of acceptable wavenumbers k. For R = 20000, ψ̂2
0 > 0 gives

0.22 < k < 11.24. (4.1)

Secondly, we require the boundary layer to be small compared to the width of the convec-
ton: ε ≪ 1. Thirdly, we ignore solutions of the patching conditions where the computed
width of the convecton implies that it occupies such a large proportion of the domain
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Figure 4. The approximate solution (dashed curve) for a narrow convecton at the same param-
eter values as figure 3: R = 20000, Q = 14000, ζ = p = 0.1, L = 6.0. For comparison, the solid
line (the numerical solution for the wide convecton at the same parameter values) from figure 3
is also shown. The right-hand boundary layer and outside solution are related by a reflection
symmetry in the line x = 4.7 to the left-hand part of the solution, since the behaviour of A1 is
the same in both boundary layers. Vertical dotted lines indicate the patching points.
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Figure 5. Approximate solutions for A1(x) at Q = 35000: (a) wide convecton; (b) narrow
convecton. Other parameters are as for figure 4. Vertical dotted lines indicate the patching points
between outside (solid), boundary layer (dot-dashed) and inside (solid) solutions as appropriate.

that insufficient space remains in the outside region for the outside solution to decay ex-
ponentially to small values. Since the thermal boundary layer decays as eπx, we consider
that a model solution will only be valid if

lc < L− 2. (4.2)

In order for a convecton solution to be dynamically stable and truly localised we require
that the outside region is linearly stable to the onset of convection. Using (2.11) and (2.4)
we observe that in the outside region the magnetic field has an effective strength given
by Qeff = Q/β2. For fixed values of R, σ and ζ we compute the minimum value of Q that
corresponds to stability for both steady and oscillatory perturbations. The linear stability
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calculation for the onset of convection in a uniform vertical magnetic field, see Proctor
and Weiss (1982), is usually presented as yielding the maximum Rayleigh number R for
which the quiescent state is stable, at fixed Q:

R =
β̂6

k2
c1 +

Qπ2β̂2

k2
c2, (4.3)

where c1 = c2 = 1 for the onset of steady convection and

c1 =
(σ + ζ)(1 + ζ)

σ
, c2 =

(σ + ζ)ζ

1 + σ
,

for the onset of oscillatory convection. Rearranging (4.3) to solve for Q as a function of
R, it is straightforward to locate the minimum value of Q as a function of k2. The result
is

Qmin =
(K − π2)R−K3c1

π2c2K
,

k2

min = K − π2,

where K = (Rπ2/2c1)
1/3. The outside region is linearly stable when

Q > β2Qmin,s, and Q > β2Qmin,o, (4.4)

where the subscripts s and o refer to steady and oscillatory convection respectively. The
extent to which these various constraints impinge on the results is shown in figures 6
and 7.

4.3. Branches of single-roll convectons

In this section we trace the behaviour of the solutions to the patching conditions (3.26)
- (3.30), as Q is varied, at fixed ζ, R and L. We find that convecton solutions cease to
exist when Q exceeds a critical value, corresponding to a saddle-node bifurcation where
the ‘wide’ and ‘narrow’ solution branches collide.

The continuation and bifurcation package AUTO97 (Doedel et. al. 1997) is used to
follow solutions to the patching conditions; from a bifurcation-theoretic viewpoint, only
steady-state bifurcations are relevant since they create or destroy branches of equilibria.
Figure 6 shows the existence of a saddle-node bifurcation at approximately Q/R = 1.9
for the typical parameter values used above. This justifies the saddle-node bifurcation
proposed by Blanchflower (1999a), his figure 3. The patching conditions do not indicate
the existence of any other steady-state bifurcations.

Moreover, Blanchflower (1999a), section 3, remarks that the single-roll convecton branch
(as well as solutions found for multiple convection rolls) lose their isolated nature at small
Q when weak oscillatory convection sets in in the quiescent ‘outside’ region. Figure 6 sup-
ports this statement since for these parameter values the marginal stability threshold for
oscillatory disturbances is much closer to the branch of approximate solutions than the
stability threshold for steady-state instability.

The location of the saddle-node bifurcation (Q = 41530, lc = 0.657) is within a factor
of 2 of that determined numerically by Blanchflower: Q = 26500, lc = 0.65, despite the
gross simplifications involved. The results of section 6 show that his determination of the
location of the saddle-node bifurcation is accurate only to within about 10%. Even so, it
is clear that the approximate model predicts substantially wider convectons than occur
in the truncated PDEs (2.6) - (2.10), becoming unrealistically wide at lower values of Q.
Approximating the patching conditions in the limits |kζ| ≪ 1 and R,Q≫ 1 leads to the
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Figure 6. Bifurcation diagram for solutions of the patching conditions showing the approximate
location of convectons in the (Q/R, lc) plane for R = 20000, ζ = 0.1 and L = 6.0. Horizontal
dotted lines indicate the validity limits lc < L − 2 and (4.1). The dash-dotted curves give the
stability criteria (4.4): convectons are stable above and to the right of these curves. The two
convectons shown in figure 5 correspond to points at Q/R = 1.75.

result

Q

R
=

2

1 − πζ
β2 ≡

2

1 − πζ

(

1 −
lc
L

)2

, (4.5)

showing that the predicted convecton width lc tends to the domain width L as Q/R
becomes small. To counteract this systematic defect in the model we take a larger domain
size L: this allows the formation of multiple-roll convectons in the approximate model.

5. Multiple-roll convectons

In this section we discuss the existence in the approximate model of states correspond-
ing to n > 1 separately localised identical convection cells in a large domain. Assuming
that the cells are well separated from each other, their only mutual influence is via the
increase in the effective field strength caused by the expulsion of the field into the qui-
escent regions between each pair of cells. For each cell the effective field strength in the
outside region is now Qeff = QL2/(L − nlc)

2 since the field is now confined to a region
of width L − nlc. In the patching equations (3.26) - (3.30) we redefine β = 1 − nlc/L.
Figure 7 shows numerical computations of branches of multiple-convecton solutions for
n = 1, 2, 3, 4. These solutions of the approximate model indicate two further points:
firstly that, as Q is decreased, branches terminate where the boundary layer coordinate
ε is no longer small (indicating a bifurcation in the PDEs that the model is unable to
describe fully), and secondly that at very small Q/R the equations are insensitive to the
exact number of convection cells; the relevant parameter is their total width.

Figure 7 indicates that the individual rolls in the stable n = 2 state are narrower
than the single roll in the n = 1 state. In addition, the saddle-node bifurcation on the
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Figure 7. Bifurcation diagram for R = 20000, ζ = 0.1, σ = 1.0 and L = 16.0. Branches of
convectons from the approximate model are shown by the solid (stable) and dashed (unstable)
curves. Note that the vertical axis gives the total width of the convecting region; individual cells
become narrower as their number increases. The horizontal dotted and curved dash-dotted lines
indicate the stability boundaries for the convecton and are reproduced from figure 6. 2 indicates
points where the boundary-layer solution blows up (ε→ ∞).

n = 2 branch occurs at lower Q than that on the n = 1 branch. In a series of numerical
integrations of the PDEs at increasing values of Q we therefore expect a sudden jump
onto the single-roll branch at the point of the n = 2 saddle-node, accompanied by a
widening of the convection cell, and this is observed in figure 8. The overall width of
the convecting (light-coloured) region in figure 8 can be compared with the envelope
of the branches in figure 7; the sharp transitions in figure 8 correspond to approaching
a saddle-node bifurcation and then ‘falling’ onto a new solution branch with a lower
number of convection cells. Figure 8 was constructed by increasing Q in small increments;
numerical simulations conducted by decreasing Q, starting from the single-roll convecton
state would obtain a very different picture: we predict that the single-roll state persists
to lower Q and then either bifurcates to a larger number of rolls (when the single roll can
no longer be sustained) or is replaced by weak convection throughout the layer (when
the linear stability boundary for the outside region is crossed).

The n = 1 branch in figure 7 terminates at approximatelyQ/R = 0.45; at this point the
boundary layer width ε diverges to infinity and the solution to the approximate model
cannot be continued. This behaviour is unrelated to the proximity of the dash-dotted
curve giving the linear stability of the outside region to oscillatory disturbances. The
latter varies with σ and the former does not, since σ does not enter into the patching
conditions. This indicates that as Q decreases there are two possible mechanisms for in-
stability of convectons: boundary-layer blow-up and outer region (oscillatory) instability.
We return to this point in section 6.

Note that the n = 2 branch also undergoes boundary-layer blow-up, but atQ/R ≈ 0.05.
For small Q/R we remark that the width of the domain filled with convecting cells is
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Figure 8. (reproduced from Blanchflower, 1999b) Numerical integrations of (2.6) - (2.10): con-
tour plots of dT/dz at the upper boundary of the layer z = 1, after transients have decayed.
Light colours correspond to convection cells, dark to quiescent fluid. R = 20000, ζ = 0.1, σ = 1.0.
(a) L = 4.0, (b) L = 16.0.

essentially independent of the number of cells. Solution branches for larger values of n
have saddle-node bifurcations at successively smaller values of Q/R.

6. Varying ζ

We have explored the region of (Q, ζ) parameter space for which convectons exist, both
in the Boussinesq equations (2.1) - (2.3) and in the truncated model (2.6) - (2.10). The
numerical simulations of the Boussinesq equations were carried out with a pseudospectral
code due to Stephen Cox and Paul Matthews. Figure 9(a) shows that convectons exist
in a region bounded, at large Q, by the saddle-node bifurcation, and, at small Q, by
the two instabilities identified earlier; a subcritical (and symmetry-breaking) bifurcation
that results in a n = 2-roll localised state, and the linear instability of the outside region
to weak oscillatory convection. Figure 9(b) shows the region of existence of convectons
for the full 2D Boussinesq equations (2.1) - (2.3) for R = 10000. For R = 5000 in the
Boussinesq equations the convectons exist over an extremely small region in parameter
space. For ζ ≈ 1, in both the Boussinesq equations and the truncated model (2.6) -
(2.10), the convectons exist over a small region of Q and are not completely localised,
in the sense that small counter-rotating eddies appear on either side of the main cell.
This is illustrated in figure 10 and was noted by Cox, Matthews and Pollicott (2004).
Figure 10(b) illustrates that although the central convection cell remains fully field-free,
the smaller cells do not. Because the approximate model discussed above assumes ζ ≪ 1
and assumes complete expulsion from every convection cell, it therefore does not de-
scribe these localised solutions at all accurately for ζ > 0.3. For ζ > 0.3 we find that
convectons in the truncated model, figure 9(a), lose stability through a subcritical bifur-
cation in which additional strong convection cells appear. In the simulations using the 2D
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Figure 9. Location of single-roll convectons (· · · · · ·) in the (Q, ζ) plane for L = 6.0: (a) ob-
tained from numerical simulations and boundary-value solving of (2.6)-(2.10) for R = 5000. 3

indicates subcritical instability, 2 indicates oscillatory instability in the outside region, + indi-
cates saddle-node bifurcation located through timestepping, ∗ indicates saddle-node located by
boundary-value solving. Dashed line indicates the power law Qζ1.2 = 296. (b) obtained from
the full Boussinesq equations (2.1) - (2.3) for R = 10000. Dotted lines estimate the location of
linear instabilities to weak convection in the outer region: vertical - steady instability, sloping -
oscillatory instability. 2 indicates oscillatory standing-wave instability, × indicates saddle-node
bifurcation, ∗ indicates approximate point of oscillatory instability in the outside region from
linear theory.
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Figure 10. Evolution of convecton profiles with increasing ζ, from numerical simulations of (2.6)
- (2.10). (a) ψ1, (b) A0. Plots are for (ζ,Q) pairs: (0.1, 4000), (0.15, 2400), (0.2, 1100), (0.3, 700),
(0.4, 500), (0.6, 500), (0.8, 320), (0.9, 300), (1.0, 260), (1.3, 180), (1.4, 165). These points lie close
to the line Qζ1.2 = 250, just below the saddle-node bifurcation line in figure 9(a).

Boussinesq equations, convectons lose stability in an oscillatory bifurcation, producing
standing-wave oscillations, before the outside region becomes linearly unstable.

An intriguing feature of figure 9 is the precise power law scaling of the locations of the
saddle-node bifurcation points. Figure 11 shows, moreover, that data for different values
of R still collapse to a single power law. Figure 11 contains data from time integrations
of both the truncated equations and the full Boussinesq equations. The location of each
saddle-node point was carefully estimated from the time integrations by curve fitting
to the solution amplitude, as measured, for example, the Nusselt number. The results
obtained in this way for the truncated PDEs (2.6) - (2.10) are in excellent agreement
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Figure 11. Data collapse for the location of the saddle-node bifurcation. Dotted line: best fit
power law R/ζ = 38.2581Q0.861758 for results at L = 6.0. +: R = 5000, L = 6.0, truncated
PDEs; ×: R = 10000, L = 6.0, 2D Boussinesq equations; △: R = 20000, L = 6.0, 2D Boussinesq
equations; 2: R = 50000, L = 6.0, truncated PDEs. 3: R = 5000, L = 10.0, truncated PDEs.

with solutions found by locating steady solutions of (2.6) - (2.10) as a boundary-value
problem. The best fit power law to the data of figure 11 is

R

ζ
= 38.3 Q0.862. (6.1)

Not unexpectedly, for a fully nonlinear solution, the value of the exponent does not seem
to correspond to any of the ‘obvious’ scalings motivated by linear theory and discussed
by Julien et al. (1999) and Matthews (1999). The power law (6.1) cannot be deduced
from the approximate model, which, as indicated by (4.5) always contains Q and R in
the combination Q/R. It is of interest that R/ζ and Q are both proportional to 1/(νη)
and are independent of the thermal diffusivity κ. The power law seems to hold without
systematic deviation over a range of ζ and R . Figure 11 contains four data points for a
domain size L = 10.0, indicated by the 3 symbols. It appears that, although the constant
of proportionality might depend weakly on L, the exponent does not.

It remains to comment on the degree to which the approximate model agrees with the
2D Boussinesq equations. Figure 12 shows the location of the saddle-node bifurcations
from the 2D Boussinesq equations and from the approximate model, for R = 50000.
Although the results are of the same order of magnitude, they clearly scale differently
with ζ, showing the shortcomings of the approximate model.

7. Discussion and conclusions

In this paper we have constructed a simple model for the formation of localised convec-
tive states in the presence of a vertical magnetic field, motivated by the physics specific
to this problem. The model predicts the existence of branches of solutions that are not re-
lated to the usual linear or weakly nonlinear theory, although one part of the approximate
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Figure 12. Comparison of the location of saddle-node bifurcations from the approximate model
(+) and solutions of the 2D Boussinesq equations (2) for R = 50000 and L = 6.0. Dashed line
indicates the scaling law ζ ≈ Q0.49.

model is essentially the Lorenz (1963) model for thermal convection in the absence of
magnetic field. The inclusion of a horizontally-varying but z-independent mode A0(x) as
well as the first Fourier mode A1(x) with vertical dependence cosπz enables the model to
capture the flux expulsion effect identified by earlier authors, in particular Weiss (1966)
and Knobloch et al. (1981). At leading order the model solution for A1(x) does not
correspond to the usual eigenfunction for weakly nonlinear magnetoconvection in either
the inside or outside regions. It is this lack of restriction of A1(x) to a sinusoidal form
that is the essential structural difference between this model and the weakly nonlinear
formulation analysed by Cox, Matthews and Pollicott (2004).

We compared the approximate model and our numerical results for the 2D Boussinesq
equations and the Fourier mode truncation (2.6) - (2.10) with the numerical results of
Blanchflower (1999a,b). The approximate model qualitatively explains and justifies much
of the behaviour he observed; not only is the overall shape of the convectons broadly
correct, but the existence and location of branches of these solutions, including those
with more than one convection roll, arise naturally in the model. At fixed R there are
upper and lower limits on the range of Q for which stable convectons exist. The upper
limit is always in the form of a saddle-node bifurcation. The lower limit in Q is given
either by the onset of weak oscillatory convection in the outer, quiescent, region, or by
a subcritical bifurcation that creates additional vigorous convection cells. At lower ζ the
oscillatory instability occurs first as Q is decreased. For fixed R and Q, there is a lower
limit to the value of ζ for which convectons are stable, again, due to the occurrence of
oscillatory convection in the outside region.

The approximate model makes use of the limits of small ζ, and large R and Q which,
perhaps surprisingly, do not adversely affect each other. In the ‘inside’ region the limit
ζ ≪ 1 enables the hydrodynamics to be decoupled from the magnetic field. From (3.7)
it is seen that the effect of increasing R is to reduce the size of the O(ζ3) correction
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Figure 13. Evolution of the profile of A1(x) around the saddle-node bifurcation showing di-
vergence from its form in figure 2 as the amplitude of the convecton drops. Main figure shows
solution amplitude as a function of Q for R = 5000, L = 10.0, ζ = 0.4. Inserts show A1(x) with
x rescaled to the unit interval, for Q = 535, 855, 995 (saddle-node point), 921, 769, 644, 492,
405 and 357.

term in relation to the leading order O(ζ) term, since ψ̂0 scales with R1/2 for large R.
In the ‘outside’ region the limit Q = O(R), R ≫ 1 enables the systematic determination
of a balance between buoyancy and Lorentz forces. As noted in section 3.2.2 we assume
also that R2ζ ≫ 1; for typical values of R and ζ this forms little practical restriction.
The limits used enable the leading-order forms of the streamfunction ψ1(x) and magnetic
flux function variables A0(x) and A1(x) to be readily obtained. The main drawback is
that the behaviour of the temperature variables is not incorporated, yet it is necessary
to use the temperature variable θ1 as one of the patching conditions. As a result the
approximate model neglects nonlinear interactions between the thermal and velocity
fields, and gives results that are not quantitatively correct for the parameter regime that
is most easily accessible to numerical work. For large enough R and Q and small enough
ζ, the approximate model yields results that are quite close to those of the 2D Boussinesq
equations, as shown in figure 12, although there are clear systematic differences.

The most intriguing observation from the numerical investigations is the scaling law
indicated in figure 11. There seems to be no immediate explanation for the exponent. It
might be expected that the exponent tends to unity as the domain size L is increased,
but the initial results for L = 10.0 in figure 11 show only weak dependence on L. More
work is clearly needed on this point.

There are various directions in which future work on this problem could proceed.
Firstly, it would be interesting to attempt to link this calculation to the weakly nonlinear
theory developed by Cox, Matthews and Pollicott (2004). This should help to describe
the ‘almost-localised’ states found at larger values of ζ, illustrated in figure 10. This
figure also illustrates a potential problem with the existence of a ‘snaking’ sequence of
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localised states with increasing numbers of vigorous convection cells, as explored in the
papers by Sakaguchi & Brand 1996, Hunt et al. 2000 and Coullet et al. 2000: in the
snaking scenario, one pair of these new small convection cells would develop into strong
convection eddies as Q is decreased further, while the others would decay again as the
solution ascended to the next turn of the snake. It remains possible, though, that the
solutions for larger numbers of convectons link up in a ‘slanted snake’ with the saddle-
nodes located at decreasing values of Q rather than tending towards a fixed value of
Q as in the usual snaking diagram. Numerical solutions of the boundary value problem
indicate that there may be some connection to ‘snaking’ since very small amplitude
(and unstable) convectons resemble a localised version of the linear eigenfunction rather
than preserving the overall form given by the approximate model for the large-amplitude
convectons. This is illustrated in figure 13.

Secondly, it may be possible to extend the model to describe oscillatory convectons,
which were found numerically by Blanchflower (1999a,b), and axisymmetric ones. An
axisymmetric version of the vertically-truncated ODEs might help determine whether
similar localised states are possible in three dimensions; certainly the physics would be
the same even if the analytical effort required was substantially greater. This would help
to shed further light on the interaction of thermal convection and magnetic fields in two
and three dimensions.

I have been grateful for comments from Sean Blanchflower, John Lister, Paul Matthews,
Alastair Rucklidge and the anonymous referees. Figures 1 and 8 are reproduced from
Blanchflower (1999b) with the author’s permission. Financial support from Trinity Col-
lege, Cambridge is gratefully acknowledged, as is the hospitality of the Isaac Newton
Institute.
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