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Abstract

The paper ‘The chemical basis of morphogenesis’ [Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)] by Alan Turing remains 
hugely influential in the development of mathematical biology as a field of research and was his only published work in the area. 
In this paper I discuss the later development of his ideas as revealed by lesser-known archive material, in particular the draft notes 
for a paper with the title ‘Outline of development of the Daisy’.

These notes show that, in his mathematical work on pattern formation, Turing developed substantial insights that go far beyond 
Turing (1952). The model differential equations discussed in his notes are substantially different from those that are the subject of 
Turing (1952) and present a much more complex mathematical challenge. In taking on this challenge, Turing’s work anticipates 
(i) the description of patterns in terms of modes in Fourier space and their nonlinear interactions, (ii) the construction of the 
well-known model equation usually ascribed to Swift and Hohenberg, published 23 years after Turing’s death, and (iii) the use of 
symmetry to organise computations of the stability of symmetrical equilibria corresponding to spatial patterns.

This paper focuses on Turing’s mathematics rather than his intended applications of his theories to phyllotaxis, gastrulation, 
or the unicellular marine organisms Radiolaria. The paper argues that this archive material shows that Turing encountered and 
wrestled with many issues that became key mathematical research questions in subsequent decades, showing a level of technical 
skill that was clearly both ahead of contemporary work, and also independent of it. His legacy in recognising that the formation of 
patterns can be understood through mathematical models, and that this mathematics could have wide application, could have been 
far greater than just the single paper of 1952.

A revised and substantially extended draft of ‘Outline of development of the Daisy’ is included in the Supplementary material.
© 2015 Elsevier Inc. All rights reserved.

Résumé

L’article unique et célèbre d’Alan Turing ‘The chemical basis of morphogenesis’ [Phil. Trans. R. Soc. Lond. B 237, 37–72 
(1952)] reste encore aujourd’hui très influent dans l’essor de la biologie mathématique. Ici, je discute les développements ultérieurs 
des idées de Turing révélées par des documents d’archives moins connus, en particulier son projet d’article intitulé ‘Outline of 
development of the Daisy’.

Ces documents, replacés dans l’oeuvre mathématique de Turing sur la morphogénèse et la formation de motifs, témoignent 
d’avancées majeures qui vont bien au-delà de l’article de 1952. En effet, Turing aborde dans ses notes des équations différentielles 
sensiblement différentes de celles de 1952 qui constituent un problème de mathématique d’un abord beaucoup plus complexe.
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Embrassant ce défi, Turing propose (i) une description des motifs réguliers sous la forme de modes de Fourier et de leurs 
intéractions non-linéaires, (ii) la construction de l’équation modèle bien connue de Swift et Hohenberg, publiée 23 ans après la 
mort de Turing, et enfin (iii) l’utilisation des propriétés de symétrie de ces équations d’évolution afin d’organiser et de simplifier 
les calculs nécessaires à l’étude de stabilité des équilibres symétriques correspondant aux motifs spatiaux.

Dans cet article, l’accent est porté sur les mathématiques de Turing et non sur les applications de ses théories à la phyllotaxie, la 
gastrulation, ou encore sur la morphogénèse des organismes marins unicellulaires comme les Radiolaria. On y montre en particulier 
que Turing s’est confronté à de nombreux problèmes ardus qui sont devenus dans les décennies suivantes des questions majeures 
en recherche mathématique, ce qui démontre une fois de plus un niveau de compétence technique hors norme qui était clairement 
à la fois bien en avance sur son temps, mais aussi indépendant de celui-ci. En reconnaissant que la formation de motifs peut se 
comprendre grâce à des modèles mathématiques, aux vastes champs d’application, il est évident que l’héritage de Turing aurait pu 
être beaucoup plus important que celui de son papier de 1952.

Une reproduction sensiblement révisée et complétée de son ébauche d’article ‘Outline of development of the Daisy’ est incluse 
en annexe.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Alan Turing made outstanding contributions in many mathematical fields, perhaps most notably in the 
foundations of modern computing. His wide ranging published work, together with some lesser-known, and 
in some cases incomplete, manuscripts, is contained in the four volumes of his Collected Works (Turing, 
1992a, 1992b, 1992c, 2001). Most biographies have, naturally, emphasised his contributions to digital com-
puting and their origins in Turing’s work at Bletchley Park during the Second World War. His work on 
morphogenesis (the emergence of biological structure) is less emphasised, and indeed the relevant volume 
(Turing, 1992c) of his Collected Works contains only a single published paper on the subject. However, 
this single paper (Turing, 1952), with the title The chemical basis of morphogenesis, and referred to below 
also as CBM, has assumed a central place in its field and has been cited over 4500 times.1

The key insight of CBM was that a model system of two reacting chemicals could generate spatial 
patterns when diffusion of the chemical species was allowed, under conditions in which the same two 
chemicals would not generate patterns if diffusion were prohibited. Thus the process of diffusion, which 
one might expect always led to smoother evolution of chemical concentrations, and therefore relaxation of 
the concentration fields to uniform values, could, in some circumstances, lead instead to an instability of 
this uniform state and the development of patterns. The wavelength of these patterns is given by algebraic 
combinations of the reaction and diffusion coefficients that describe the behaviour of the chemicals and 
hence the ‘chemical wave-length’ is an intrinsic property of the system. In spatial domains that are suf-
ficiently large, this ‘chemical wave-length’ plays a key role in organising the resulting patterns and their 
dynamics.

This key insight has, as is evidenced by the citation count of CBM, driven an enormous interest and 
volume of research into mathematical models for mechanisms that could drive biological pattern formation.

However, not only did Turing’s interest in morphogenesis continue to develop after the publication of 
CBM, but his later, lesser-known, work uses rather different mathematical models and requires substantially 
more computation (both algebraically by hand and numerically by computer) than that presented in CBM.

This article has two central aims. First, to review, from a mathematical perspective, these later de-
velopments in Turing’s work on morphogenesis, and, as far as possible, trace the mathematical con-

1 As at August 2014, according to the Thomson Reuters Web of Science citation index.
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nections between CBM, the lesser-known manuscripts A diffusion reaction theory of morphogenesis in 
plants (Turing and Wardlaw, 1992) and Morphogen theory of phyllotaxis, Parts I–III (Turing, 1992d)
(abbreviated to MTP I–III) for which coherent typescripts exist,2 and the lesser-known and far less 
coherent notes that start with the title Outline of development of the Daisy (Turing, 1992e) (abbrevi-
ated to ODD). Access to the original archive material for all these manuscripts is greatly facilitated 
by the scanned manuscript collection made available online in the form of the Turing Digital Archive 
(http://www.turingarchive.org/). A comprehensive review of the biological strands of the de-
velopment of Turing’s thought, concentrating in particular on phyllotaxis and MTP I and MTP II, has been 
given previously by Swinton (2004, 2013). Turing’s contributions in this area are set in a longer histor-
ical context in the popular science account by Ball (2009). See also the discussions by Allaerts (2003)
and Sanchez Garduno (2013). In the present article I attempt to show that the mathematical demands of 
the model proposed in MTP II, and further investigated in ODD are far in excess of those required to un-
derstand the published paper CBM. Turing would certainly have seen this, and perhaps he had a growing 
realisation that his investigations would lead to substantially more lengthy articles for publication. Given 
this, it is not a surprise that this work remained unfinished, moreover, the notes that remain relating to ODD
are nowhere near in final form: they are much more likely to be interim summaries of individual ideas that 
would need to be combined at a later point into a narrative that would form a coherent paper, or perhaps a 
set of papers, along the lines of MTP I–III. Supposing that the typeset manuscript pages contained in the 
Turing Archive at King’s College, Cambridge are only sets of draft pages that may well not relate directly 
to each other might justify, for example, why these pages (at least as far as they have been reconstructed), 
despite the title of the first page, contain no direct discussion of daisies!

The second aim is to point out the development of mathematically related ideas in fluid dynamics, of 
which Turing appears to have been unaware. These developments, from the period 1916–1940 were in 
fact the strands that motivated work in the 1950s and after, and which tend to be cited as the original 
manifestations of ideas that are widely used in modern applied mathematics. It is not difficult to imagine 
that if the ideas in the draft pages of ODD had been developed into a coherent manuscript for publication, 
then Turing would be associated with initiating far more in applied mathematics than just the idea of 
diffusion-driven instability outlined in CBM.

1.1. The chemical basis of morphogenesis

CBM (Turing, 1952) was received for publication by the Royal Society on 9 November 1951 and ap-
peared in print on 14 August 1952. Although CBM is a mathematical paper, Turing took care to write it so 
that it is widely scientifically accessible. He explicitly keeps the required level of mathematical preparation 
as low as possible, and from the first paragraph onwards is clear to point out that he makes no claim that his 
model contains sufficient biological detail to be at all biologically correct. However, Turing clearly has a 
number of specific biological examples in mind, as the list given in his letter to the physiologist J.Z. Young 
dated 8 February 19513 indicates

At present I am not working on the problem [of the relation between the logical and physical structure of 
the brain] at all, but on my mathematical theory of embryology, which I think I described to you at one time. 
This is yielding to treatment, and it will so far as I can see, give satisfactory explanations of –

(i) Gastrulation
(ii) Polygonally symmetrical structures, e.g. starfish, flowers

2 The original typescripts are held at sections AMT/C/7–AMT/C/10 in the Turing Archive in King’s College, Cambridge.
3 Typescript, archived in King’s College Cambridge at AMT/K/1/78 and quoted by Hodges (1992), pp. 436–437.

http://www.turingarchive.org/
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(iii) Leaf arrangement, in particular the way the Fibonacci series (0, 1, 1, 2, 3, 5, 8, 13, . . .) comes to be 
involved.

(iv) Colour patterns on animals, e.g, stripes, spots and dappling.
(v) Pattern on nearly spherical structures such as some Radiolaria, but this is more difficult and doubtful.

I am really doing this now because it is yielding more easily to treatment.

Hence it is not surprising that CBM contains a variety of comments (in Sections 11, 12 and 13) on 
dappled colour patterns, gastrulation and phyllotaxis problems to which the theory outlined earlier in the 
paper might apply. But there are hints also that Turing’s plans for further work on these problems involves 
mathematical and numerical computation as well as more detailed study and discussion of these biological 
situations. For example, Section 13 is headed ‘Non-linear theory. Use of digital computers’ and holds out 
the hope that one could study not just the initiation of pattern formation but also transitions between patterns 
of different kinds. The penultimate paragraph of CBM contains the words (italics in the original)

The difficulties are, however, such that one cannot hope to have any very embracing theory of such processes 
[i.e. transitions between patterns], beyond the statement of the equations. It might be possible, however, to 
treat a few particular cases in detail with the aid of a digital computer. ... The essential disadvantage of [this] 
method is that one only gets results for particular cases. But this disadvantage is probably of comparatively 
little importance. Even with the ring problem, considered in this paper, for which a reasonably complete 
mathematical analysis was possible, the computational treatment of a particular case was most illuminating. 
The morphogen theory of phyllotaxis, to be described, as already mentioned, in a later paper, will be covered 
by this computational method. Non-linear equations will be used.

So the conclusion from CBM appears to be that later work will

(i) consist of numerical computation for specific examples rather than general mathematical theory,
(ii) focus on the phyllotaxis problem, and

(iii) use nonlinear equations.

To take the last of these points first, it should be pointed out that CBM essentially considers linear differ-
ential equations throughout. Naturally enough, Turing does begin with a model in which chemical reaction 
terms are nonlinear, but the analysis proceeds by assuming that the concentrations are close to equilibrium, 
and that only small departures from equilibrium need to be considered. The resulting equations for these 
small disturbances are therefore taken to be linear. This reduction to a linear problem is a central idea 
in modern applied mathematics: many physical phenomena arise as linear instabilities, and those that do 
not, such as the transition to spatiotemporal complexity in shear flows observed and reported by Reynolds
(1883) (over sixty years earlier) are substantially harder to understand mathematically. Certainly Turing 
realised that the mathematical techniques he had available from the previous century (such as Fourier se-
ries) equipped him much better to deal with linear equations than nonlinear ones. This realisation naturally 
links to the first point: that numerical computation would be a better and more feasible approach to dealing 
with nonlinear equations should they be necessary. Moreover, given the lack of available theory, it would 
perhaps make sense to begin by computing, and therefore to deal only with one specific problem since the 
results of computational runs would be prone to delays caused by human and machine error and therefore 
relatively slow to arrive.

1.2. Morphogen theory of phyllotaxis

And so to point (ii) above and the phyllotaxis problem. On the phyllotaxis problem it is much 
clearer where Turing’s work went due to the manuscript Morphogen Theory of Phyllotaxis in three parts 
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(MTP I–III), contained in the Collected Works (Turing, 1992c) and reprinted in the later volume (Cooper 
and Van Leeuwen, 2013), pages 773–826. Of these three parts, the first part (MTP I) is primarily con-
cerned with geometrical relations between lattices and the spiral arrangement of leaves or florets, generally 
referred to as geometric phyllotaxis. In particular the selection of lattices that result in ‘parastichy pairs’ 
that are adjacent members of the Fibonacci sequence. MTP II changes focus, and describes in very gen-
eral terms a formulation of chemical reactions for morphogens that might be able to generate phyllotactic 
patterns. Section 2 of MTP II lists three ‘principal assumptions’. The last of these assumptions is that ‘The 
only wavelengths which are significant are those which are either very long or fairly near to the optimum’.4

It is unfortunate that there appears to be no clear statement, either in MTP or ODD as to why these two 
collections of wavelengths are significant and not others, or indeed not just one of these collections alone. 
I comment further on this below.

After subsequent simplifications and the addition of nonlinear (quadratic) terms (which, according to the 
second principal assumption in Section 2 of MTP II, are assumed to be important yet thought of only as 
‘perturbations’ to the linear terms), Turing arrives the equations5

dU

dt
= φ(−∇2)U + GU2 − HUV (1)

V = ψ(−∇2)U2 (2)

This model describes the combined evolution in time of two chemical concentrations that depend on 
space and time: U(x, t) and V (x, t) through the processes of diffusion and reaction. However U and V
play distinguished roles, quite different to the pair of chemicals imagined in CBM.

Section 3 of MTP II contains the remark:

‘According to the point of view in which V represents the concentration of a diffusing poison, the organism 
is sufficiently small that the poison may be assumed to be uniformly distributed over it. The function U , on 
the other hand, must be a linear combination of diffusion eigenfunctions all with the same eigenvalue, or, 
in other words, waves with the same wavelength.’

(where the italics have been added for emphasis and are not present in the original).
So U in fact represents a combination of the two chemical substances envisaged in CBM that generate 

the pattern-forming instability, while V , completely separately, acts on long spatial scales to (in some 
sense) regulate the pattern, by ‘poisoning’ it. In CBM Turing described the chemical substances X and Y
as ‘morphogens’ with the explicit idea that these corresponded to the diffusing ‘evocators’ proposed by 
Waddington (1940). As such, the chemical concentrations of X and Y were each described (in the spatially 
continuous setting described in Section 7 of CBM) by a diffusion equation, i.e. a differential equation 
having a first order derivative in time, and a second order derivative in space. However, in the system of 
equations (1)–(2), the U equation has a first order derivative in time, and the complicated spatial operator 
φ(−∇2) which, as we see later in ODD, Turing clearly supposes is fourth order in space, not second order 
(as it contains two ∇2 terms). Moreover, the V equation has no time derivative term at all: V responds 
immediately to the behaviour of U rather than evolving independently. For these reasons, it is clear that U
and V have distinguished roles in these equations.

4 See Turing (1992d) and archive reference AMT/C/9/6.
5 These equations are numbered (II, 2.15) and (II, 2.14) respectively, in the original typescript, see AMT/C/9/12 and AMT/C/9/11. 

The equations are reproduced here as stated in the original ms. U and V are variables that describe the concentrations of two 
chemicals, φ(−∇2) and ψ(−∇2) are operators describing the spatial diffusion effects, and G and H are fixed parameters.
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It is tempting to view these distinguished roles of U and V in the light of comments in Turing’s unpub-
lished paper with the biologist C.W. Wardlaw, with the title A diffusion reaction theory of morphogenesis 
in plants6 (Turing and Wardlaw, 1992; Wardlaw, 1953/1968). In that paper the discussion of morphogen 
chemistry is couched in terms of two chemical morphogen species X and Y that are produced in autocat-
alytic reactions that are catalysed by a third chemical C referred to as a ‘catalyst-evocator’ in a nod to earlier 
work by Waddington (1940) referred to in Sections 1 and 10 of CBM. The catalyst C is therefore involved 
in driving the linear instability from which the pattern emerges, in contrast to the role of the chemical V in 
(1)–(2) where V controls the amplitude of the final pattern produced, rather than controlling the parameter 
value at which the instability is initiated. However, there is a similarity in the way that the pattern forming 
process is thought of as being part of a larger set of processes, and the pattern is affected (in different ways) 
by the existence of interactions with additional chemical species. Clearly, the pattern formation instabil-
ity, as expressed by the diffusion-reaction equations set out in CBM, is only one feature of the behaviour 
that can be generated by such chemical reactions, and Turing’s thoughts range over a number of different 
settings in different papers.

MTP III is concerned principally with constructing solutions to Eqs. (1)–(2) when they are posed on 
the surface of a sphere. MTP III (written with B. Richards) has in mind application of these equations to 
explain the form of (spherical) ‘small organisms’ such as Radiolaria. Hence MTP III is primarily concerned 
with the details of an expansion of the fields U and V into sums of spherical harmonics, which is specific 
to this problem rather than to the planar (or, more correctly, cylindrical) description of phyllotaxis. On a 
mathematical level, MTP III is concerned with finding equilibrium solutions to Eqs. (1)–(2) containing 
spherical harmonics of different degrees: these correspond to organisms whose departures from sphericity 
preserve different amounts of symmetry. The parts of MTP III that are preserved note that ‘a finite number 
of essentially inequivalent solutions’ arise, but details of the solutions that exist for different combinations 
of parameter values are not given, neither is the stability of these equilibria investigated.

In contrast, ‘Outline of development of the Daisy’ appears to represent a continuation of the line of 
thought in MPT that proposes (1)–(2) as a model of pattern formation, and considers it in the geometrically 
simpler case of a planar geometry rather than a spherical one. With this geometrical simplification, Turing 
is able to make significantly greater mathematical progress; I now discuss the contents of ODD in greater 
detail.

2. Outline of development of the Daisy

In this section I discuss the source material for ODD, in terms of both the style and appearance of 
the manuscript and the mathematics contained in the various fragments that appear relevant. The archive 
of Turing’s papers kept by King’s College Cambridge contains two folders of draft notes that contain 
material relevant to morphogenesis: AMT/C/24 and AMT/C/27. The first 15 pages of folder 24 appear to 
be consecutive typed pages of a paper, with the title ‘Outline of development of the Daisy’ given on the first 
page. The pages were not numbered by Turing, but in pencil additions by Robin Gandy, Turing’s executor, 
to whom he left his collected unpublished notes and papers. As Swinton remarks in his Editorial Note that 
precedes his updated version of ODD (Turing, 2013), these 15 pages contain more material than is present 
in the Collected Works (Turing, 1992c) and this latter volume presents material in a different ordering to 
the pencilled numbering given by Gandy. Inspection of the material seems to indicate, firstly, that there are 
few clues in the text to a definitive ordering: for example the section numbers given by Turing (2013) are 
editorial additions, and the text does not on the whole read as a smoothly connected development of ideas 
as is the case in Turing’s completed manuscripts. To give a number of examples:

6 Original material archived at AMT/C/7 in King’s College Cambridge.
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1. The manuscript begins in abrupt fashion, stating the assumptions (which are ‘by no means always 
satisfied’7) but without any reference to previous work, either CBM or the paper prepared with Wardlaw 
(Turing and Wardlaw, 1992).

2. The second section ‘Considerations governing the choice of parameters’8 makes no reference to MTP II
which it clearly draws on.

3. The second section lists five assumptions labelled (i) to (v), but points (ii) and (v) confusingly both 
contain a coefficient labelled I2; I2 clearly has a different role in each of these cases.

4. Later, although it seems clear that the pages as numbered by Gandy and given by Turing (2013) fol-
low on well from one to the next, page 109 introduces a functional form for ψ(∇2) which does not 
immediately appear consistent with what has gone before. Further anomalies are that on page 710 the 
typescript introduces a parameter rmax that is undefined, states ‘with rmax/k0 usually about 1/

√
2’11

which does not make sense on dimensional grounds (because rmax/k0 has units of length squared it is 
not a pure number), and contains the parenthetical but unexplained comment ‘(This function calculated 
in ‘Subgroup smooth’)’.12

Taking these observations together, I therefore contend that certainly by page 10 of the typed manuscript, 
as numbered by Gandy, the text has subsided into a more informal style than that which the opening pages 
sustained. Moreover, the typescript contains mathematical errors that surely Turing would have corrected 
before sending a final manuscript for publication. Swinton’s text follows exactly the page numbering given 
by Gandy, and continues up to page AMT/C/24/15 (numbered as page 12 by Gandy). From consideration of 
the manuscript pages it does not seem possible to conclude that the ordering given by Gandy is at any point 
clearly incorrect. It seems hard to sustain the version given by Saunders in the Collected Works (Turing, 
1992c) which assembles these manuscript pages in the following order: AMT/C/24/4,5,6,7,8,10,11,14,13. 
The omission of archive page AMT/C/24/12 is particularly curious.

Overall, the impression that the reader forms is that these notes are not the final form of a manuscript, 
but an intermediate set of working papers from which a coherent manuscript will be typed up at a future 
point. If this premise is accepted, then it becomes valid to examine the remainder of the archive material to 
see if additional material is available that, despite not obviously forming a continuation of the manuscript, 
at least forms a continuation of the thread of mathematical development that these pages begin.

The central contention of the present paper is that such material does exist further through folders 
AMT/C/24 and AMT/C/27, and that these notes contain new ideas which show Turing’s thoughts develop-
ing along substantially more complex lines than illustrated by CBM.

What should be expected in any continuation of ODD? A clear indication is given at the end of the 
introductory part of the text13 where Turing writes

a partial differential equation will be obtained ... The choice of parameters is largely made on theoretical 
grounds ... but ... it is necessary to follow its behaviour by computation.

In other words, after proposing a complicated differential equation as a model, theoretical work will justify 
the choice of particular parameter values used in the model. Then numerical computation will show that 

7 AMT/C/24/4.
8 AMT/C/24/10, page 7 in the numbering given by R. Gandy.
9 AMT/C/24/13.

10 AMT/C/24/10.
11 AMT/C/24/13.
12 AMT/C/24/10.
13 See AMT/C/24/9.



56 J.H.P. Dawes / Historia Mathematica 43 (2016) 49–64
the equation is able to generate patterned solutions of the kind required. The most obvious initial continu-
ation is therefore the typed pages AMT/C/24/27–29 that begin with the heading ‘The equation chosen for 
computation’. These contain slightly more general equations than are present earlier in ODD14 in order that 
Turing can explain the choice and construction of the operators φ(∇2) and ψ(∇2) that are supposed to take 
various forms earlier in the ODD manuscript.

This discussion also confirms that a major, but perhaps not immediately obvious, mathematical problem 
with the earlier equations, i.e. (1)–(2) as stated, is only a typographical error rather than a more major over-
sight on Turing’s part. Specifically, as Turing writes on page AMT/C/24/27, ‘The essential property required 
of the function φ is that it should have a maximum for some real (negative) argument ...’, i.e. the function φ
ensures that U describes a patterned solution at the linear level, with the second morphogen V modifying 
the amplitude of U , but not directly driving the pattern forming instability. On page AMT/C/24/28, Turing 
combines the equations for U and V together into a single equation for U that corrects the mathematical is-
sue present in the earlier definitions of φ(∇2).15 The resulting equation on page AMT/C/24/10 has the same 
linear terms as a reduced model for the problem of the onset of thermal convection in a layer of viscous 
fluid; although physically quite different from the chemical morphogen dynamics that motivated Turing, it 
is striking that developments in this area were taking place at the same time as ODD was being drafted. 
This discussion will be developed in the next section of this paper. For the moment I note that Turing’s 
equation on page AMT/C/24/10 has a very strong resemblance to what is now called the ‘Swift–Hohenberg 
equation’ in the pattern formation literature (Swift and Hohenberg, 1977; Cross and Hohenberg, 1993;
Hoyle, 2006). This resemblance is reinforced on later pages in the manuscript.

Having sifted folders AMT/C/24 and AMT/C/27 to identify material that would have formed later parts 
of ODD, two sets of consecutive pages appear to provide valuable and natural continuation. It is possi-
ble that a thorough examination of this material would yield additional material: I do not claim to have 
reconstructed a definitive version, only an extension of previous versions.

I have identified three sets of consecutive typed manuscript pages that are relevant to ODD: AMT/C/24/
27–29, AMT/C/24/68–70 and AMT/C/24/72–74. I now comment briefly on these in turn since they form 
the bulk of the extended material that I propose for ODD.

The first of these sets begins with the title ‘The equation chosen for computation’. These pages carry out 
in detail the reduction (by the introduction of new units) that is described earlier, in general terms, on page 
AMT/C/24/11. It is therefore easy to see these as part of the intended draft ODD manuscript, despite the 
obvious changes of notation (for example K and C3 are used interchangeably on page AMT/C/24/27).

Pages AMT/C/24/68–70 are also typed manuscript, and begin with the statement that the case L = 0 will 
be considered. The coefficient L does not appear in pages AMT/C/24/4–15 (the version of ODD assembled 
by Swinton) but it does appear in AMT/C/24/28. Together with other indications, it seems most likely that 
pages 68–70 have in mind the form of the equations derived and reduced (i.e. rendered dimensionless) 
on pages 27–29. It is also mathematically the most natural next step: to consider whether equilibrium 
solutions are possible, and then to investigate their stability to small perturbations. In approach, this is 
extremely similar to the discussion presented in CBM: in CBM small perturbations that drive instability 
lead to the formation of pattern, i.e. structure, whereas here small perturbations would potentially lead to 
the disappearance of patterns of the form proposed (i.e. ones which have ‘lattice symmetry’; here meaning 
hexagonal), or to the formation of even more complex patterns. This linear stability problem is derived and 
clearly given at the end of page AMT/C/24/70. Although only stated as a pair of differential equations, 

14 AMT/C/24/10.
15 Essentially, the issue with the form φ(∇2) = I2(1 + ∇2/k2

0) given in assumption (ii) on page AMT/C/24/10 is that it would 
allow small amplitude but high-frequency spatial components of U to grow very rapidly in time. These high frequency components 
which oscillate rapidly in space cause huge mathematical and numerical problems; as a result the equation for U as posed on page 
AMT/C/24/10 is said to be ill-posed.
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the index r runs over the integers 1 . . .6, so in fact this is a set of seven coupled equations. As a result, 
computation of stability by hand turns out to involve significantly more lengthy algebra than CBM, and one 
can imagine that Turing made a number of attempts before finding the cleanest way to present the results 
of these straightforward, but longwinded, hand computations.

It is now in order to make a few more detailed remarks on the reasoning behind the ordering of the 
material given in the re-constituted manuscript attached as the Supplementary material to this paper. This 
ordering is the result of very careful scrutiny of the archive material, and the logic therefore involves some 
degree of technical understanding of the nature of the material contained in these pages. These arguments 
deserve perhaps a fuller treatment, so I present a summary here and leave a complete discussion of Turing’s 
mathematics at this point to be the subject of future work.

At this point in ODD, pages AMT/C/27/47–50 which are handwritten (with the exception of page 49) 
emerge as perhaps the cleanest way to organise these computations. Certainly they follow directly, forming 
algebraic combinations using the notation introduced on page AMT/C/24/70 and the pen and handwrit-
ing appears to agree between pages AMT/C/24/70 and AMT/C/27/47. It is curious that out of pages 
AMT/C/27/47–50 only page 49 is typed. There is little text on the other pages, adding weight to the idea 
that these are notes rather than a final version, but notes that Turing considered to be sufficient important 
that the textual commentary on page 49 is typed in order to clarify the results obtained at this point.

Mathematically, the change of variables made at the top of page AMT/C/27/47 deftly divides the stability 
problem posed by the set of seven differential equations into two smaller problems: one with three vari-
ables that is considered completely on pages 47 and 48, and one with four variables that is considered on 
pages 48–50. Close examination of the archive material indicates that exploration of the stability problem 
continues on the typed pages AMT/C/24/30 and AMT/C/24/72–74. The archive material has been ordered 
in a slightly unfortunate way at this point: page 74 is the continuation of page 72, and page 71 contains 
‘Figure X’ referred to on page 73. Although there is no heading as such, the summarising tone of pages 72 
and 74 invites the discussion of stability to close at this point. Other links between pages selected in this 
discussion are clear, for example the ‘characteristic value −η1η2η3

∑ 1
η2
i

’ on page AMT/C/24/74 is a reit-

eration of the result of the computation of eigenvalues and eigenvectors presented on page AMT/C/24/48, 
adding weight to our assertion that these pages, in the above order, form a coherent whole.

To summarise, the above reconstruction adds the contents of a further 15 pages of archive material to the 
contents of the 12 presented by Turing (2013). What does it say about Turing’s work on morphogenesis? Put 
simply, it demonstrates Turing’s ability to combine insight, precision and approximation. Turing would have 
known all along that solving the original nonlinear differential equations would not be possible analytically: 
either hand-computation or machine computation would always be required, and the results of such machine 
computations can clearly be seen in folder AMT/K/3, for example page AMT/K/3/8 shown in Figure 1.

However, in order to carry out such (time-consuming) numerical solutions of his model equations, Turing 
would have needed to choose appropriate parameter values for the model. Calculation of the parameter 
values that would give the model a chance of producing the intended patterns required, in turn, analytic 
investigation and understanding of the different regimes of behaviour of the model. Throughout folders 
AMT/C/24 and AMT/C/27 there are comments that relate theory, numerical values for parameters, and 
computer programming, for example the comment on page AMT/C/24/25:

Both η and σ are kept near to 1/2 so that time advance is 1
16 per round (i.e. //@/ //// in YC). The proposed 

values G = 8 H = 32 also seem appropriate.

where η, σ , G and H are parameters that are clearly defined in the model equations, with the proposed 
parameter values being used, one supposes, in numerical computations. The rather cryptic remark in paren-
theses presumably refers to Turing’s computer coding needed to represent the value 1

16 within his computer 
program. The expensive nature of the computer simulations would seem a more than adequate reason to be-
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Figure 1. Detail of page AMT/K/3/8 showing a contour plot constructed and shaded by hand from the numerical solution of a model 
for morphogenesis. Although the pattern is a disordered snapshot and probably has not settled to equilibrium, a roughly hexagonal 
pattern of small hatched regions can be identified slightly to the left of the centre of the image. Copyright © W.R. Owens.

gin with pen-and-paper analysis of the nonlinear model equations, at least until those calculations became 
intractable.

To summarise, it seems extremely likely that ODD would have contained substantial mathematical ex-
ploration of model nonlinear differential equations in order to provide suitable starting points for computer-
based work. This mathematical work wrestles with a different, and much more complicated problem than 
that presented in CBM. Along the way, Turing encounters and exploits various features of the model prob-
lem in ways that indicate his detachment from other developments in British applied mathematics that are 
closely related. In order to provide this context, I now briefly review work on a rather different physical 
problem that nevertheless shares mathematical features with Turing’s morphogenesis model in ODD.

3. Pattern formation in fluid dynamics

Motivated by the striking observations of thermal convection currents in a two-dimensional cellular array 
of hexagons by Bénard (1900, 1901), a succession of papers in the first half of the twentieth century made 
theoretical progress on the nature of the instability in which convection cells first appear as a layer of viscous 
fluid is heated from below. This problem of ‘thermal convection’ has clear geophysical and astrophysical 
motivation, as well as from industrial processes, building ventilation and a host of other physical situations. 
The first significant theoretical response to Bénard’s experimental work is usually taken to be the paper by 
Rayleigh (1916). However, his analysis of a linear problem was observed later to be quantitatively in error, 
and also to say nothing about the selection of a hexagonal pattern rather than, say, stripes or squares (which 
are indeed observed in other, closely related, systems).

Two papers published in 1940 helped overcome some of these shortcomings: first, in a very short paper, 
Christopherson (1940) showed that it was entirely possible to construct a hexagonal solution to the linear 
problem that would describe fluid flow in a spatially periodic array of hexagonal convection cells. Second, 
other authors, notably Low (1929) and Pellew and Southwell (1940), revisited the linear theory proposed 
by Rayleigh for cases where the layer of fluid was confined by more realistic, rigid boundaries, unlike the 
rather idealised case considered for simplicity by Rayleigh. These advances together resulted in both better 
quantitative agreement between theory and experiment for the predicted value of the temperature difference 
at the onset of convection, and the realisation of the variety of patterns (‘planforms’) for convective motion 
that was mathematically possible. Figure 2 compares a sketch figure from Turing’s archive papers with 
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Figure 2. Two sketches of hexagonal planforms for patterns. (a) Sketch by Turing, taken from AMT/C/27/19a. Copyright © 
W.R. Owens. (b) Figure 3 from Pellew and Southwell (1940) following Christopherson. The pairs of blue thick solid lines are 
added to (b) show the relation between the figure as plotted by Pellew and Southwell and the sketch in (a) by Turing.

a published figure from the paper by Pellew and Southwell (1940); they contain the same information 
although a little care is needed in the construction and interpretation of the figure in the fluid mechanical 
context since the fluid flow is three dimensional and so the components of the velocity of the fluid in each 
direction (x, y, z) needs to be specified.

Figure 3, which shows two figures from the textbook by Chandrasekhar (1961/1981), reinforces that in 
the fluid context it was, at the time, not immediately obvious that a hexagonal planform is possible. Fig-
ure 3(a) shows the geometry of the construction of hexagonal patterns, while (b) is another rendering of 
contours of constant vertical velocity in the hexagonal pattern, similar to Figure 2(b). It should be pointed 
out that not only did Chandrasekhar make substantial contributions to the theoretical analysis of thermal 
convection, but that his 1961 textbook (Chandrasekhar, 1961/1981) remains a standard reference and intro-
duction to the subject.

On the experimental side, many authors contributed to the design and analysis of more accurate experi-
mental methods for the analysis of the onset, and dynamics, of convection. Flow visualisation was discussed 
extensively, and even in 1961, Chandrasekhar refers to ‘a vast literature on experiments relating to thermal 
convection’.16 At least some of this literature was published in the Proceedings of the Royal Society, for 
example papers by R.J. Schmidt and collaborators in 1935 and 1938, and so would presumably have been 
available to Turing in Cambridge and in Manchester.

Subsequent to this theoretical and experimental work on the linear problem of the onset of thermal 
convection, major advances were made by Malkus and Veronis (1958) and Stuart (1958). These papers were 
published within weeks of each other (each paper references the other, in fact) and the authors acknowledge 
discussions with each other during a visit made by Stuart to the Woods Hole Oceanographic Institution in 
the US. The central achievement of these papers is to extend the (by now well-known) linear theory to 
account for the most important nonlinear terms near to the onset of the convective motion. In this way one 
can estimate the amplitude of the pattern of convection cells that forms, and as later authors in the 1960s 
and 1970s (not least Friedrich Busse) realised, examine competition between different patterns to look at 
their relative stability.

16 See Chandrasekhar (1961/1981), Chapter 2, Section 18, pp. 61–71 and the references therein.
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Figure 3. Hexagonal planforms for thermal convection as described in Chandrasekhar’s book (Chandrasekhar, 1961/1981). Copy-
right © Oxford University Press. (a) Detailed construction of a hexagonal planform (page 49). (b) Contours of vertical fluid velocity 
within a single convection cell (page 50). This follows the earlier work by Christopherson (1940) and Pellew and Southwell (1940).

Relevant, perhaps surprisingly so, to understanding Turing’s later work is the paper by Swift and Ho-
henberg (1977). This paper is much cited, but essentially for a reason that is slightly peripheral to the main 
thrust of the work presented therein. Swift and Hohenberg attempted to understand, from a statistical me-
chanics perspective, the effect that thermal fluctuations (‘noise’) would play in describing both the onset 
of convection and the fluid flow that resulted just above onset. In the process of their computations they 
reduced the complicated Navier–Stokes equations for the fluid down to a single equation for one combi-
nation of the fluid temperature and the vertical component of its velocity. This reduced equation (perhaps 
most clearly shown in the Appendix to Swift and Hohenberg (1977), equation A24) has since become 
recognised as the simplest, and canonical, model equation that describes the process of pattern formation 
in many different physical contexts. It is often therefore referred to as the ‘Swift–Hohenberg equation’.

The last set of mathematical developments that needs to be mentioned in connection with thermal con-
vection is the development of a mathematical theory of bifurcations in the presence of symmetry. When 
applied to pattern formation on a plane, this theory organises the emergence of patterns of various kinds as 
a critical threshold is passed (for example, as one crosses the critical temperature for the onset of thermal 
convection) and the selection of one (or perhaps more than one) of these patterns to be stable equilibrium 
configurations for the pattern after the critical threshold has been crossed. This theory, and later work, 
brings together symmetry groups and their representations, the asymptotic approaches initiated by Malkus 
and Veronis (1958) and sets the Swift–Hohenberg theory in a solid mathematical context. Although devel-
oped by a substantial community, and applied to a number of key fluid-dynamical problems, for example 
Taylor–Couette flow of a viscous fluid between co-axial rotating cylinders, this theory found perhaps its 
most successful applications in developing our understanding of thermal convection and related problems. 
The most complete account of the key elements of this mathematical work is the work Singularities and 
Groups in Bifurcation Theory in two volumes: Golubitsky and Schaeffer (1984) and Golubitsky et al.
(1988), respectively. By this stage the connections between Turing’s work on pattern formation and the 
rather separate developments motivated by thermal convection were clear.
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4. Discussion

In previous sections of this paper I have summarised Turing’s well-known work CBM in which the 
addition of diffusion to a model for a system of chemical reactions can, counterintuitively, initiate instability 
of a homogeneous mixture where none existed before. I then commented on the manuscripts MPT, in three 
parts and with the appearance of being close to completion, and ODD for which an organised typescript for 
the initial sections exists, but which then degenerates into unordered pages of handwritten notes. A brief 
summary of the development of ideas similar to Turing’s, but in the context of thermal convection, followed 
in order to provide a sense of the wider context in which the ideas that Turing was working on were being 
developed and refined.

In this discussion I will focus on three aspects of Turing’s work, as presented in ODD and the related 
archive material, that reinforce perhaps the central characteristics of Turing’s academic contributions over-
all: he was ahead of his contemporaries, and he worked in large part in isolation from them. The three 
aspects that I will consider, in order, are:

(i) the description of patterns in terms of modes in Fourier space and their nonlinear interactions,
(ii) the construction of the well-known model equation usually ascribed to Swift and Hohenberg, pub-

lished 23 years after Turing’s death, and
(iii) the use of symmetry to organise computations of the stability of symmetrical equilibria corresponding 

to spatial patterns.

From the very start of ODD, Turing defines and uses the lattice and reciprocal lattice notation that he 
introduced in MTP I. Patterns are defined as sums of modes in Fourier space17 and labels of the amplitudes 
of the relevant Fourier modes. Two examples of this are given in Figure 4: in (a) the figure labels the 
Fourier modes around a ring of wavenumbers in Fourier space that lead to patterns. The curve at the top 
of the figure is almost certainly a graph plotting the growth rate of perturbations at different wavenumbers: 
note that the high points of the curve line up with the diameter of the ring. In Figure 4(b) Turing sets up a 
calculation to test the stability of a hexagonal pattern to perturbations in which four perturbing modes have 
the same amplitude, and the other two are different, but equal. Such a calculation would test the stability 
of a hexagonal pattern to perturbations in the form of rectangles (another possible pattern that systems of 
the kind Turing investigates in ODD are able to form). Of course, this kind of calculation also sits in the 
context of Turing’s quest to understand phyllotaxis, as discussed by Swinton (2004, 2013). Although we 
have not developed this relationship explicitly here, it clearly deserves to be the subject of future work.

Turning to the Swift–Hohenberg equation, it is striking that so much of the discussion on pages 
AMT/C/24/27–29 is echoed by so much later work in the field. If the parameter L is set to zero (as Turing 
does in his later analysis beginning on page AMT/C/24/68) then page AMT/C/24/29 contains the simplified 
model equation

dU

dt
= −(1 + ∇2)2U + IU + U2 − H

(
U2

1 − σ 2∇2

)
U,

which significantly differs only in the last term from the usual modern form

∂U

∂t
= rU − (1 + ∇2)2U + gU2 − U3.

17 See the displayed equation for the morphogen U on page AMT/C/24/6 and the simpler version on page AMT/C/24/68.
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Figure 4. (a) Detail of page AMT/C/27/28 showing a hexagonal lattice in Fourier space with amplitudes of the modes labelled by 
u1, . . .u6 corresponding to points evenly spaced around an annulus. (b) Detail of page AMT/C/24/61 with the title ‘Hex stability 
with different values of γ ’ showing perturbations, with amplitudes η0 and η1. Both parts of this figure are copyright © W.R. Owens.

Importantly, the first two terms on the right hand side in each case define the Swift–Hohenberg model; the 
linear response is the key part of this equation whereas the appropriate nonlinear terms (the last two on the 
right hand side in each case) vary from one physical context to another. Turing’s final term is in fact very 
complex since it contains a (formally written) nonlocal term, i.e. implicitly this depends on an integral over 
the whole spatial domain that involves the function U(x, t). However, setting the parameter σ = 0 recovers 
the more usual quadratic–cubic form of the nonlinear terms.

The behaviour of this differential equation and the set of equilibrium patterned solutions has been studied 
in great detail over the last thirty years, and even in the last decade new results have emerged through a 
combination of mathematical and numerical techniques, see Dawes (2010) for a short review and Burke 
and Knobloch (2006), Burke and Dawes (2012) for recent mathematical papers.

The systematic construction of bifurcation theory (i.e. a precise mathematical description of the typical 
qualitative changes that arise in the behaviour of solutions to nonlinear differential equations) was one of 
the major achievements of dynamical systems theory over the course of the second half of the twentieth 
century. Of particular relevance to pattern formation is the extension of that theory to include an idea of 
what bifurcations one would typically expect to see in problems that are constrained by symmetry (for 
example models in which a number of identical sub-units are coupled together where their identical nature 
implies the system is in some sense fundamentally unchanged by relabellings of the sub-units). Pattern 
formation problems naturally inherit symmetries through their construction, and Turing’s stability analysis 
of hexagonal patterns points to some of the issues that are now well-understood. For example, Turing notes 
on pages AMT/C/27/47–48 that two eigenvalues are found to be zero. This is a natural consequence of the 
symmetry of the underlying pattern formation problem. The remark ‘The eigenvectors with eigenvalue 0 
correspond to small shifts of origin.’ on page AMT/C/27/48, as well as the deft way in which the stability 
calculation for hexagons is laid out, indicates that Turing certainly recognised the role of symmetry and 
used it to advantage.

Taken together, these observations indicate that if Turing had completed ODD, not only would it have 
been a landmark paper in its combination of biological insight, mathematical modelling, and numerical 
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computation, but that it would have set out new ideas in applied mathematics that would have had substan-
tial influence across the subject. In some cases these ideas would have spurred the development of parts of 
the subject that otherwise took several decades to be realised.

Restricting our attention to morphogenesis, Alan Turing’s reputation for insight, his independence of 
thought, and his development of ideas ahead of his contemporaries deserves not just to rest on the single 
paper The chemical basis of morphogenesis but to be substantially further enhanced by consideration of his 
lesser-known material. It is apparent that this archive material indeed deserves further careful attention and 
that while a definitive version of Outline of development of the Daisy is unlikely to be agreed, further steps 
towards this goal should be taken.
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