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Summary

In this dissertation, | study the synchronization betweendscillators. Specif-
ically, in Chapters 3 and 4, one of the oscillators involved robust heteroclinic
cycle.

Chapter 1 of this dissertation is introductory materialClmapter 2, | include
some basic background and examples of robust heterocliniexfollowed by a
review of circle maps and the '0-1 test’, both of which will beed in my later
discussion. | then study a robust heteroclinic ODE systemup®ed by a periodic
function in Chapter 3 and 4.

Chapter 3 gives the detailed derivation of the Poincaréahtpe ODE system.
The Poincaré map method is normally used for studying tin@hycs near a cycle
in a dynamical system. The idea of this method is to put a pleaked a cross
section, transversely crossing the cycle which we are gtongfudy and then
observe the dynamics of points where an arbitrary orbit tlearcycle intersects
this plane. This result reduces the ODE system to a two-csinaal map.

In Chapter 4, the dynamics and bifurcations of the systermwiaeying the
forcing frequency is carried out. In short, my results shbat the ODE system
is equivalent to a damped pendulum with constant torquesifittracting strength
of the heteroclinic cycle is weak. In contrast, it is equardlto a circle map when
the attracting strength of the heteroclinic cycle is strobgpending on the value
of the forcing frequency, the circle map can be invertibleoninvertible.

Chapter 5 deals with coupled systems with two cells. The Oijxtems in
both cells possess cyclic symmetry. | prove that if therstexa non-trivial sym-
metric periodic solution in one cell, then the non-trivigrpdic solution in the
other cell must have the same symmetry. | also consider tleeatthe frequen-
cies of the periodic solutions in the two cells. A necessanddion for non-trivial

periodic solutions with this ratio to be cyclically symmietis identified.
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Chapter 1

Introduction

Modeling biological systems is a very hard task due to thatinsic com-
plexity. However, regular patterns, which can be descrioeghly by symmetry
in mathematics, are ubiquitous in our natural world, suchspsts on a leopard,
stripes on a tiger and cylindrical stripes on a shell. Theefone may make an
assumption when modeling biological systems that, witleawt noise and any
coupling with other system, the underlying system is péiffesymmetric. In this
sense, symmetry can be considered as one of the buildingdotaith which our
real world is established. Consequently, studying symmsystems is an essen-
tial step in understanding natural phenomena.

Mathematically, we model real world scenarios by dynamsyatems. Spa-
tial patterns correspond to stable equilibria of dynamsyatems while spatial-
temporal patterns may be driven by the instability of systerSBymmetry also
constrains our study of some objects in dynamical systerasekample, a het-
eroclinic cycle in a dynamical system is a topological cyeleich consists of
saddle-type equilibrium points, periodic orbits or chagatitractors, and connect-
ing trajectories between them. One question that arisehéther heteroclinic

cycles are structurally stable within some fixed symmeteitirsg, i.e. if hetero-
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clinic cycles exist generically for some dynamical system.

Normally, a heteroclinic cycle is structurally unstableaimlynamical system
without any symmetric setting. A well-known example is threlamped pendu-
lum system [59]. With an arbitrary small perturbation, tteal heteroclinic cycle
breaks.

In systems with some fixed symmetric structure, the sitnatiaiferent. For
systems that are equivariant under a symmetry group actirtephase space,
heteroclinic cycles within them become robust in the selmaetteteroclinic cycles
always exist even if a small perturbation preserving symynstadded. In this
case, symmetry forces the connections to lie in invariabspaces; this makes
the cycle robust. More precisely, suppdsis a compact Lie group anfix, 1) is
a family of one-parameter vector fieldsyg = {g : 9(yX) = yg(x), Vy € I'}, i.e.
the set of all equivariant vector fields with respeci'toAssume thaf (x, 0) € yc
contains a heteroclinic cycle and each heteroclinic commeties on a fixed point
subspace Fix{) for some subgrou@ c I'. Then there is an open setin the
parameter space such that ed¢k 1) also possesses a heteroclinic cycle for every
A1eV.

Therefore, systems with robust heteroclinic cycles, bugeaeral heteroclinic
cycles, can be good candidates for modeling our real wonlde¢d, examples of
robust heteroclinic cycles connecting equilibrium poimise been found in many
contexts [52, 33, 38, 47, 45, 46, 72, 26, 17, 10]. They appeaaiious fields:
ecological models of competing species [37, 52], thermal/ection [12, 14, 8,
62], game theory [25, 69] and neuroscience [63, 79, 76, 664/%, 65]. In
principle, systems with heteroclinic cycles representhmatatically the concept
of "Winnerless Competition” which has been identified astédvelescription than
"Winner-takes-all” of many scenarios in game theory andi@wanary biology
[57].
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M. Krupa [42] classified all the possible contexts in which #xistence of ro-
bust heteroclinic cycles have been shown into three catsggonathematical biol-
ogy and game theory (MBGT), spontaneous symmetry breali88) and forced
symmetry breaking (FSB). In this dissertation, we discudy oycles connect-
ing equilibrium points. Examples of cycles connecting peic orbits or chaotic
attractors can be found in [23] and [19], for instance. Theydnstrate more
complicated dynamics, such as cycling chaos.

The first example of a heteroclinic cycle modeling a biolayigystem was
given by R. M. May and W. J. Leonard in 1975 [52]. In their papeerthree

dimensional Lotka-\Volterra system

X = X(1-(X+y+2—-cy+ed
y = y1-(X+y+2-cz+eX , (1.2)

z = Z1-(X+y+2)—-cx+ey

which is a model with three competing species, is proved $3@sses an attracting
non-periodic cycle which connects three saddle equilibnuoints. Moreover, the
time spent near each saddle point increases. In fact, giththe authors didn’t
point out the robustness of this cycle, it is robust due tddibogical constraint:
once a species is extinct, it will be extinct forever. In otiverds, the coordinate
planes{x = 0}, {y = 0} and{z = 0} form the invariant planes supporting the
connections.

J. Guckenheimer and P. Holmes in [33] confirmed that robustrbelinic cy-
cles do exist generically in the subspac€bfector fields orR3 which are equiv-
ariant with respect to a symmetry group generated by twoehesnnamely, cyclic
permutation of the coordinate axes and the reflection of tloedinate planes. In
addition to this, they also proved that a codimension 1 bétion is stficient
to produce heteroclinic cycles, which is called 'spontarsesymmetry breaking

bifurcation’ by M. Krupa in [42].
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In addition to spontaneous symmetry breaking bifurcatifamced symmetry
breaking bifurcation’ also gives rise to the occurrenceatust heteroclinic cy-
cles. Examples of this kind are shown, for example in [38,4&/],46, 58], by
forcing small perturbations on symmetric systems to breaéraof the symmetry
but keep the rest of the symmetry to support the cycles.

The main feature of the dynamics near an attracting heiarodycle is in-
termittency: each trajectory spends relatively a muchéornigne passing through
the vicinity of an equilibrium point than when transitingttee next equilibrium
point. This is due to the strong linear influence near theldgjiwim points. More-
over, a trajectory will move closer to each equilibrium ga@nd spend increasing
amounts of time passing each of them; these are criti¢Bdrdnces in the dy-
namics from trajectories near periodic orbits. In ecolagterminology, these
characteristics mean that each species will be gettingasingly more dominant
both sizewise and timewise, after experiencing an almdstiebperiod. From this
point of view, a model with heteroclinic cycles is not apptiate to describe the
long term behavior of the biological world. However, thidetd can be modified
by forcing a small symmetry-breaking perturbation (nomely coupling two or
more systems (interaction with other systems).

With suitable choice of parameters, a small perturbatiosheddon to a 6-

dimensional Lotka-Volterra system, for example
6
X =%(1- Zaijxj) + €XXis3,
=1
would produce an attracting periodic solution in the vityirof the original hete-
roclinic cycle [4].
In recent years, a modified Lotka-Volterra system has beé&nadt to model

the dynamics of neuron ensembles. Th@euron system studied in [79, 76, 66,
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77, 4]is

% =% [o(H,9) = > ax; + Hi) |+ Si(o), (1.2)

j=1

wherex > 0 is the spiking rate of theéh neuron,H; is the forcing from other
neuron ensembles; is the stimuli from the sensors acting on tké& neuron and
a;j is the strength of inhibition on thieth neuron by thg-th neuron. Since non
of the neurons dominates the whole dynamics, Rabinovich ¢6@] called this
phenomenon 'Winnerless competition’ (WLC).

A neural ensemble normally consists of several neuronsactieg with each
other through an inhibitory way. Its dynamics can be studiegerimentally by
recording the spiking rate of each neuron. According to grpental results, a
good mathematical model to describe the dynamics of a neysé¢m, especially
a sensory system, must have the ability to capture the fEatfrrobustness and
sensitivity. More precisely, it must be robust under smalitgrbation (noise)
and must be very sensitive to incoming input (stimulus) [68)bust heteroclinic
cycles possess these two features: a fixed symmetry breakinglus destroys
the heteroclinic cycle and gives rise to a periodic solutiear the original cycle;
this periodic solution is robust under small perturbation.

Robust heteroclinic cycles can also be applied to desdnbé&ansient behav-
ior of neural systems [5, 63, 64]. To recognize the stimuBis@on as possible,
a sensory system makes decisions by identifying the pattietime transient se-
quence of the firing neurons before it settles down to a stsiialigonary state.
As transient behavior in a dynamical system normally depesedisitively on ini-
tial conditions, it is very hard to find a mathematical moddlieth can repro-
duce the same sequence of firing neurons when the stimulligh8ysdifferent.
Afraimovich et al. [5] constructed a model consisting of ald¢ heteroclinic se-
guence (SHS) which generates reproducible transient digsain their model, a

sequence of equilibrium points are connected by one-diroeakseparatrices and

5
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any trajectory near the SHS will visit equilibrium pointsturn along the SHS.
Moreover, due to the stability of the heteroclinic sequercemall deviation of
the initial point will produce the same transient sequence.

Constant perturbations to a robust heteroclinic cyclelt@syeriodic orbits
typically. For a heteroclinc system forced by a random pbetion, the returning
time corresponding to a cross section for a trajectory reaotiginal heteroclinic
cycle becomes random, although the mean of it is well-defiidgH But to date
there has been no systematic investigation of ffexts of time periodic perturba-
tions. This is surprising, given the naturéliexts of external cyclical variations on
population dynamics, for example. A natural mathematicahgarison to make
would be to compare theffects of time-periodic forcing on a heteroclinic cy-
cle with the well-known &ects of time-periodic forcing on periodic oscillations,
for example frequency-locking. This comparison is the @mhotivation for the
work described in this dissertation.

J. H. P. Dawes and | in [18] investigate the complex dynamidb® Lotka-

\olterra system with periodic forcing,

X = X(1-(X+y+2-cy+ed+y(d-xTf2wt)
y = y1-(x+y+2—-cz+eX , (1.3)
Z = Z(1-(X+y+2—-cx+ey

wheref is a non-negative function iRC'(2r), the set of all 2-periodic functions
with continuous first-order derivative, 8 y < 1and 1> c>e > 0. Itisa
generalized version of the system studied by Rabinovich §3]. In this disser-
tation, Chapter 3 and 4 sets out a mathematically rigorodslatailed approach
to the analysis of the dynamics of (1.3). This provides a myreater level of
insight into the dynamics than [63] was able to provide. Qwlipminary results
have recently been published [18].

By calculating the global and local maps of the system in @rap, we con-

6
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struct a two-dimensional Poincaré map defined on a cros®seaf the cycle.
The numerical results show that the dynamics of map systamef©DE system
very well for a range of values of parameters when< 1 andw > 0. Moreover,
the map we derived is valid for atl/e while the map derived by Afraimovich et
al. in [3], in which they considered a similar system, is ocdyrect wherc/e near
1.

The general feature of the dynamics for the cg&large when varying is
the existence of a sequence of frequency-locking intewdlsregions of compli-
cated dynamics in between. In particular, the frequenciig intervals indicate
the existence of a stable periodic orbit of perladw within it, wherek € N. We
prove in Chapter 4 that the system is equivalent to a circlp, méich could be
invertible or non-invertible depending on the sizewofAs for the case wheo/e
is near 1, except for the frequency-locking scenario, bikta could occur over
some intervals inw. In this case, the system is equivalent to a forced damped
pendulum with torque. This part of discussion is also inetlich Chapter 4.

In addition to adding external perturbations to a singleistiheteroclinic sys-
tem, coupling two or more robust heteroclinic systems caidd produce an ap-
plicable biological model.

For example, P. Varona et al. [77, 76] attempted to use (k3 model to
capture the irregular hunting behavior ©fione a marine mollusk Clione uses
gravitational sensory organs, the statocysts, to deteritsrorientation.S;(t), in
(1.2), represents the stimulus of the statocyst on the tecepurong. In their
model, the statocyst consists of six neurons, which areldd/into two subgroups
of three neurons. Inside each subgroup, the inhibitory logigerms are rela-
tively stronger and produce heteroclinic connections betwthe three neurons.
Later, Venalille et al. [79] weakly coupled two neuron enskssb Each of the

two ensembles is a six neuron statocyst which is modeleddgdime way as P.
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Varona did in [77, 76]. They found that synchronization obtensembles oc-
curs although the signals produced by individual ensendnleschaotic. These
features are similar to the coordination of two distinct aractivities ofClione
during hunting motion: acceleration of the wing and the hegaf the tail, both
of which change randomly but coordinate very well.

Mathematically, we call a system consisting of two or moreaiyical sys-
tems coupling to each other a coupled cell system. Herd', fnehkns the individ-
ual dynamical system without coupling. Although a couplellsystem is merely
a higher-dimensional dynamical system as a whole, we agegistied in the prop-
erties of cell trajectories, which are the projections ofaectory in the whole
dynamical system to the individual cells, when we calledsiystem 'coupled cell
system’. Theory for coupled cell systems with symmetry hasnbdeveloped by
Stewart, Golubitsky, Pivato and Torok [28]. Although waendreely couple dy-
namical systems in any way, coupling systems in a square eéagonal lattice is
more common, for implicitly they resemble partiattérential equations. In this
case, regular or irregular spatio-patterns can be foung8djz,

Periodic solutions with spatial-symmetry in a symmetristsyn automatically
have temporal-symmetry [28]. M. Tachikawa [74] considemacecological sys-
tem consisting of two four-dimensional replicator equasi@oupled dtusively.
In these two cells, there exist a stable and an unstabletrbbtexoclinic cycle re-
spectively. His results showed numerically that frequelocking intervals with
specific ratios can be observed when varying the strengtheotoupling. The
author remarked that these specific ratios arise due to thepge of symmetric
periodic solutions, but did not prove any result.

In Chapter 5, | consider a more general theory which showtsitha system
consisting of two cells with cyclic symmetry, symmetry isvals snchronized be-

tween non-trivial periodic solutions in two cells. More pisely, if there exists a
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symmetric periodic solution in one cell, then the periodilugon in the other cell
must have the same symmetry. The intrinsic spatio-temysyraimetry of a peri-
odic solution allows us to classify all the ratios of freqois between non-trivial
periodic solutions in these two cells according to the sytmyrtbey possess.

We now briefly describe the contents of this dissertatiorolis\frs.

In Chapter 2, | give some basic background on robust heiaroclycles fol-
lowed by three examples of the existence of robust het@iodycles. The review
of the theory of circle maps, either invertible or noninugd, is presented as this
is necessary for our later discussion. This chapter closistiae description of
'0-1 test’ which is a new method to distinguish regular andatit dynamics from
any timeseries of data.

Chapter 3, 4 and 5 contain the body of my research. In Chaptard34,
| study heteroclinic systems with periodic perturbatiods.detailed derivation
of the Poincaré map of the system is carried out in Chaptehifeva thorough
analytic and numerical study is displayed in Chapter 4.

Chapter 5 deals with afilerent, but closely related, topic. | consider coupled
systems of two cells with cyclic symmetry. Specifically, | amerested in the
interactions between non-trivial periodic solutions ia tivo cells. As mentioned
in the previous paragraph, | prove that the periodic sohstia the two cells must
have the same symmetry. | also identify those ratios of feegies where the
non-trivial periodic solutions possess cyclic symmetry.

Conclusions and possible future research directions wiptesented and dis-

cussed in Chapter 6.



Chapter 2

Preliminaries and Background

In this chapter, we give the definition of heteroclinic cycla section 2.1,
followed by three examples of the existence of heterochgides in section 2.2,
which fall into the three categories classified by Krupa i][4We then review
the theories of circle maps in section 2.3 and the 0-1 testdtian 2.4. These

theoretical results form the basis for our later analysiShapter 4.

2.1 Definition of a heteroclinic cycle

Suppose thal' € O(n) is a compact Lie group acting linearly d&i'. Let

f : R" — R" be al™-equivariant vector field. That is

f(yx) = yf(x),¥y e I’ and¥x e R".

Definition 2.1.1 Suppose tha§;, j = 1,---,m are hyperbolic equilibria of the
vector field {x) and that the group orbit§é; = {y e I' : y¢;}, ] = L, 2,...,m are
distinct. Let W/(¢;) and W/(¢;) denote the stable and unstable manifoldg of

respectively. The set of group orbits of the unstable méatsfo
X={W'(y&),j=21,--- ,myeT}

10



Chapter 2. 2.1. Definition of a heteroclinic cycle

forms a heteroclinic cycle provided dint{¥,;) > 1 for all j and
WOE) — (6} < | We0g).
yell
Here, we use indices modulo m, i.e. we setth= 1. If m = 1, we call it a

homoclinic cycle.
Suppose thal c I' is a subgroup, we define its fixed-point subspace by
Fix(Z) = {xeR":ox = x,Yo € X}.

In particular, sincd (Fix(X)) c Fix(X) for everyI'—equivariantf and isotropy

subgrou, the following definition is natural:

Definition 2.1.2 The cycle X is arobust heteroclinic cycleifforeach {,--- ,m,
there is a fixed-point subspaceg P Fix(X;) whereX; c I', such that (i)¢,1 is a
sink in P, and (ii) WH(¢;) c P;.

Remark 2.1.1 (i) A robust heteroclinic cycle will persist under any sniallequivariant
perturbations of the vector field.

(1) For a general vector field without symmetry, a heterodicycle is necessarily
structurally unstable.

(iif) Without loss of generality, we may assume that the sulyos; are isotropy
subgroups, = {y € I' : yx = x} for some X, and that thejRare the smallest

possible subspace such that the conditions in the defiratiesatisfied.

The stability of invariant sets is one of the most importasties in the theory
of dynamical systems. There are various definitions of btabHere, we only

consider the strongest one: asymptotic stability.

Definition 2.1.3 A heteroclinic cycle X is stable if for any open neighborhéabd
of X, there exists an open neighborhood V of X such that anyaiwk trajectory

11
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{X(t) : t > 0,x(0) € V} c U. (X(t) is the solution of dferential equatiorx = f(X)).
We said it is asymptotically stable if it is stable and anyfard trajectory starting

in V is asymptotic to X. The cycle is unstable if it is not stabl

There have been many papers studying on this topic, for ebeaj®®|, [44],
[24], [36] and [60]. Krupa and Melbourne in [43] analyze tle¢ative size of the
eigenvalues of the linearizations at the equilibria andaggftticient condition for
asymptotic stability of a heteroclinic cycle. The followitheorem is a part of

their results:

Theorem 2.1.1 Suppose X is arobust heteroclinic cycle. Then X is asynoptbti

stable provided the condition

m m
[ [minci.e-t) > Je.
j=1 j=1

where—c; is the maximum real part of eigenvalueqof) in P;_, — P; at the j-th
equilibrium point, ¢ is the maximum real part of eigenvaluegdf) and t; is the

maximum real part of eigenvalues whose eigenvectors amaldo P_; + P;.

Remark 2.1.2 In R3, the condition above could be reduced to the very intuitive

m
Cj >1—[ej

j=1

one

m
j=1

2.2 Existence of heteroclinic cycles

In this section, we will consider three examples of hetenoxtycles. The first
one is from Guckenheimer and Holmes ([33]) which shows thatsymmetry-
breaking bifurcations of equilibria can naturally lead e texistence of robust

heteroclinic cycles. The second example is from Hou and &tslky ([38]) which

12



Chapter 2. 2.2. Existence of heteroclinic cycles

displays that symmetry breaking may result in the occue@ideteroclinic cy-
cles. The final example is a Lotka-Volterra system; an appba will be also

discussed.

2.2.1 Spontaneous symmetry breaking

Let G c O(3) be the symmetry group generated by

-1 00
=1 0 1 0
0 01
and
0 01
c=(1 0 0,
010

in other wordsG consists of cyclic permutations of the coordinate axe&®iand
reflections about the coordinate planes.

Guckenheimer and Holmes prove the following theorem [33]:

Theorem 2.2.1 Consider the spacgs(R3) of C'(r > 3) vector fields orR3 that
are equivariant with respect to the group G. There is an otsc yg of vector
fields inyg such that

(i) all vector fields in U are topologically equivalent, and

(if) vector fields in U have heteroclinic cycles consistirfgloee saddle points
and trajectories joining these. All trajectories that dotrie on the coordinate

planes, or the lines x +y = +z are asymptotic to the heteroclinic cycle.

Remark 2.2.1 In the original paper [33] by Guckenheimer and Holmes, the-co

tinuous djferentiability ofyc(R®) was set to be e 1. However, since the Taylor

13
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expansion up to order three of these vector fields will be icdened in the follow-

ing, we consider vector fields j(R3) N C" for r > 3 here.

In the following, we will show only the existence and the diibof robust
heteroclinic cycles withiryg(R3).

Firstly, note that the vector field

X = (f (X’ y’ Z)’ g(X, y’ Z)’ h(X’ y’ Z)) € XG(RS)

if and only if f(x,y,2 = 9g(y,zX) = h(z x,y) and f(x,y,2 = -f(-xy,2) =
—f(x, -y, 2) = —f(X Y, —2), which ensures that the only system of equations defin-
ing a vector field inys(R®) has a truncated Taylor expansion at the origin of the
form,
X = X(A + a;x? + azy? + azz%)
Y= YA+ ay? + &7 + agx?) (2.1)
Z=272(1+ a7 + apX? + agy?)
Secondly, the symmetry of group forces the lines defined by= +y = +z,
the coordinate axes and the coordinate planes to be invamaer the action of
any vector fieldX € yg(R3).

Assumea; < 0, so that the bifurcation is supercritical. LRt = ( —ail,o, 0)

andP, = oP; = (0, ‘/—ail,O). Then

Df(P,) = /l-diag(—z uu)

A a

Df(P) = - diag(25%, -2, %)

2 al

(2.2)

Hence if we assume that

< a <ag, (23)

thenP; is a saddle an®; is a sink for the flow of (1) restricted {dx, y, 2) : z= 0}.
(Obviously, ifag < a; < a, then we can do the same thing and get a cycle moving

in the opposite direction.)
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Figure 2.1: The heteroclinic cycle in the Guckenheimer-Holmes syst2m) (n the first

octant.

Now consider the restriction of (2.1) &

{ X = X(1 + a;x® + azy?) (2.4

Y=Y+ ary? + agxXd)
We can easily show that (2.4) admits no equilibria other thanorigin,+P; and
+P, if we have (2.3). Besides, we can prove that the unstablefoldriv!(P,)
is located in a bounded region. More precisely, chd¢se —ail and consider

D ={(x,y) : 0< x< K,0 <y < K}. Then the flow withinD will not leave it since
X =K +aK?+ay?) <0

on{x =K} n D, and

V=K@ +ak®+ax?) <0

on{y = K}n D. Hence, by the Poincaré-Bendixson theorem, there exist®a
nection betwee®; andP,. By applyingo to this connection, we have proved the

following lemma:

Lemma 2.2.1 The heteroclinic cycle exists far> 0 in the system (2.1) ifa< 0

and the condition (2.3) holds.

15
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Figure 2.2: The cross sectiond}’, H"' andHJ.

Moreover, this lemma proves that the existing cycle is rofmrsmall symmetry-
preserving perturbations. (See Figure 2.1).

To identify the stability of the heteroclinic cycle, we ugetPoincaré map
method to analyze the dynamics near the cycle we have found.

Let 5 > O be a small real number ald” = {z = 6}, H® = {y = §} and
HI" = {x = 6} be cross sections neBf andP,. Letx, € HY', yo € H", 7 € H}' be
points on the connecting orbily — P, P, — P,, P; — P,, respectively (see
Figure 2.2). LetJ = {(u,w, )} be a small neighborhood of, U* = {(u,w,?) :

w > 0lnUandU- = {(u,w,d) : w < 0} n U. Then the trajectories starting
from U* andU~ will hit H{,” if we chooseU small enough. On the other hand,
the trajectories starting frotd \ (U* U U~) will converge toP; sinceP; is a stable
equilibrium in thex-plane. Defineg : U* — H" by g = o~*h, whereh is the
first hit map fromU to Hiy”. If we identify points inU with points inR? then we
can writeg(u,w) = g(x + (u,w,6)) = (9:1(u, w), g(u, w)). Now extendingg to
be defined orJ by settingg(u, w) = (gi(u, —w), —g2(u, —w)), if w < 0, we get a

Poincaré may? which reduce the 3-dimensional flow system to a 2-dimensiona

16
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map system. In the following discussion, we will assume 0 without loss of
generality.

Note that the cycle that we have found is asymptoticallylstdl® is asymp-
totically stable fixed point off. On the other hand, the cycle is unstable if O is a
repelling fixed point ofy.

Before we derive the leading-order approximatiomgofve define some nota-

tion from [43]. Let

a — & -
r=-2,e=241- Sc=21- ,
a a

wherer, e, —c denote the radial, expanding and contracting eigenvalie din-
earized system of (2.1), respectively. We expect that i#f e, then the cycle
will be asymptotically stable. Moreover, the radial eiga&iner plays no role in
determining stability.

Now we begin to derive the lowest order expressiog.dfety and¢ denote
the first hit maps fronU* to H2" and from a neighborhood gf in HY" to Hj".
Since the flow near the hyperbolic equilibriuPa is equivalent to the flow of the

linearized systemy is of the form
YU, W, 6) = (5~ cuwe, 5, 8+ ewe).

The mapg is a difeomorphism. Using a Taylor expansion nggrwe can ap-
proximate

¢(U, 6’ V) = (6’ ao(U, V)’ bo(U, V)V),

wherea, andb, are smooth functions. Thus, from the fact that, w) = o~ 1¢p oy

we get the following lemma.

Lemma 2.2.2 At leading order, the map g has the form

g(u, w) = (a(u, w), b(u, wywe),

17
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for some continuous functions a and Kutw) > 0 for w > 0. Moreover there

exist constants Kr > 0 such that
la(u, w)| < Kw”; [b(u, w)| < K, (u,w) € U

Supposec/e > 1 and letg = (g1, g2). If w < maxX(2K)¢/e1,1,1/2K}, then
g < Kw® < w/2 which implies that(gz)"(u,w)| < (W/2)" — 0 asn — oo.
On the other handg?(u,w)| = [a"(u,w)| < (Kw*)" < (1/2)" —» 0 asn — oo.
Hence, we have proved the following corollary which desoglthe stability of

the heteroclinic cycle.

Corollary 2.2.1 The heteroclinic cycle in system (2.1) is stableaf > a, + as.

2.2.2 Forced symmetry breaking

In this section, we will follow the result of Hou and Golulkys([38]) which
gives an example of a robust cycle arising through forcednsgtry breaking.
LetI' ¢ O(n) be a Lie group acting of®R" and letf : R" — R" be a

I'—equivariant vector field. Consider systems dfetiential equations:

7 = (2 (2.5)
7 = @2 +eg(2), (2.6)

wheree is small and is only A—equivariant withA c T" a Lie subgroup.
Suppose equation (2.5) has an equilibriunzaat Then equivariance implies
that the manifold

Xo=Tz={yz:yeTl}

is a group orbit of equilibria. We assume th@tis not a set of disconnected equi-
libria. Moreover, we also assume th&j is normally hyperbolic and asymptoti-

cally stable. The definition of normal hyperbolicity can berd in [81]. Roughly
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speaking, we calKo normally hyperbolic if it expands or contracts more quickly
in its normal directions than in its tangent directions. \Wlads small, normal
hyperbolicity guarantees that there is a perturbed flowriama manifold X, for
the perturbed system (2.6) which igféiomorphic taX

Lauterbach and Roberts ([47]) show that, when dira dim I" ande is small
enough, the dynamics on the perturbed group ofbis generally more compli-
cated than just consisting of equilibria. More precisehe tesidual symmetry
A forces the occurrence of one-dimensional flow invariarg sehnecting these
equilibria. Hence the symmetry-breaking perturbation vakult in the occur-
rence of heteroclinic cycles. In their examdles: O(3) andA = T (the group of
symmetries of the tetrahedron). Later on, Lauterbetchl. ([45], [46]) classified
all pairs for whichl' = O(3) or SO(3) andA is any proper Lie subgroup which
may force heteroclinic cycles.

Hou and Golubitsky considered the systenRin= C?with ' = Dy =< T2, A =

D,. The action oD, onC? is generated by the reflections

(21, 22)

K1 - (Z1, 20)

k2 - (21, 2,) (z1,2)

The action of” = D, =< T?2 onC? is generated by; and

(22, z1)

(éezl, é¢22)

k- (21, 2)

(6,9) - (2, 2)

where ¢, ¢) € T2.

We will prove that there exists an equilibrium in the unpdrad system (2.5)
of the formzy = (u, 1) whereu > 0. We call such an equilibrium a mixed mode
solution. Since the isotropy subgroupzfis D, generated by andk;, the group

orbit X, of 7, is diffeomorphic to the 2-torug?.
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D

Figure 2.3: Fixed-point subsets on the 2-tors and the connections.

As we mentioned before, there is a perturbed flow invariantifol X, for
the perturbed system which isfidiomorphic toXy so that only the dynamics of
Xo is needed to be considered. Moreover, there are some poiXtswhich are

also inX.. In fact, the fixed-point subsets of subgrougfacting onX, are

Fix’(k1) = {(0,¢): ¢ €[0,27)} U{(r,¢): ¢ € [0, 27)}
Fix’()) = 1{(6,0):6¢€[0,27)}U{(6,7): 6 €0, 27)}
Fix°(Dy) = {(0,0),(x,0),(0,7), (r, )}

(In other words, the fixed-point subset for eaghs the disjoint union of two
circles, while that oD, consists of four points. See Fig.2.3) Therefore, the four
fixed points inFix°(D,) are four equilibria orX, for the perturbed system (2.6).
We call themD,—equilibria.

Note that the two invariant circleSix%(x,) and Fix°(k,) are connections of
theseD,— equilibria as depicted in Figure 2.3 Thus, if we can show (haall
these fouD,—equilibria are saddles and (ii) there is no other equilibri&ix®(«,)

andFix°(x,), then we prove the existence of a heteroclinic cycle.

20



Chapter 2. 2.2. Existence of heteroclinic cycles

Orbit representative Isotropy subgroup Fixed-point sabsp Dimension

(0,0) Dy T2 (0,0) 0
(x,0),xe R D, x St (x,0) 1
(X, X),xeR D4 (%, X) 1

(Xy),XyeR D, (Xy) 2

Table 2.1: Isotropy subgroups db, - T2 acting onC?.

The existence of stable mixed mode solutions of (2.5) wilhewn first. Then
we will prove the existence of perturbation tega) such that all th®,—equilibria
are saddles with inflow and outflow consistent with a cycleteAthat, we will
prove that there are no other equilibria on the cycle whictuess the existence
of heteroclinic cycles. The asymptotic stability of the leywill be established in

the following. After all this, we give the main result of [38]

The existence of stable mixed mode solutions

There are four isotropy subgroups arising from the groufpaaif D, = T2
acting onC?, as listed in Table 2.1. We call the points with isotropy Solog
D, = S! pure modes and the points with isotropy subgrBypnixed modes.

Consider theD, < T2-equivariant vector field (z 1) which depends on a bi-
furcation parametet

z= f(z 1). (2.7)

The general form of this vector field is
f(zla ZZa /l) = (A(|21|2’ |22|25 /l)Z]_, A(|22|2’ |21|2’ /1)22)5 (28)

whereA : R? x R — R. AssumeA(0,0,0) # 0. After properly rescaling and
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Solution Type Subgroup Subspace Equation Eigenvalues
Trivial Dy < T? (0,0) z=2=0 A(twice)
Pure mode D,xS! (x,0) A=-ax 2ax,(b-a)x?
Mixed mode D, (x,X) A=-(a+b)x* 2(@+hb)x

Table 2.2: Linear stability of diferent modes.

then Taylor expanding, we have
A(zil%, 122, A) = A + azi)? + blz,|* + higher order terms

wherea, b € R.
Let
K(z ) = (1 + azl? + blzl)z, (1 + 8z + blzl)z) (2.9)

be the third-order truncation df(z, 1). We say that &, < T?-equivariant vector
field f(z 1) is nondegenerate & # 0 anda # +b. The following theorem proved
in [72] asserts that the stability of the equilibria of thectar field f(z 2) are
determined byK.

Theorem 2.2.2 A nondegeneratB, = T2-equivariant vector field @z 1) is D,

T2-equivalent to Kz, ).

Therefore, we may assume thigk, 1) is in normal form (2.9) and only compute
the result fromk.

The invariant subspaces of vector fi?dddcan be classified into threeftérent
types depending on which subgroup acting on it. See Tabléo2tRe branching
equation.

Since fixed point subspaces are always flow-invariant, weestnict our dis-
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A<O . A>0 _
‘ Mixed mode

______ Pure mode

e
.
-

.................. Trivial

Figure 2.4: Bifurcation diagram ira > |b| region.

cussion toFix(D,). Compute

A+ 3ax +bx 2bX; Xo

(dK)lrixp,) = ,
2bxy %, A+ bx +3ax

we get the eigenvalues of points on these thréemint types of invariant sub-
spaces. See Table 2.2 for the details. Note that the stakézirmodes occur only
in the region{(a, b) : a > |b|}. See Figure 2.4 for the bifurcation diagram in this

region.

Stability of D,—equilibria

From this section on, we assume that thefitoents @, b) of the truncated
vector field (2.9) satisfy the conditian> |b|. This assumption will guarantee the
existence of an orbitally stable mixed mode solution whih normally hyper-
bolic 2-torusX,.

By the previous section, we know that there are four mixed enequilib-

ria which are also irFix°(D,) for the unperturbed system:, +u) whereu =
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Va/(a+ b).
Now consider the perturbed system:
z=F(z4,¢), (2.10)
where
F(z 1, ¢€) = (2 2) + €9(2). (2.11)

According to the previous discussion, we know that for fixed 0 small ande
small there is a flow invariant 2-toru§.

Sinceg = (01, 0») Is aD, equivariant vector field, it has the form:

gl = al(zl + Zl.’ 22 + 22’ lel’ 2222)21 + bl(zl + Zl.’ 22 + 22’ lel’ 2222)2_1 (2 12)
gz = aZ(Zl + Zl.’ 22 + 22’ lel’ 2222)22 + b2(zl + Zl.’ 22 + 22’ lel’ ZZZZ)ZE

whereay, by, a, andb, are real functions defined @&f. We define

K1 =01z(0,0) + 915(0,0)
K2 = 01(0,0) - 9:%(0, 0)
L1 = 02%(0,0) + 927(0,0)
L2 = 02%(0,0) - 922(0,0)

whereg; 7 is the partial derivative of; with respect ta;.

Note that the orbital stability of the mixed mode solutionghe unperturbed
problem guarantees that tie—equilibria are stable in directions transverse to
the 2-torusX. so that we just need to consider the eigenvalues correspgpmali
the eigenvectors aF which are tangent t&X,.. We denote the eigenvaluesadff
in the ¢, 0) and (Qi) directions byo1(€) ando;(¢€), respectively. The authors of

[38] prove:
Theorem 2.2.3 For fixed smalll and for smalle,

sgn(Kz) = —sgn(Ky); sgn(L1) = —sgn(Ky); sgn(Lz) = sgn(Ky). (2.13)
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Equilibria sgn(o1(€)) sgrn(o(e))
Alp, ) —sgr(Kae) —sgr(Lie)
Blu, —1)  —sgn(Kze) —sgr(Lze)

C(-w,—1) —sgr(Kie) —sgn(Lie)
D(-p, 1)  —sgr(Kze) —sgn(Lze)

Table 2.3: The signs of the eigenvalues of equilibria in the tangergation.

are necessary and fgicient conditions for proving thdd,—equilibria on X have

inflow and outflow directions that are consistent with hawangeteroclinic cycle.

To prove this theorem, the authors of [38] show that the sigor§e) and
o»(e) are as Table 2.3.

Having the result of Table 3, we can easily verify the neagsaad sificient
condition for the saddleness of eabh—equilibria by checkingri(e€) - o»(e) di-
rectly. Moreover, the direction of inflow and outflow can beified as Figure
2.3. We shall not go through the proof of Table 3 since it nexdig some tedious

calculations.

The existence of heteroclinic cycles

To prove the existence of heteroclinic cycles, we just negarove there are
no equilibria other than thB,—equilibria on the one-dimensional invariant man-
ifolds on X, connecting theD,—equilibria. In fact, we only need to prove that
the assertion is true on the unperturbed invariant subsggcand then use the
continuity to establish the result for small enough

Supposey 4, €) is an equilibrium ofF that is in Fixk;) but not in FixD,).

Let Y be the group orbit of under the action of 2 and let
m:C* > TY
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be the orthogonal projection defined by

(W, Wo) = (W — b}#RE(WJl),Wz - JﬁRe(Wzyz))-

Here, T,Y denotes the tangent spaceYohty.

It is easy to compute that

n(F(y. 4, €))

e (i Im(y)by, i 22 Im(¥2)by)

= 0.
Note that ify ¢ Fix(«2), thenb,|y = O since the ca@cient ofb, will not vanish in
this case. Similarly, iff ¢ Fix(«1), thenbyly, = 0. Thus, all we have to do is to find
out the conditions that mak®|gixo(,) andba|gixo(,,) away from zero orXo.

Clearly, (2.13) implies
1012 (0, 0)| < 1917 (0, 0)l andigz 7 (0, O)| < |g2(0, O)!. (2.14)

If we computeb|rixoq, andbalrioq,) by substitutingz; = pe® andz, = ue??,

then we have

baleio) = 2(021(0) + b22(0) cos@y))u + Ou?)
bilrixoy = 2(012(0) + by 1(0) cosg))u + O(u?).
Moreover,
b11(0) = 017(0,0)  bi2(0) 01%(0,0)
b21(0) = 07(0,0) b22(0) = g27(0,0).
Therefore, (2.13) implies that thg are uniformly bounded away from zero and

hence the only equilibria df areD,—equilibria. This proves the existence of the

heteroclinic cycles.

Asymptotic stability of cycles

In the previous section, for fixedl > 0 and for all seficient smalle, we have

found heteroclinic cycles connecting the fdy—equilibria on the flow invariant
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2-torusX, if the conditionsa > |b| and (2.13) are valid. In this section, we will

prove that in addition to these, if

sgn(e) = sgr(L:1K; — K3Lz) sgn(Ky) (2.15)

also holds, then the heteroclinic cycles are asymptoyictdible.

By using the Theorem?2.7 in [42], all we need is to check if thedpct of
the four attracting eigenvalues is greater than the produitte four repelling
eigenvalues, which is equivalentltdks — K2L3 > 0. Since (2.13) impliek; K, +
KiL, > 0 and (2.15) implied 1K, — K;L, > 0, the asymptotically stable cycles
exist when both of them valid.

We summarize this section by the main result in [38]:

Theorem 2.2.4 Consider the system of ODEs (2.5) and (2.6) and assumé¢ba
and (2.13). Then for each fixed small> 0 and for every sfliciently small
nonzeroe, there exist structurally stable heteroclinic cycles inl(2) connecting
the D,—equilibria. When (2.15) is also valid, the heteroclinic ®gare asymp-

totically stable.

2.2.3 Biological models with heteroclinic cycles

Suppose that there arespecies living in an ecosystem. Letdenote the
density of speciesand assume that the growth rate for each cagita,, depends
on the density of all the species involved. Then, the dynahsgstem which

describes the dynamics of thassepecies is:
X = X fi(x),
fori =1,...,n. If fis afine for alli, then we obtain the Lotka-Volterra equation:

X = X(ri + (Ax)), (2.16)
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fori=1,...,nwhereA = (g;) is anx n matrix. Herer; is the intrinsic growth rate
of theith species and;; are competition cd&cients expressing the strength with
which thejth species fliects the growth rate of théh.

Different choices of parametersanda;j, describes dierent biological sys-
tems. For example, in two dimensional cases; it 0 > r, anday; > 0= a;; =
ax; > a3, We obtain the prey-predator system. In contrast, a comgetiodel be-
tween two species sharing the same resource can be modedettingr,,r, > 0
anda;; # O fori # j.

The dynamics of two dimensional Lotka-Volterra system$iffine can be
easily analyzed as there exist no limit cycles in them. Fsiaince, there are only
three possibilities for the competing case: (i) the two ggmecoexist, (ii) only one
of the species is able to dominate the other one, regardi@ssia condition, and
(iii) either of the species is able to dominate the other depending on the initial
condition.

In higher dimensional cases the situation becomes more laatgd, even in
only three dimensions. If we make some symmetry assumptigasr, =rz =1,
a1p = a3 = 831 = 1+canday; = azgp = ay3 = 1—¢€(i.e. cyclic interaction between
the species), rescabe and timet to makea; = 1 andr = 1, then we obtain
the 3-dimensional Lotka-Volterra system as considered by RMay and W. J.

Leonard in [52]:

X = X(1-(X+y+2-cy+ed
y = yl-(x+y+2-cz+ex . (2.17)
z = Z(1-(X+y+2)—-cx+ey

May and Leonard prove the following theorem:

Theorem 2.251f ¢ > e > 0 and e < 1, then there exists a stable heteroclinic

cycle in system (2.17).
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The construction of system (2.17) shows us that it is eqiaméwith respect
to Z3, the cyclic permutation group. Moreover, it can be easilpverted into the
Guckenheimer-Holmes system (2.1) by setting X2,y = Y? andz = Z?; it then
gainsZ3 symmetry. In other words, these two systems are equivatehshare
the same dynamics. (The biological constraint: once a spésiextinct, it will be
extinct forever, forces the coordinate hyperplanes to bariant. These invariant

hyperplanes also exist in a mathematical system &jteymmetry.)

Remark 2.2.2 Note that an identical result can be found by comparing Taeor

2.2.5 with Corollary 2.2.1.

Remark 2.2.3 The nonZ; symmetry system was considered by Chi, et al. ([13])
in which they prove that if the parameters satisfya 1 > a;» > 0,ay; > 1 >
a3 > 0,a3, > 1 > az; > 0 and the conditions in Theorem2.1.1, then there exists a

stable heteroclinic cycle in this system.

The Lotka-Volterra system has long been utilized as a pawedological as
well as game-theoretical model ([70], [25]), and has be@vgunt as an féective
archetype in describing the dynamics of sensory neuroris [T®as also been
used in describing the mode interactions in rotating Rghd3enard convection
([12, 14]). In a two-species competitive Lotka-Volterrasm, the "winner -take-
all” scenario occurs due to the lack of cycles. Nevertheldissnatically diferent
dynamics appear when it comes to higher dimensions. Thelo@te planes,
corresponding to the extinction of some species, supptetddinic connections
between saddle points, which results in the existence diastdeteroclinic cycle.
In this case, the system becomes winnerless.

Recently, this system has also been used in modeling thenetwf compet-
ing neuron ensembles( [63, 79, 76, 66, 77, 4]). Accordinpeeamental results,

the desired model to simulate the activity of a neural ensersiiould have the
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following features: (i) It is strongly sensitive so that theurons can be turned on
immediately as soon as a stimulus occurs. We use a funetimncontrol it. (ii)

It is robust against small perturbation (noise). (iii) ltnaits no attracting equilib-
rium points so that the neurons can be fired in turns. In otloedsy a stable cycle
is preferable.

V. S. Afraimovich, et al. propose the following system:

N
% =% [o(H,9) = > ayx; + Hi) |+ Si(0), (2.18)

=1
wherex; > 0 is the firing rate of th&h neuronH; is the forcing from other neuron
ensembles$; is the stimuli from the sensors acting on ke neuron andy; is
the strength of inhibition on theth neuron by the-th neuron. Ifo- = 1 and

H = S= 0, we retrieve the Lotka-\Volterra system.

Here, they setr(H,S) = -1, ifH = S= 0, ando(H, S) = 1, otherwise. More
precisely, all neurons are silent when there are no any Btifnom sensors or
other neuron ensembles, on it, while all neurons are aetivahen stimuli occur.

A remarkable application is proposed by P. Varona et al,(f&]), who at-
tempt to use this model to capture the hunting behavi&@lmine a marine mol-
lusk. Clione uses a gravitational sensory organs, the statocysts, éondieie its
orientation. TheS5;(t), here, represents the stimuli of the statocyst on the tecep
neurona;. In their model, statocyst consists of six neurons( see Eig), which
are divided into two coupling subgroups of three neuronsaaheInside each sub-
group, a relatively stronger inhibitory constants condtheteroclinic connections
between three neurons. More precisely, the parametershio®se for computing
are:ayz = a5 = Ay = D, = A4 = A2 = 2,816 = A1 = A2 = A3 = Asg =
ags = 1.5,q; = 1, for alli anda;; = 0, otherwise. As soon as its food appears,
the hunting neurons are activated, it¢.# 0. In this case, chaotic dynamics are

observed, similar to the irregular hunting behavioCtibne
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Figure 2.5: Two groups of heteroclinic cycles, 5—-> 3 > land2— 6 —» 4 — 2,
and their weak couplings between six neurons. The thickofessnnection curves denote

the strength of the inhibitions.

Based on this statocyst model, Venaille et al. [79] congidarcoupled system
with two such statocyst models. They studied the coordinaaind synchroniza-
tion between two neuron ensembles by examining numeritiadydynamics of
the two cells for diferent coupling ways and coupling strengths. If there is only
two neurons coupled together, then synchronization betvwieese two neurons
can be observed. However, the rest of the neurons can notiséreyized and
there is no activation sequence locking within them. In castf coupling three
corresponding neurons in each cell results in the existehaetivation sequence
locking. In the case of coupling all the corresponding nasiia each cell, the dy-
namics of the system can be fully synchronized or chaotiedémg on the cou-
pling strength. These results give an example that cougkdystems provide a
more complicated dynamics which increase the signals tstlesycan produce in
terms of neuron activities.

As we have mentioned in the Introduction, a small pertudsadiestroying the

symmetry of a heteroclinic system may results in the birta periodic solution.
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In other words, the above system looks like a periodic cyateracting with a
heteroclinic cycle, or two periodic cycles interactingiwa&ach other. Therefore, a
thorough study in heteroclinic systems with periodic pdrations becomes very

important for understanding the coordination of neuroreertses.

2.3 Circle maps

In this section, we review some basic properties of the mépsale. Theory
on circle homeomorphisms, i.e. invertible circle maps, besn well-established
and can be found in almost any textbooks on dynamical syssemis as [20],
[35], [34] and [9]. We discuss briefly this case in section 2.3

On the other hand, although non-invertible circle maps Ieen well-studied
in the literature, see for example [49, 40, 51, 48, 50, 78,211, they are not
presented normally in any textbooks. Therefore, we willegiv more detailed

review on circle maps in section 2.3.2.

2.3.1 Invertible circle maps

Supposef : St — St is an orientation preserving homeomorphism of circle
S' =R/Z =[0,1). AfunctionF : R — Ris called a lift of f if it satisfiesr o F =
f o, wherer : R — Stis the projection defined by(x) = (cog2rX), sin(2rX)) €
S'. Note that the lift of a circle map is not unique; neverths)éwo diterent lifts
are equal up to translation by some integer.

It is well known that for the rigid rotatiori(xX) = X+ w (mod1), all the points
on [0, 1) are periodic itw is a rational number. In contrast, all the points will travel
densely around [Q) if w is irrational. As for a general circle map, which could
be nonlinear, we expect that there are only finitely manyquokci points if they

exist. In this case, a typical non-periodic point could élaa diferent distance
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in each iteration. This suggests that it is useful to meathe@verage amount a

point rotates by over many iterations.

Definition 2.3.1 Let f be an orientation-preserving circle homeomorphisrd an

let F be a lift of it. The rotation number of f is defined by

p(f) = lim 97X

N—oo

x € [0, 1).

This definition is, in fact, well-defined; that is, it is eagy pprove that the
rotation number exists and that it is independent of théainpioint x. Moreover,
supposem, n € N and fn,n) = 1, i.e. mandn are coprime, thep(f) = 7 if and
only if f has a periodic poirt with f"(x) = x+ m.

Consider a one-dimensionalidrential equatiox = a+bsin(2rx) defined on
[0, 1) which describes the dynamics of a periodic system peztllly a periodic
function. By using Euler's method to discretise it, we hawifference equation
Xnel = X + @ + % sin(2rx,), wherea = ah, 8 = 2rbh andh is the step size for

Euler's method. In other words, the dynamics of the map

F(X,a,B) = X+a+ é% sin(2rx) (mod1) (2.19)

can be used to describe the dynamics of tiiecential equation. (2.19) is called
the standard or canonical family of circle maps and it is a éoemorphism if
B € [0,1]. Normally, we restrictr only in [0, 1] as we get the same dynamics for
the other cases.

The dynamics of (2.19) are quite regular whgea [0, 1]. ForgB = 0, the map
becomes the simple rotation 8f and we have(F) = 2 if and only if & = Z,
wherem,n € N and fn,n) = 1. For a fixed3 € (0, 1) and a fixed rational number

m/n in [0, 1], there exists a closed interval inin which the rotation number
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of F is m/n. These intervals grow g&increases to 1 when the measure of the
union of these intervals irr is exactly equal to 1. In other words, the standard
family has a periodic orbit for almost all values @fin [0,1] wheng = 1. In
addition, for eaclg € (0, 1) and for each irrational numbgr there exist a unique

a such thap(F(a, B)) = p. It follows that the bifurcation diagram of (2.19) in the
parameter space(B) consists of the so-called 'Arnold tongues’ in each of which

the rotation number df is a rational constant and periodic orbits exist within it.

2.3.2 Non-invertible circle maps

In this section, we consider the case wheis a continuous circle map, i.e.
f € Co(Sh). Specifically, we concentrate through out this sectionam-imvertible
circle maps as the invertible case has been discussed iars2¢3.1.

The rotation number as defined in Definition 2.3.1 was firstomhticed by
Poincaré. Its definition has been extended to any contmuwmale map by New-

house et al. in [55]:

Definition 2.3.2 Let f be a continuous circle map and let F be a lift of f. The

rotation number of a point x [0, 1] is defined by
p(F,x) = lim —X =X
n—co n
if the limit exists. The rotation set of F is defined by

p(F) ={p(F,x) : x€ [0, 1]}

Differentx may have dierent rotation numbers and, in some cases, this limit
may not exist [51]. Nevertheless, R. Ito in [40] proved the totation set of
is either a point or a bounded closed interyal p,], which is called the rotation

interval ofF.
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By definition,p is clearly a monotonically increasing function l6f meaning
that if F < G thenp(F, X) < p(G, x) for all xwhere the limit exists. Therefore, one
way to find the rotation interval of a functidnis to find two monotone functions
F, andF_suchthat-- < F < F,, andp(F, x,) = p(F,) andp(F, x.) = p(F.)
for somex, andx_ € [0, 1). Note that sincé&, andF_ are monotone, they have
rotation numbers that are well-defined and independenteofiitial pointx.

P. Boyland [11] constructed the least monotone upper béyrahd the great-

est monotone lower bourfel of F as follows:

F.(X) = supF(y),

y<X
F_(X) = inf F(y),
y=X

and proved thap(F) = [p(F.), o(F.)]. We will use this method to calculate the
rotation interval of a circle map numerically in section.2.4

For a circle map having a rotation interval instead of a rorahumber, there
exist infinitely many periodic orbits which have rationatatton numbers, and
guasiperiodic orbits which have irrational rotation numseOn the other hand,
having a single rotation number does not imply having a sirgriodic orbit.
For example, through a sequence of period-doubling bifimea by varying the
parameters in the family of circle maps, we may arrive at a miajgh has single
rotation number but infinitely many coexisting periodic itstwith period of the
form g - 2", for all integersn and somay. As the existence of infinitely many
periodic orbits is a typical feature of chaos, the questlmntarises as to the
relationship between chaos and rotation numbers.

R.S. MacKay and C. Tresser in [49] considered the followilag< of circle

maps:

Definition 2.3.3 ([49]) Class A, r > 1, is the subset of CS') such that for
f e A", and F allift of f:
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rational p/q
H™ H*
- A +
A A o7 A A irrational w
AL A : :
Y. WA non-invertible
¢ AL maps
VA
A
L A N
~ Z vd invertible
b L maps

Figure 2.6: The schematic bifurcation diagram of a two-parameter famy, of circle
maps. We denotd as the Arnold tongue region in which the rotation numpgg or w,
respectively, exists for some pointe [0, 1]. L is the region where the circle map has
single rotation number, i.e. frequency locked region, Arisl the region where the circle
map has zero topological entropy. The boundaries of the [Anomgue and the region

where heteroclinic connections exist are denotedhyA~, H* andH".

() logDF has bounded variation on every compact interval where BF i
strictly positive.

(i) If F is non-monotone, then every common critical poihtlee monotone
bounds E is non-flat.

Here, a critical point of a map F is a point x where D§ = 0. We say that
a critical point of F is non-flat if there exist positive coastse, A, B, ¢ such that
IDF|~Y2 is convex orfx—e, X) and(x, x+¢), and for all|t| < €, B|t|® < |DF(x+1)| <

AltlS.

MacKay and Tresser identified the Arnold tongue regions (fdguency-

locking regions (L) and zero topological entropy regionsdgcircle maps inA'.
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AL

Figure 2.7: Three possible routes when varying parameters of a familgirofe maps

and their corresponding upper (green) and lower (blue) é®wf rotation intervals. The
vertical axes of the right figures are the possible rotatiomipers of the maps. Note that
on the right ofH™ and on the left oH*, we havep/q as the minimum and maximum,
respectively, of the rotation intervals. In addition, fueqcy-locking intervals can be

observed in the caseb)(@and €).

See Figure 2.6 for a schematic diagram of these regions. AFmsfpcated in the
Arnold tongue regio\,,q or A, if there exists a poirnt such thap(F, X) = p/gqor
o(F, X) = w, respectively. Frequency-locking regions consist of mapEh have
single rotation number, i.eo(F, X) = p/q orw, for all x € St. For a map which
is not in region (L), we expect a rotation interval insteaéaingle rotation num-
ber. Figure 2.7 shows three possible routes when varyirenpaters of a family
of circle maps and their corresponding upper (green) anéiddgbiue) bounds of
rotation intervals.

As for the zero topological entropy regions, we first givefiblowing defini-

tion:
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0 | ~TTT !
E/O 5 : < < - =" ___f == __|
0 n
0 0.5 10 0.5 10 0.5 1
S S S
(a) (b) ()

Figure 2.8: The graphs of one-parameter family of circle maps (2.20)ddw = 0.016,
(b) w = 0.019 and (c = 0.022. Wherw = 0.016, there exists a homoclinic connection
between the unstable fixed point and itself. This conneatfisappears, for instance in

the casev = 0.022, after the family undergoes a homoclinic bifurcatiomat 0.019.

Definition 2.3.4 ([49]) The topological entropy of a function f is defined by
h(f) = Iin?)m% logH(f,n,e),

where Hf, n, €) is the maximal cardinality ofn, €)-separated sets. Given a con-
tinuous map f: X — X where X is a compact metric space with metric d, and

givene > 0, ne€ Z*, we say that a set S (g, €)-separated if
[x,y € S, x#y] = [dm: 0 < m< nsuch that §f"(x), f"(y)) > €].
We say there is topological chaos if the topological entnggyositive.

Maps in the regiorA \ Z are topologically chaotic. Moreover, there exists
a regionL \ Z in which maps have single rotation number but are topoldigica
chaotic.

In figure 2.6, there are two curves* and H™ which separate the Arnold

tongue region into two subregions: frequency-lockingeagnd non-frequency-
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Chapter 2. 2.4.0-1 Test

locking region. Boyland [11] proved that these curves aeentfaps where hete-
roclinic (homoclinic) bifurcations occur. A heteroclinjtomoclinic) bifurcation
occurs when the preimage of the unstable fixed point of a mip msinimum or
maximum. For example, consider a one-parameter familyrofecmaps, which

will be studied in section 4.4.2:
— w w
S=h(s) = s+ —u— —&log(l+ +/a; cos(zs)), (2.20)
T T

whereu = 232 ¢ = 19.06 anda; = 0.998 are constants. As depicted in Figure
2.8, whenw = 0.016, there exists a homoclinic connection between the blesta
fixed point and itself. This connection disappears in the cas 0.022 after the
family undergoes a homoclinic bifurcationat= 0.019.

Note thatH* andH~ also form a part of the boundary of the region where
the topological entropy of the map is positive. R.S. MacKag &. Tresser [49]
proved that maps with non-trivial rotation interval havespiwe topological en-
tropies. Consequently, non-trivial rotation interval iinep topological chaos. We

will use this fact in section 4.4.2.

2.4 0-1 Test

In this section, we give a brief review of the 0-1 test whiclaibinary test
for chaotic dynamics developed by G.A. Gottwald and |. Mellve [29, 30, 32].
This test will be performed later in section 4.4.3 to proveneucally the chaotic
dynamics for the system we are going to study.

The usual method to detect chaotic dynamics for a detertiirdgnamical
system is to calculate numerically the maximal Lyapunovosgnta [1]. For
positived, the nearby trajectories separate exponentially and heeasnderlying
system demonstrates chaotic dynamics. In contrast, themyis regular (i.e.

periodic or quasiperiodic dynamics)if< 0. However, this method is only valid
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for dynamical systems whose equations are known. In thewgase the equation
is unknown or we have only a series of experimental data, timeay be estimated
by the phase space reconstruction method [75], approxigdie linearisation of
the evolution operator [68], or by the direct method [67].

0-1 test has been proved to be an easier way to detect chgo@enics for
a time-series of data [29, 32, 31, 22, 39], even with noisé. [30H.P. Dawes
and M.C. Freeland [16] utilized a modified 0-1 test to distiistp quasiperiod and
strange non-chaotic attractor, both of which have no p@sitiaximal Lyapunov
exponent. The benefit of this test is that it does not reqaikambw the equation of
the underlying dynamical system. In other words, even expartal data can be
analysed without knowing the mechanism behind the dataedar, it is easy to
identify chaotic from regular dynamics due to the binarypotit The test returns
0 or 1 if the underlying data is regular or chaotic, respetyiv

We describe the 0-1 test in the following:

Consider the following Euclidean group extension of dyraahsysteny(n):

w(n+1) = wn)+c
p(n) + ¢(n) cosw(n) ,
gin+1) = q(n) + ¢(n)sinw(n)

p(n+1)

wherew and (p, g) are the rotation and translation, respectively, in the@lat
has been shown in [56] that the dynamics on the group extensibounded if
the underlying dynamics is regular and unbounded if the tyidg dynamics is
chaotic. Moreover, if the chaotic attractor is uniformlypeybolic, thenp andq
behave asymptotically like Brownian motion. Thereforeg avay to detect if a
set of datap(n) is chaotic or not is to see g andq are asymptotically bounded.

Thus, for a given set of data(j) with j = 1,...,N, G.A. Gottwald and 1.
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Melbourne considered the translation variables

Po (=211 ¢(J) cos(m),
o (M=2]-1 #(j) sin(j@),

and their mean square displacement
1 N
Ma(n) = lim = ;[pwu 1) = (N7 + [Ao (i + 1) = 4 ()],

for n < ny andng: < N. The 0-1 test is based on the asymptotic growth rate of
M, (n) asn — oo. In the practical use, all the datdj) must be taken to be on the
attractor andN must be taken large enough so that the asymptotic behavimy of
andg, can be observed. The authors suggestedrihat N/10 is suficient to
get good results.

Since, for those(n) with absolute summaubility, this mean square displace-
ment satisfies

Mw’(n) = V(’ZD')n + VOSC(w? n) + e(’ZD', n)’
wheree(w, n)/n — 0 asn — oo uniformly in @ € (0, ) and

1-cosno

_ 2
VOSL(w7 n) - (E¢) 1 — COST H

in which
1w
Ep = lim JZ]; o).
they then subtract the oscillation teMgs{z, n) from M (n) and define
D, (n) = Mg (n) — Vosd@, n).

Although theoreticallyM, andD,, get the same result as bathand N tend to
infinity in the 0-1 test, the latter performs better in preetthan the former for
finite n. Therefore, we will calculate the asymptotic growth ratégfinstead of

M,, for the system we are studying in section 4.4.3.
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There are two ways to calculate the asymptotic growth ratB® af the re-
gression method and the correlation method. The regressgbinod involves the
calculation of a linear regression for the log-log plot of thean square displace-
ment. The asymptotic growth rake, is defined by

K, = lim 129P=(
n—eo lOgnN

b

whereD,,(n) = D(n)—min,1... o Dw(N). Here, we tak®,,(n) instead oD, (n)

due to the fact that the latter could be negative and henceresajt in problem
when taking the log in the definition.
In the case of the correlation method, the authors of [32]nddfithe linear

correlation coéicient of D, as its asymptotic growth rate
K = corr(, A),

wherefi = (1,2,--- ,New)), A = (Dx(1),Dx(2), - -+, Du(ney)) and the function

corr is the linear correlation cdicient defined by

covx,y)

Jvar(x)var(y) ’

corr(x,y) =

where

covX,y) = %Z(Xj =X - Y)
=1

is the covariance ok andy, var(x) = co\(Xx, X) is the variance ok and x =
p 21 %

In many cases, the correlation method performs better tharrdgression
method although they should agree theoretically as bathd N tend to infin-
ity.

By definition, the asymptotic growth rat€, depends on the choice af. In
some resonant cases wheseis such thatp,(n) ~ n, and henceM,(n) ~ n?,

Ko = 2 irrespective of regular or chaotic dynamics. To avoid Hiigation, we
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computeK,, for N, values ofw € (0, ) and then take the median value of these
K as our final asymptotic growth rakeof the data. In [32], the authors examined
the dfect of increasing\,, in the 0-1 test for the logistic map and found that
N, = 100 is stficient. Therefore, in section 4.4.3, we apply 0-1 test to our

system by taking 100 values af.
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Chapter 3

The Poincare Map

3.1 Introduction

Poincaré method is normally used for studying the dynamézs a cycle in
a dynamical system [41, 60]. The idea of this method is to pulbae, called a
Cross section, transversely crossing the cycle which wgairg to study and then
observe the dynamics of points where an arbitrary orbit tlearcycle intersects
this plane.

For a heteroclinic cycle, due to the time spent by an orbit assmg by an
equilibrium point is much greater than that on travellingwzen two equilibrium
points, and the strong lineaffects happening only around equilibrium points, we
split the Poincaré map into two kinds of maps: local maps eqailibrium points
and global maps between their neighbourhoods.

Papers, such as [43, 44, 54, 61, 53], utilize the Poincagemmethod to study
the dynamics of autonomous systems with heteroclinic sydBet to date it has
not been done rigorously for the non-autonomous case. \Wr&inAovich et al. in
[3] have derived a Poincaré map for a system which is siniddahe system we

are going to investigate. However, their result has somgdtrons which are not
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pointed out by the authors. We will discuss this in more detiaihe end of this
chapter and at the beginning of next chapter.

In this chapter, we derive the Poincaré map of the systeB) (1.

X = XA-(X+y+2-cy+ed+y(l-xTf(2wt)
y = y(1-(X+y+2-cz+eX 5
z = Z1-(X+y+2)—-cx+ey

wheref is a non-negative function iRC'(2r), the set of all 2-periodic functions
with continuous first-order derivative,9 vy < 1 and 1> ¢ > e > 0. We may
assume that(s) ~ O(1) to ensure that the perturbation ternQgy). In order to
keep the intrinsic biological meaning of the unperturbestam, the assumption
of non-negativeness dfis needed to ensure the first octant is invariant.

The derivation involves careful calculation of the locatiajgiobal maps. Be-
cause of the time-periodic perturbation, the local lingstion now includes non-
autonomous terms. Actually, these time-dependent terms glery important
role in obtaining an accurate corresponding local map. &fbee, we will not ne-
glect them as was done by Afraimovich et al. in [3]. As for thebgl parts, our
calculation takes the periodicity of thefidiomorphism between two cross sec-
tions into account and this has been shown numerically tdym® a better map
than the one we have published in [18].

This chapter is divided into four sections. In section 3.2, study the local
dynamics of (1.3). The complete derivation of the Poingasp of the system
(1.3) will be displayed in section 3.3. We will discuss sorsewumptions on the
parameters of our Poincaré map in section 3.5. The chajuseswith a more

general discussion in section 3.6.
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3.2 Local dynamics

Before deriving the Poincaré map of system (1.3), we willlgpe the local
dynamics of the system.

In the absence of the periodic forcing term, the system isvatgnt to the
Guckenheimer-Holmes system, which has been proved in eh@pto possess
a robust heteroclinic cycle connecting the three equiuibripointsP,(1, 0, 0),
P»(0, 1,0) andP5(0, 0, 1). The conditiorc > e > 0 ensures the asymptotic stabil-
ity of the heteroclinic cycle. Otherwise, all orbits wouldvl exponentially away
from it.

Fory > 0, symmetry is broken and we expect that there are periotliticos
near the original heteroclinic cycle. In fa&; andP; are no longer equilibrium
points. Instead, two periodic orbits exist nearby. Foranse, neaPs; on the
xz-plane, the dynamics looks like

X = ex+yf(2wt) + O@?)

(3.1)
W = —w—(1+0)x+ O>?),

wherex,w = z-1 ~ O(y). The following lemma proves the existence of a periodic

orbit nearPs:

Lemma 3.2.1 System (3.1) has a periodic solution ifsf is a periodic function

of period2sx.

Proof. All we have to prove is that there exists an initial poirg, (Vo) at time
t = 0 such that the solutiorx(t), w(t)) of (3.1) satisfiesX(t + 7/w), W(t + 7/w)) =
(X(t), w(t)), Yt € R.

The solution of the first equation of (3.1) is

X(t) = €% + V(1), (3.2)
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whereV(t) = ye‘e‘fot e ¥ f(2wt)dr. Thenx(t) is n/w-periodic if and only if

Xo = YL V0 vt e R
& (V(t+m/w) - V() (€ - m/9) — (V(t + 1/w) - V(D) (€ - e8<t+ﬂ/w>)’
=0, VteR
& [eV(t+n/w) = V(1) + ¥ (2w(t + 1/w)) — yF(2w1)] (et — eXt+r/)
—e(V(t + m/w) - V(1) (¢ — X*7/9)) = 0, Vt e R.
The terms involvingV(t) are cancelled out, s&(t) is periodic if and only if
fQRw(t + n/w)) — f(2wt) = 0, ¥V t € R. This equality is always true since

is periodic function of period2 Thus, we have found a desired

7T/ w
Xo = (ee”/” f eof (ZwT)’}/dT) / (l - e‘”/‘“) :
0

The same derivation can be done for the second equation tE#nSyS.1).
Since the solutiox(t), with respect to this initial poirk,, of the first equation of
(3.1) is a periodic function, we can apply the same argumgainaand then get a
pointwg and a corresponding periodic solutiat). Hence, we are dona

A result similar to Lemma 3.2.1 also holds By because the approximated
ODEs have the same form. We denote the periodic orbits Rgand P by P,
and P;, respectively. Note tha®; oscillates below the plangx = 0}, while P,

oscillates above this plane.

Remark 3.2.1 The explicit form of the x-coordinate of, Ban be derived by sim-

ply changing variables. From (3.2),

Xt) = e 0”/” ye® f 2wr)dr + ye fot e f(2wr)dr

_ )/e‘*t%{ ("1 grerf (2ur)dr + e [ eer f(2wr)dr
- [ e f(2wr)dr)
The second term in the curly brackets is equal to

t+7/w
f e “ f(2wr)dr.

n/w
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=% R y=0}

()

Figure 3.1: A schematic diagram of the snap shot at time0 of the unstable manifolds

of P1 (blue), P, (green) andP; (red). The black closed curves denégandP;. Con-
nections betweeR; andP, as well asP; andPj, lie on the invariant planeiz = 0} and
{y = 0}, respectively. Sinc®), € {z= 0,x > 0} andP; € {y = 0,x < 0}, the unstable

manifold of P, will not have transversal intersections with the stable ifioéthof P%.

Therefore,

X(t)

l-eo/w Jt
_ y(; /o e‘erf(Zw(t+T))dT).

e®/v-1 Jo

y (eﬂe‘”—/“ [ gt (ZwT)dT)

The connections frorP, to P, and fromP; to P, exist due to the persistence
of the supporting planeg = 0} and{y = 0}. In contrast, the invariant plane
{x = 0} and the connection betweéh(0, 1,0) andP5(0, 0, 1) are destroyed by
the forcing term. In fact, there is no connection betwB¢rand P; because the
solutions starting at an initial point ifx = 0} will only flow into {x > 0}. See
Figure 3.1 for a schematic description.

In the absence of the perturbation, the unstable manifdlBssoare 2-dimensional

objects if we put them in the extendedy, z t) space. Sinc®;’s are hyperbolic,
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the dimension of their unstable manifolds is not changedduyrey a small peri-
odic perturbation. In other words, the unstable manifold®;& depicted in the
Figure 3.1 are actually 2-dimensional in the extended space

To analyze the global dynamics near a cycle is normaliyadilt. In general,

the Poincaré map method is a good way to begin investigdting

3.3 The construction of the Poincaé Map

Let the two cross sections neBy = (1,0,0) beH = {(x,y,2) : |x - 1] <
h0<y<hz=hlandH" ={(x,y,2) : [Xx—1 < h,y=h,0< z< h}, wherehis
a small constant, and define the cross sectionsiear(0, 1, 0) andP; = (0,0, 1)
in similar ways, see Figure 3.2.

Note that the radial eigenvalues Bf, P, andP; are identity. Therefore, for
small enouglt ande with 1 > ¢ > e > 0, the trajectories close to the original
heteroclinic cycle will visit these cross sections in tuktence, we will always
assume that ande are small enough in the following calculation to ensure the
intersections of the trajectory and the cross sections.

Local maps can be constructed by integrating the linearggediems near
P., P, and Ps, while global maps can be estimated GY-diffeomorphisms be-
tween neighborhoods of the;. We calculate not only the point where an orbit
hits each cross section at each step but also the time thatliliespends between
hits. Although the time spent on global parts of Poincar@ isaelatively small
compared with the time spent nef, especially whery is small, we will not
ignore it throughout our calculation because it could bgdastompared with the
period%” of the perturbation functiorf, i.e. whenw is large. The time spent on
the global parts will be denoted by three constanis, andds.

At each stage, we compute leading order @) terms in the local and global
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Figure 3.2: The cross sections of the cycle and the time when a trajecay the hete-

roclinic cycle hits the cross sections.

maps. For notational convenience, variables withotfixswill be treated as de-
pending only on timd. Variables with sfix, corresponding to values of the

variables on a cross-section, will be treated as functiéns o

3.3.1 HIN — Hou

First of all, we derive the local map from to H3". Let (xq, h, z;) € HY, near
P3, as the initial point of a specific orbit at the initial tihe= sand suppose that
this orbit intersect$3" at (h, y-, z,) at timet = Ty(y).

Since the flow is close tB3, we will write z(t) = 1+w(t) and denote; = 1+w;.

In this case, the dynamics is subject to the linearized syste

X = ex+yf(2wt)

y = -¢y
z = w=-w-(1+c)x+(e-1)y
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Integrating this system frorH;” to H3", we get

h X, €719 (1+7X—11 [, e‘e(T‘s)f(ZwT)dT)
y2 = he s (3.3)

wo = we 9 (14 L [T e (-(1+ Ox(r) + (- (o

From the first equation of (3.3), it is clear that

1/e
T1(0)=s+ Iog(xﬂ) . (3.4)

Differentiating the first equation of (3.3) with respecttand settingy = 0, we
get
T1(0)
0 = ey, T7(0) + X7 T2(0) f e s f (2wr)dr,
S

which implies
1 (T
TI(0) = _xglé f e 9 f (2wr)dr. (3.5)
S

Hence,

+ O(y?).

h\Y¢ 1 (O
T1(y) = s+ log (X_l) -y [XIIE f e 9§ (2wr)dr
S

Similarly, from the second equation of (3.3), we can easd§fy thaty, |,-o=
h( h )_C/e and

X1

hesMO-9(_cT}(0))

3 0
- X 1+c/egh1—c/e LTl( ) e—e(T_s) f (ZwT)dT

¥5(0)

(3.6)

1

Therefore,
y2(’}’) — hl—c/exi/e +y [X11+C/egh1—c/e LTl(O) e_e(T_S)f(ZCL)T)dT] + O(,),Z)_
To derivew,(y), we first note that, (integration by parts)
&) 19 - [P e-sx(nydr

= esh—x - [P eesx(n)dr -y [ &S 2wr)dr,

S

i 10 er-sy(r)dr
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and,
FPeymdr = ey@ i - [ ey

= eOsy,() —h+c [ e Sy(r)dr.

These imply that

[ gsx@ydr = & (eTM—Sh “xg -y 1O eT‘Sf(Zan-)dr),
Ve symdr = £ (€M05yy() ~ h).
So,
Woy) = e o9 [Wl - i (eTl(Y)_Sh - X -y fsTl(Y) e °f (Zwr)d‘r)
+ &L (e 5y,(y) - h)),
Wo(0) = (B)Vewy - EE((£)Voh - x1) + EL((R)=oh - h)]
~ b
and,
wy(0) = - O |wy — LE(e s TiOh — x;) — =6(—h + e >T:Oy,(0))| T;(0)
+e5TI0) [_%g (_ [ est(2wr)dr + e TORT; (0))

L (e Oy, (0)T;(0) + = Oy(0)) |
(3.7)

Note that the terms involving,(0) and € ™+(®h are cancelled out, ank, and
w; in the first bracket can be ignored since they are far smaikanh for small

enoughy. Hence, only three terms are leftin (3.7).
1-— 1 T1(0)
WH(0) ~ —e" O ehT’(O) T WO+ T e f &= Qwr)dr
S

By (3.4) and (3.6), the first term in the last equation is
hy " 1-e
—|— ——hT;(0
(Xl) 1-c ( )
while the second term is

1-e

h c/e
rch (X_l) (-0)T1(0),
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which is far larger than the first term sincge > 1 andx; < 1. It follows that

w(0) ~ —xqtegiahtee (MO eI f(2um)dr
s iep-tjelre (1O g-sirf ().
Therefore,
L) = s+log)e -y |t [ eIt @urdr| + 00
V) = hl—c/ex‘”ew[ xoghicae [0 e 91 @urdr | + 0
2(y) = iiﬁh + y[ X—1+c/egg 3 hi-c/e le(o) e 9 f (2wr)dr
+x1/eijgh ve [1 Ve fundr| + 002)

(3.8)

3.3.2 HQUt — Hi

Now we consider the first of the global maps.

Suppose that the unstable manifoldjfintersectd43" andH nat(h,0,(ty))
and €&s(t,vy), 0, h), respectively (See Figure 3.1). For simplicity, we ys@ndés
to denotel,(t, y) andé&s(t,y), anddzo, £30 to denotel,(T1(0), 0) andé&s(T1(0), 0).
The same notation will be used in all the following.

We expand the dieomorphism betweehlJ" and H" near the pointl{,0,
4(T1(y), y)) and suppose that the flow starting &t @, £»(t;,y)) takes the time
61 to arrive at £3(t,, y), O, h).

The first order Taylor estimate gives us the linearised hap(z) — (Xs, Y3, h):

X

X3 E3(T1(y) + 01, 7) + Aua(T1(¥), Y)Yz + Ara(T1(¥), ¥)(Z2 — L2(T1(), 7))
y3 = Bu(Ti(y),v)y2 ’

whereAq;, A, and By, are smooth functions of;(y) andy which do not van-

2

ish for all small enoughy generically, ands; denotes the time spent frof""
to H!Ln Here, we denot@llo = A]_l(Tl(O), 0), Aiog = A]_z(T]_(O), 0) and Bi1o =
B11(T1(0), 0).
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Substituting (3.8) into this gives

Xs = &ao+ Anio™exC + Apao(1 — ECh — &)
+| E2(T2(0) + 61, 0) + L (T1(0), O)hto/ex’® + 222(T1(0), 0) (1 - £Eh — £20)

b

, _ i ere (T1O) o
—Alzo%z(Tl(O), 0) - A120X11+C/ e—gﬁ_g hi-c/e fs 10 getr 9 f (2wt)dr

+Aszoq *Esh e [0 e fundr |y + 00?)

1 1+e S
(3.9)
and
ys = Budh™ex{® + [(2£(T1(0), 0)T;(0) + Z(T4(0), 0)) ht-c/ex(/®
+Braox TeEhEe [ 1O ger-9) ¢ (Zw‘r)dT] v+ 0O>»?) .
(3.10)

Here, we use the fact that

E(Ti() +01,7) = &ao+ |F(T2(0) + 61, 0)T;(0) + F2(T1(0) + 61,0)| ¥
= &30+ %’(Tl(o) + 61, 0)y,
since%if (T1(0)+61,0) = lims_o §3(Tl(0)+6+51,0§—§3(T1(0)+51,0) = 0, and the same fashion

for the other similar terms.
Thex‘i/e terms in (3.9) can be ignored sincge > 1 andx; <« 1. As for (3.10),
by (3.5), we need to compare the sizexf andx;***® [ 1O gelr-9 £ (297) dr.

Since

\%

[FOed9tQurydr > [ et 9Ifwr)dr

e*c fs . f(Rwt)dr > Xy,

\%

for small enoughy, thex’® term in (3.10) can be ignored. Putting all the constant

terms together, we then have

- Q) 1 T10) _e(r—
X3 = Azt [A14o— A120X11+C/ e% hi-c/e fs eI f(2wr)dr
+Aoxdze e [0 e (2un)dr|y + 002) ,
Yo = Broh o+ Bllo[x;“c/eghl—we [ e‘e(T‘S)f(Zwr)dT] ¥y +0(?)

(3.11)
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whereAssq, A13o, A140 aNdBy1o are constant.

At this point, the time iST1(y) + 1.

3.3.3 HIN - Hou

From this section on, we will omit most of the details and odéscribe the
main ideas of the calculation.

Let x(t) = 1+ u(t), x3 = 1+ uzandxs = 1+ U4, Whereys,us ~ O(y). As
the flow passes into the vicinity of the fixed pof(1, 0, 0), the dynamics of the

system is given to leading orderjnby the linearized system

X = u=-u—-(1+cy+(e-1)z
y = ey
zZ = —-cz

Integrating it fromH" to H2“* we then get the following map frorh=|‘3n to H{"

up to ordery:

Toy) = s+ 61+Iog(lelohl+c/6x;1‘°/e)1/e—y[x;l% e e‘e(T‘s)f(ZwT)dT]

() = NI 4y B P MO eI f undr
14 21 _ T10) oo

K) = 1= Eehey [ S Bt [0 e 91 2um)dr

(3.12)

3.3.4 HM— HY

Suppose that the unstable manifoldfintersectdH2" andH at ¢(t, y), h, 0)
and 0, ns(t, y), 0), whereg, andns are smooth functions dfandy as before, then

the linearised mapxg, h, z;) — (h,ys, z5) is

Ys = ns5(Ta(y) +62,7) + Axa(T2(¥), ) (Xa(¥) = Ea(T2(), ) + Axa(T2(¥), v)Za(y)
+0(y?)
zs = BoyTa(y),7)2(y) + O()
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for some cofiicientsA;;, Ay, and B,, which do not vanish for all small enough
y = 0 generically. Heré, denotes the time spent froRf" — Hi2”.

Substituting (3.12) into the above expressions we obtain

150 + A210(X4(0) — £40) + A22024(0)
+7 | 52(T2(0) + 62, 0) + %2 (T2(0), 0)(%a(0) — £a0) + Aoro¥,(0)
~52(T5(0), 0)) + AozcZ,(0) + %2(T5(0), 0)z4(0)| + O
= Aczo+ ¥ [A2(T2(0),0)
I pge -1 S (1O g9 §(207)dr | + O(2?)
Z5(y) = BoaoBght /¥ +y [22(T,(0). 0)24(0) + B2z, (0)] + O(?)
B/

Ys(¥)

= By
+y XIHCZ/eZ BzzoBi/leohl_cz/ezg fsTl(O) e f(sz)dT] + 0,
(3.13)

At this point, the time ig = T,(y) + 2.

3.3.5 HI — Hy"

Lety(t) = 1+ v(t),ys = 1+ vs andys = 1+ vg. Consider the linearized system

nearP,

><.
Il

—cX+ f(2wt)y
y = v=-v+(e-1)x-(c+1)z

= ez
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As in the previous sections, we integrate this linearisextiesy to derive

Ta(y) = S+61+0+ IOg(BE%oBH(_)C/eh“C/HCZ/eZ XIl—c/ech/ez)l/e
—y [XIl e2+¢.;e+c2 fsTl(O) a9 f (2wr)dr| + O()/Z)
_c3 2/ c3/e3
Xo(y) = htoe BS5oBiio X |

_ _T,(0)- T3(0) _T,(0)-
+y [e 0T [0 getr-Ta00) 52)f(2w7-)d7-] +0(?)
Ts0)  -T,(0)-6
06, e 202 f (2uwr)dr

AT OTo 05 (O e Ta(0)
e MO0 [T T 5z>f(2wT)dT] +0(y?).

YG()’) 1- %‘; h+ E), [e—(Ta(O)—Tz(O)—éz)

(3.14)

3.3.6 HY"'— HY

We suppose that the unstable manifoldPofntersectdH3" andH‘3n at &e(t,y),
ns(t,y), h) and &-(t,y), h, Z+(t,v)). Note that the forms of these two intersection
points are a little bit dferent from the previous ones due to the loss of the invariant
plane{x = 0}.

Then the mapX, ys, h) — (X7, h, y7) takes the leading-order form

X7 = &(Ta(y) +03,7) + Aa(Ta(¥), ¥)(Xe(y) — &6(T3(¥), ¥))
+A32(Ta(y), 7)(Yo(¥) — 16(Ta(7), 7)) + O(y?)

7z = G(Ta) +62.7) + Ba(Ta(). %6y — £6(Ta(1).7))
+Bax(Ta(y), V)Ye(¥) — 16(T3(¥), 7)) + O(y?)

whereAgs;, Asz, Bs; andBsy, as before, are smooth functionsiafy) andy which
do not vanish for all small enoughgenerically, ands is the time spent frorii 3"
to HI.

Substituting (3.14) into these expressions we obtain

X(y) = ,Uxf/é +&7(Ta(y) + 03, %) — As1ofe(Ta(y), )

(T5(0)-Ta(0)1-52) (T30 o(r—To(0)
1y | AgroeSTs)-T200-52) T;O)+§2 -T2 f (2wr)dr ,  (3.15)

+22 (1~ Feh — o) |

1+e
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whereu is a constant which depends only 6n

Sinceés andé; are thex-coordinates of the intersections of the unstable man-
ifold of P, with the cross sectiond" andHY, respectively, by takingy small
enough, we estimatg and&; as dfine maps ofoy2 and Xp,, wherexp/2 and Xp,
denote thex-coordinates oP,, andP3, respectively. By the same way as we did

in Lemma 3.2.1, it is easy to derive that

Xpy =7y ecﬂ/+_1 f(; " " f Rw(t + 7))dr,
and
1 Y
Xp, = e fc; e f(2w(t + 7))dr.
Therefore,
1 rlw
Eo(t,y) = 1 + )//IZM fo e fw(t + 1))dr, (3.16)
1 /o
&(ty) = Ay + '}/Mm fc; e f(2uw(t + 7))dr, (3.17)

wherel, 15, 13 and A, are constants.

Substituting (3.16) and (3.17)) into (3.15), we have

3/e3
xi(y) = wx'
_ —T,(0)- T3(0) —T»(0)—
Y [,Ul + e ATs(0-T2(0)-52) T2i0)+ 5, e T2(0-%2) f (20y7)dr

7T/ W
~tagri € FRw(Ts(y) +7))dr
pszsig 71 € F2uw(Ta(y) + 63 + ))dr

As for z7, since it is not related tey, there is no need to calculate it.
Note that the expression fox(y) depends o3(y) which in turn is given
in (3.14) in terms ofx; ands, so we have a mapx{,s) — (X, Tz + d3) which

is our Poincaré map, in the fornx,t) — (X,t) = F(x,t) = (fi(x 1), f2(x, 1)) =

58



Chapter 3. 3.3. The construction of the Poincaré Map

(fa(x. 1), t+ T(x, 1)), and

wxX 4y (g + pola(%, 1) — waGa(X, t) — usGa(x, )] + O(y?)

f]_(X, t)
1) = t+us—£logx—yeLo(x XL + O(y?) ’
(3.18)

where¢ = %, d = c3/€®, u andu/s are constantd (x, t) is the time necessary

for a point (, t) to complete one iterate, and

T50)
Lixt) = edT0-T0) f T O (2p)dr, (3.19)
T2(0)+5

T1(0)
Ly(x,t) = f eV f(2wr)dr, (3.20)
t
1 e g
GxY) = Zp—g fo € f (2w (Ta(y) + 7))dr, (3.21)
7T/ W
Ga(x,t) = G‘T:UI’-—].]O‘ e % f(2w(T3(y) + 63 + 7))dr. (3.22)

Remark 3.3.1 Note that foryy = 0, system (3.18) is reduced to the Poincaré map
of the unperturbed ODE system. In this caséx.t) = u1x¢ is a one dimensional
map depending only on x and under repeated iteration, x témdssince d=
c3/e® > 1. In other words, the heteroclinic cycle in the unperturbgdtem is
asymptotically stable if & 1. This is consistent with [43]. Moreover, this leads
to the divergence of the return timgxX't) = us — £log x in each iteration, which

is a characteristic feature of trajectories near a stabledneclinic cycle.

In the following chapters, we will mainly restrict our codsration to the same

system as [18] wheré&(2wt) = sirf(wt):

X = X(1-(X+Y+2)-cy+ed+y(l- X sinf(ot)
y = y1-(X+y+2-cz+eX , (3.23)
V4

= Z(1-(X+y+2) —cx+ey

In this case, our Poincaré map becomes
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fi(xt) = pux+y [+ pa(—ay cOS(2g) — by sin(2wg))
—4(—a1 cOS(2u(t — 63)) — by sin(2w(t - 63)))
~ts(~8, COS(201) — by sin(2u1))] + O(y?) ’
fa(x1) = t+pus—¢&log(x) —yi[l - a cos(2wt) + by sin(2wt)]x 2 + O(y?)
(3.24)
_ & 2w _ & . 2ew _ _
Whereal - C2+4wz, bl - C2+4wz, a2 - ez+4wz, b2 - e2+4(02! g - t+/l3 glog(x)’ ﬂ’

ui’'s andés are constant.

Remark 3.3.2 The Poincaré map here is slightly/@irent from the one we have
published in [18] and has both a sounder mathematical bastabetter agree-

ment with our numerical results (see later).

Remark 3.3.3 The form of the (3.24) can be divided into two parts which are
due to (i) the mean of the perturbation function ,and (ii) texillation of the
perturbation function. More precisely, if we write the petiation function {2wt)

as the form A-(f (2wt)— A) where A= % fOZ’r f(t)dt denotes its mean andqZwt) —

A is its oscillation part, then the integrals in (3.19), (8)2 (3.21) and (3.22)
can be also wrote in the form of their means plus oscillatiantg It follows
that if we take the perturbation function &% — x)(6(f(2wt) — A) + yA) where

f (2wt) = sirf(wt), then the Poincaré map is of the form

() = @ +ym

+0 [p2(—2ay cos(2vg) — by sin(2wg))

—4(—a1 cOS(2u(t — 65)) — by sin(2w(t - 63)))
—pus(—az cos(2wt) — b, sin(2wt))] + O(y?)

t+us — £log(x)

—£ [y - 6 (a cos(2wt) — b, sin(2wt))] X + O(y?)

(3.25)

fa(x, 1)

We will discuss the dynamics of the system with this generédifipation in sec-
tion 4.6.

60



Chapter 3. 3.4. Comparison with Afraimovich et al's result

To make the Poincaré map (3.24) well-defined, we need tddhtiere exists
an open seY in Hg‘ such thaF (V) C V. In section 4.2, the asymptotic orderof
is discussed. In the two cases we are going to analyse ineah&d(X) could be
larger than or aroungt depending on the size df wherexsatisfiesx’= X9 + y.
It follows that the asymptotic order of is aroundO(X) or O(y). Therefore, the

Poincaré map (3.24) is well-defined, at least, in the disions in the next chapter.

3.4 Comparison with Afraimovich et al’s result

V. S. Afraimovich et al.[3] also calculate the Poincaré rfapa similar system

X = X(1-(X+y+2-cy+ed+ygyl)
y = YA-(X+y+2 —-cz+eX+yg(t)
z = z(1-(X+Yy+2—cx+ ey +ygs(t)
whergs, g, andgs are periodic functions. In the caggt) = sir’t, ga(t) = gs(t) =
0, the system is similar to our system (3.23) with= 1. They proposed a map as

a model of their Poincaré map:

X = A(Bx+ y(1 + asint))d
X (Bx+( ) ’ (3.26)
=t+w —nlog(Bx+ y(1 + asint)), (mod2r)

wheren = ¢ = % anda is a parameter.

In their calculation of the local maps, the time-dependenns are ignored.
This results in incorrectness, especially in the cakage. Intuitively, the time a
trajectory spent in the local maps is much larger than th#tenglobal maps for
larged. Therefore, the periodic forcing term shoulffext the local maps more
than the global ones.

By letting x = y¥, we are able to transform theequation of (3.26) into a

similar form as our Poincaré map (3.24):
y = AY(BY' + y(1 + asint)).
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Taylor expanding the second equation of (3.26), we have

t = t+w-nlogBY +y(l+asint))
= t+w-7n|logBy’) + yB(1+ asint)y™|
= t+&—ndlogy+ ypB(1 + asint)yd.

For the casa = 0, by (3.26),x ~ O(y%) and, hencey ~ O(y). Therefore, since

n = £, the spending tim& = t — t of their map for the casa = 0 is
T~ C-é&dlogy,

for some constan€. However, for larged, we show in section 4.4.1 that the

spending time foa = 0 should be
T~x Cl - érlog'}’,

whereC; is a constant, which is a contradiction. In other words, é¢heagh we
can turn thex equation of their map (3.26) into the form as our map (3.2t t
equation of their map is still incorrect.

In addition, consider the time-averaged function of the &guation of their
map

X = A(Bx+ )Y,

and our map

X = pux + pry.

There is a substantial fierence between these two whers large. In this case,
the attracting fixed points of these two maps appear férént scalings:x ~
O(yY) and x ~ O(y), respectively. For example, take= 0.25 e = 0.2 (i.e.

d = 2) andy = 10°%, numerical simulation of the original ODE system (3.23)
shows that the time-average »fs around 16°, which can be obtained easily in

our map by suitable parameteesand ;. Moreover,u andu; can be constant
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even thoughy is changed for fixea ande. This should be always true because
u andu; depend only ort, e and the time-average of the perturbation function.
In contrast, the constart in their map is actually not a constant but a function
of y. Nevertheless, the two maps are equivaledtriear 1 for a fixed.. We will
discuss this issue in more detail at the beginning of the clepter.

Accordingly, Afraimovich’s map is not correct for largk In contrast, we
will show in the next chapter that our Poincaré map (3.24pisable to simulate
the original ODE system (3.23) numerically, as well as gixel@nations of how

these complex dynamics arise analytically danear 1 or large.

3.5 Two assumptions on the parameters

In this section, we state two assumptions on the parametensrimap (3.24)
which we use to capture the intrinsic nature of the ODE syg828).

Firstly, because there exist small intervalg af which sirf(wt) is close to 0,
a typical orbit of (3.23) will in general attracted by theginal heteroclinic cycle
within these intervals. Thus, we make the first assumptiorthenparameters
U1, 1o, g @andus in (3.24) as:

(A.1) u1, uo, us andus are assumed to make the perturbation part of the first
equation of (3.24) nedd in some small intervals of t.

Secondly, it is quite natural to assume that the returnimg tis always posi-
tive:

(A.2) us is large enough that,{x, t) > t for all (x,t).

Clearly, (A.2) is actually not important for the dynamicsoofr map as replac-
ing us by uz + % for any integek will not make any diterence. But to make the
return time well-defined, we will assume (A.2) to be ture.

Most of our analytic work in the next chapter is not based es¢érassumptions
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except for the results in section 4.4.2 where we use (A.1) fumlsimplifying the
Poincaré map. However, bearing them in mind will help us nal fa suitable
sets of parameters to match accurately our 2D map systentheitbriginal ODE

system.

Remark 3.5.1 Recall that the existence of the parameigis due to that the time
spent on the global maps for a trajectory might be large whemgaring to the
period of the perturbation function. In other words, whee fbrcing frequency
w IS large, 63 could be important. Nevertheless, singe< 0.5 in the following

numerical simulations, we always takgto be 0 for simulations.

3.6 Discussion

In this chapter, we have presented a systematic methoddalatd the Poincaré
map for a heteroclinic system with periodic forcing. The \ehealculation is di-
vided into two parts: local maps and global maps. Local mapd@se maps near
equilibrium points and are computed from the linearizedesys. We estimate
the global maps, which are the maps between neighbourhdalke equilibrium
points, by means of the unstable manifold$?9f P, andP;.

Because of the time-dependent perturbation, the linehsgstems near the
Pis become non-autonomous. By including the time-depenéemt through all
steps in the calculation, we obtain a better Poincaré meapttie one Afraimovich
et al. have. In their local maps, the time-dependéietes are ignored for simplic-
ity. However, a typical trajectory in a heteroclinic systepends far more time
near equilibrium points than between them. Therefore, ithe-ependent per-
turbation should fiect the dynamics of the local maps more than the global maps
and so it is essential to include this.

Although the perturbation term only acts on theoordinate in our ODE sys-
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tem (3.23), the whole calculation can be carried out in tmeesavay for the gen-
eral case and the result should be of the same form as (3. h&x@mple will be
shown in section 5.3.3 where we add three perturbation fmmgbn each coordi-
nate.

Moreover, the perturbation terp(1 — X) f (2wt) can be replaced byf(2wt)
without atecting the Poincaré map. Through the derivation of the éaw@map,
we can see that only the local mapg — HJ" andHI — H3“ involve the
perturbation term. In these two cases, howeverxtimethe perturbation term can
be ignored due tax ~ O(y). We will derive the Poincaré map of a similar system
with such perturbation termg¢,(2wt), ¢-(2wt), #3(2wt)) in section 5.3 where the

result shows that the map takes the same form as (3.18).
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Chapter 4

Analysis of the Poincake Map

4.1 Introduction

In the previous chapter we considered the dynamics of thewolg system
(1.3) of ODEs:

X = X(1-(X+y+2)-cy+ed+y(d-xTfwt)
y = y(1-(X+y+2—-cz+eX 5
zZ = Z1-(X+y+2)—-cx+ey

wher f(2wt) is a periodic function. We showed that the dynamics for thgec
f (2wt) = sirf(wt) could be reduced to the following 2D map (3.24) in the linfit o

small forcing amplitude:

fi(xt) = X+ [+ pa(—2ay cOS(2g) — by sin(2wg))
—4(—ay €0S(2u(t — 65)) — by Sin(2w(t - 63)))
~5(~2 cOS(20) — by sin(2h))] + O(?) ’
fa(x1) = t+pus—&log(x) — y[l — a cos(2wt) + by sin(2wt)]x 2 + O(y?)
(4.1)
wherea; = 58—, by = 22 a, = 5 by = 2 g =t+uz - £log(x), k4,

4i’s andds are constant
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Chapter 4. 4.1. Introduction

In this chapter, we will show that this 2D map capture the dyica of the
ODEs across a wide range of forcing frequencieand both close to, and far
from, the resonant bifurcation in the unforced case (i.éuesof the eigenvalue
ratio c/e near unity, and greater than unity). We also discuss therdigseof the
2D map (3.24) and show how it may be understood in variofiier@int asymptotic
limits where it displays distinct dynamical behaviour.

Firstly, we discuss the asymptotic ordenoin section 4.2 in which we show
that both the order ok in the map system (3.24) and the ODE system (1.3) are
relative to the size ofl. Specifically, this order is at least approximately around
O(y). Our results show that there is some limitation for the Paig map obtained
by Afraimovich et al. in [3] to well-approximate the ODE sgst they studied,
and the analytic results they proved for the map are in fagkvant to the ODE
system since one assumption they made in all the proofs-i©(yY).

By section 4.2, the order of in the map system (3.24) arefidirent in two
cases:e near 0 and large, wheree = d — 1. We discuss these two cases in the
following two sections. In section 4.3, we proved that thaeaiyics of the system
(3.24) in the case near 0 are equivalent to the dynamics of a forced damped
pendulumn with torque. In contrast, circle map dynamicslmaobserved in the
system (3.24) in the caselarge. We prove in section 4.4 that the system (3.24)
is equivalent to an invertible circle map far large and a non-invertible circle
map forw near 0. As for the case whedeis of intermediate size, we are unable
to proceed any analytic study due to the complicated fornhefsystem (3.24).
Nevertheless, we use 0-1 test to prove numerically thatréresition from non-
invertible to invertible circle map when increasioglo exist and the 'chaotic’-like
regions for large enough are not chaotic.

The dfect of varyingy will be discussed in section 4.5 in which we found

that, in some sense, the bifurcation structure when varyimg similar to that
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when varyingw.

It is hope that the Poincaré map (3.24) of the ODE systen) (tr3he case
f(2wt) = sirf(wt) can be served as a model map to describe the dynamics of
the system (1.3) for general periodic functioh@wt). However, the function
y sirf(wt) has the feature that its mean and the amplitude are of the seder. It
then arises a question that if the results we obtain in theféivé sections in this
chapter are still ture for the case when the functid2wt) does not possess this
feature. We will vary the mean and amplitude of the pertudoafunction sepa-
rately in section 4.6 to get a more general model map and sBstsi bifurcation
structure in detalil.

The chapter closes with a discussion in section 4.7.

4.2 The asymptotic order ofx

In this section, we first defing andy in a more careful way, and then investi-
gate how important thg® term is for diterentd.

Firstly, consider the average functidfx) = x4 + y of the first equation of
(3.24)

f(x1) = w+7y[u1 + pa(—a1 cOs(2vg) — by sin(2wg))
—ua(—ay cos((t — 63)) — by sin(2w(t — 63))) -
—pus(—az cos(2wt) — b, sin(2wt))] + O(y?)

Here, for simplicity, we set parameteus= u; = 1. Nevertheless, the result we
demonstrate in this section can be extended to the gemenadl; without any
difficulty.

Because we are interested in periodic solutions of the syste assume that
ourd andy are such thal(x) = x has at least one solution. To do this, note that

I"(Xm) = 1 for Xm = (51)Y¢, wheree = d — 1. Sincel(0) = y > 0, if |(Xn) < Xm,
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Chapter 4. 4.2. The asymptotic order of x

Figure 4.1: The region®,, is between two curvesy = y1(e) andy = y2 p(€). X exists if
(€,) is below the curvey = y1(e). The curvey = vy, p(€), by definition, is the points of

(€,7) wherex' = y/P. Here, we display two cases fpr= 2 (blue) andp = 3/2 (green).

i.e.y < xm— xte, thenl(x) = x has at least one solution. In other words, for each
e > 0, there exists a curvg () = (ﬁ)l/f -~ (Flf)(lﬂ)/f such that ify < y4(e), then
[(X) = x has a solution. Denote the solution smaller thgras x.

The asymptotic size at €an also be estimated. Fix a constant 1. Then
% = yYPif and only if € = €y(y) = %ﬂj‘y) — 1. Sinceey(y) is a strictly
monotonically increasing function of > 0, by the inverse function theorem,
there exists a functiom, p(e) such thatx™= y? if and only if y = y,(€). See
Figure 4.1. Therefore, ife(y) € @, = {(e,7) : v2p(€) < ¥ < yi(€)}, then
YYP < & < X It follows that, by suitably choosing andy, X could be close
to O(y) or asymptotically far larger thap and this implies thak® can either be
neglected or not, respectively, in the system (3.24).

In most of our later numerical simulations, we normally éix 0.2 andy =
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1078 and consider two typical cases:= 0.2001 andc = 0.25. Upper and lower
bounds orx’can be found by means of linear estimation. See Figure (Maje
precisely, consider the link; in the (x,1(x)) plane joining two points (0y) and
(Xxm, X3 + ). It intersectsy = x at the point %x,dﬁ” x,%ﬁny)' Sincel, is larger
thanl(x) between 0 and,, it follows thatX < ﬁ”' Similarly, consider the line

L, which is tangent td(x) at (v, + ). Sincey < &, the intersection of, and

Y
1-(1+e)y*

Y .
1+ ————|y<X<
[+ o) =

y = X, which is(1 + )7, is also smaller thar. In short,

Xn— G

Figure (4.2) shows the upper and lower boundsbfot fixed e = 0.2 and
y = 1078, Since the first equation of our Poincaré map and its aversae are
only differed by an oscillation of ordey, it turns out that thed term plays an
important role wherm neare. However, it can be ignored d@is near 025.

Now consider Afraimovich’s system (3.26)

X = A(Bx+ y(1 + asint))¢
{=t+o-nlog(Bx+ y(1+ asint))(mod2r)

By using the "Annulus Principle’, they prove the followinggorem ([3]):

Theorem 4.2.11fd > 1,y < 1and0 < a < 1/(+/1+ r?), then there is an

invariant closed curve as the maximal attractdt)Xor equation (3.26).

Throughout their proof, the estimate= O(yY) is crucially important to make
the theorem valid. However, this estimate is only true wh&nhsmall enough for
a fixedd, or whend is large enough for a fixed. For example, taka = 0.02,d =
1.0028 7 = 20,A = 1,B = 1 andy = 10°°. In this case, bistable dynamics can
be observed although the condition0a < 1/(\/r;72) is satisfied. Therefore,
Theorem 4.2.1 is true only if(d) € {(y,d) : d > dy(y)} for some functiordy(y).
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Chapter 4. 4.2. The asymptotic order of x

(a) | ) | (b)

L./
y’/,«
Lo
o/ B x B1 Xm |
0 0.5 107 107 10°
X €

Figure 4.2: (a) The schematic diagram shown how we find the upBerdnd lower B5)
bound ofX. The blue curve is the graph pf= |(X) and the green line is the diagonal line
y = x. (b) The upper (blue) and lower (green) bounddfdr e = 0.2 andy = 106, We
plot both axes idog-scale. The figure shows that, feismall, as is the casg/e near 1,
O(%9) > y. In contrastx? is far smaller thary whene is large, i.e.c/elarge, and hence

can be ignored in the map.

For our system, it is clear thatwill never be asymptoticallp(y?) asy — 0.
This constrains the application of the ’Annulus Princifeprove the existence of
an invariant closed curve as the maximal attractor althowgherical simulations
suggest that this is always true for at least small enaugimd ford near 1 for a
fixedy. Nevertheless, we have proved this fact in Theorem 4.3.2.

Overall, Afraimovich et al. derived a Poincaré map (3.2@)d heteroclinic
system with periodic perturbations which is, in fact, onblig for c/e near 1.
However, their analytic study of this map is ture only wiee large. Conse-

guently, the analytic results they obtained for the mapgBig irrelevant to the

71



Chapter 4. 4.3. enear0

original ODE system.

In the following two sections, we investigate in the bifuroa structure of
system (3.24) when varying the forcing frequengyTherefored andy will be
fixed. The term ¢ near 0’ means that, for a given e is small enough such that
the termx? can not be omitted in our Poincaré map (3.24),xe> ¥. In contrast,
we say that we are in the caselarge’ if, for a giveny, € is large enough that
x4 can be ignored without changing the bifurcation structimethis casex ™ 7.

Note that these actual valuesedll depend ory.

4.3 enear0

In this section, instead of analysing the complicated Ro#menap (3.24), we
consider a simple map as a model to explain the dynamics 24)3This model
map demonstrates numerically similar dynamics as the OBEeBy(3.23) with
the benefit of being analytically tractable.

The results in the last seciton show tha' + yu; terms will dominate the
first equation of (3.24) wheais close enough to 0 arxis nearx_ In this case,
O(X) > v and the cofficientsa; ~ a,. The remaining terms of this equation
can be considered as small sine perturbatior dtherefore, a possible model to

replace the first equation of (3.24) is

X=X+ yus (1+ Vagsin(2wt)).

As for the second equation of (3.24), we hope that our mod@l caa keep the
features of the Poincaré map (3.24) both in the casgs-00, when there exists a

log x term, andy > 0, when a periodic perturbation adding into it. Hence,

t=t+us—£Elogx,
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could be the simplest way to describe thdynamics. In other words, if we define

a newy as the original:;y, our model map then takes the form

{ R = ot ey(L+ vE@sin@u) 4.2)
t+ps - £logx

I
Il

This model map contains all the terms we know must be theregmbsence
of external forcing, and incorporates a generic time-mhciterm in the simplest
way possible, allowing frequency locking to arise.

The numerical integration of the ODE system and the itematbour 2D
model map (4.2) when varyin@, in the case: €0.2001, e0.2 andy = 107,
agree well neax as shown in Figure 4.3. Here, we get= 1,u, = 20 and
Uz = 27, i.e. they in (4.2) is 2- 10°°. Although the end points of the frequency-
locking intervals are not the same, the main global featafdbe dynamics in
these two systems are essentially identical. We obsertvgritthe map, orbits are
attracted either to an invariant curve or to a fixed point, bath may be stable
simultaneously. The corresponding dynamics for the ODIEesyss the existence
of a stable invariant torus or periodic orbit which again nbagh be stable at the
same time. Moreover, these attractors occur in a regulégrpadsw increasing.

The periodic orbits occur in frequency-locking intervaésde identified by
considering a plot of the return peridd= t — t againstw. Numerically, at least, it
appears that the only possible period of a periodic orbit@é@DE system (3.23),
as well as in the model map (4.2),ks/w, for somek € Z. In other words, the
curves in Figure 4.4 lie on hyperbol@$w) = kr/w indexed byk. This results in
the relationshipw/w’ = k/2, wherew’ = 27/T is the frequency of the periodic
orbit.

In the rest of this section, we will consider system (4.2) asoalel to demon-
strate the dynamics of the ODE system (3.23) for the easzar 0. We will give

a detailed analysis near the end and the centre of the freglecking intervals
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Perlodlc solutlons
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7 7

0.02 0. 04 0.06 0.08 0.1
-3 W
6% 10 |
Fixed points (b)

T
) 002%!p oo/ /008

Figure 4.3: (a) The dynamics of the ODE system (3.23) foe 0.2001,e = 0.2 and

y = 1075, We plot thex-coordinates of the points of two typical trajectories oe thoss
sectioan‘ for each fixedw. The curves in the figure display the existence of periodic
solutions of the system. Bistability occurs in both ends lbtreese curves. The rest
parts of the figure, which all sit near<' 2.2 - 10~3, demonstrate complex dynamics with
Ix — X ~ O(y). (b) A similar dynamics can be observed by iterating our lmadap (4.2).
Here,y = 2-107°, u = 1 andusz = 27 and the curves in the figure display the existence of

fixed points.

for smallw. In the casev — oo, the dynamics are the same as the dynamics when

e is large. We will leave this case to be studied later in sectid.1.

4.3.1 Local bifurcations of the system

In this section, we analyze the bifurcation structure ofd¥yxgtem near the end
of the frequency locking intervals.

Fixedk. Clearly, a fixed pointX,t) = (x(w), t(w)) exists at a fixedv in the
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Figure 4.4: TheT — w plot for the system (4.2) for = 0.2001,e = 0.2, u = 1, u3 = 27
andy = 2-10°°. The curves, where periodic solutions exist (compared todig.3), all

lie on hyperbolas indexed by

system (4.2) if only if

(4.3)

X = wxd+y(l+ agsin(2wt))
ps—&logx = kr/w ,

i.e. X(w) = el kW |etw, be the left end of th&™ frequency-locking interval

In w. Sincex(w) is a monotone increasing function ofand
Iimo X(w) < x € {x:x=wd +y(1+ vazsin(wt)), for somet} < lim x(w),

wy can be defined as the smallessuch thatx(w) satisfies the first equation of

(4.3) for somet. In this case, sin(@t) must take value-1 sincex(wy) is the
.. _ _ 37.!.

minimum. As a resutl(w, ) = dor”

As soon asv is slightly larger than, , X(w) > X(w, ) and then there exist two
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t(w), one larger and one smaller thiw, ) such that ¥(w), t(w)) are fixed points
for (4.2).
The stability of these fixed points can be easily verified. Theobian of

system (4.2) is

duxd-t 2w +/az cos(2t)y
—Sduxdt 1 - £20 /@ cos(t)y
which has two eigenvalues:
duxd-1£20 /@, cos(wt)y
1 — duxd-1 — £20) /3 cos(t)y

A1=1- 2)§(_w vap cos(2vt)y —
and
dux®1£2w va, cos(2vt)y
1 - duxd-1 — £20 \/@ cos(2t)y
Whenw = w, i.e. t = t(w;), the two eigenvalues ate = dux?-!, which is

Ao = d/JXd_l +

smaller than 1, and; = 1. The first eigenvalue turns out to be smaller than 1
if t(w) > t(wy) and greater than 1 otherwise, while the second one is always
positive number which is smaller than Lifis closed enough te, . Accordingly,

we have proved the following proposition.

Proposition 4.3.1 System (4.2) undergoes a saddle-node bifurcation whaessses

throughw, and a stable fixed point occurs ne@(wy ), t(w,)) after that.

The same argument applies to the right esjdof the k™ frequency-locking
interval in w where another saddle-node bifurcation occurs and the fieat p
disappear. These saddle-node bifurcations correspohe &nids of the segments
of curves in Figure 4.3 and 4.4.

From Figure 4.3, it appears that there exists an invariamesarx = 0.0022.
As X(w) increases whem increases for a fixe#l, the question arises as to how
the dynamics of the system change when the stable fixed pdin}, ((w)) passes

near the invariant set. We analyse this situation in the sestion.
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4.3.2 Global bifurcations of the system

We now turn to investigating the dynamics near the centreeit frequency-
locking window. As shown in Figure 4.5, a stable fixed poix(t.), t(w)) moves
from below to above the invariant curve whenncreases. In between, a global
bifurcation occurs and the stable fixed point dominates thelevdynamics. We
will show that the phenomena which happen here are just hikebifurcation
which occur in the well-known forced damped pendulum.

Let (X, wy) satisfy

X = ud+y
ps—élogk = &

Clearly,wy = ~ pg—SI;gIOg)? since¢ = 1(1+c/e+c?/€?) ~ 3/efore < 1.

/13—?7{09“z
Consider pointsx, w) near & wy). We define the new variableg, ) by let-
ting X, = X(1 + y,) anduzw — % log X = kr + %/l, and we considdy| and|1| to

be small. We also defing = 2wt,, and substitute into (4.2). Then

p L+ y)* + (1 + agsins,)

(R = y)(L+dyn + O(2)) + ¥(1+ vazsins,)
(=)L +yn) + (X— ) (eyn + O2))
+y(1+ Vazsins,)

X = Xnr1 = )’Z(l + yn+l)

Since|x, — X| ~ O(y), we havely,| ~ O(Xty). Therefore Ry, ~ O(y) and
IXy2] ~ O(X1y?). It then follows that

X

(XK= Y)(L+Yn) +y(1 + yazsins,) + O(ey) + O(X1y?)
(R=y)(L+yn) + (1 + Vazsins,) ’

Q

for small enoughe and for somep such thaty'/P < & This implies
Yoer —Yn = yXH(=Yn+ Vazsing,).
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Figure 4.5: The dynamics of the system (4.2) at (a)= 0.05, (b)w = 0.053 and (c)
w = 0.056, forc = 0.2001,e = 0.2, u3 = 27 andy = 2- 10°°. We plot all the transient

points of five initial points to find their asymptotic attracs. Figure (a) and (c) show that

the stable fixed point exists alongside the invariant cussxw increasing, the stable fixed

point moves from below the invariant curve, before it inéets and destroys the invariant

curve as shown in figure (b), toward above the invariant cumrech reappears for large

enoughw. (For schematic diagrams of these three scenarios, seeeHdh (b), (d) and

(f).)

As for thes, terms, using (4.2) we obtain

Zw(t__ t) = S — S

Therefore,

Yn+1—Yn
%1y

Sh+1—Sh

2wz — %(log X + l0g(1+ Yn.1))
2(1)/J3 - %009 2 + yn+l) + O(yﬁ+1) :

Buwy 6w
o AT Y

—Yn + Vazsins,

o .
eﬁ—lky (/l - wﬂkle)

1y

Sincey!P < X < X, for some fixedp > 1, we havex"ly — 0 if (¢,7) —

0 within @, (see section 4.2). Hence, the last system above can thenlbe we
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(e) V) (9)
S S S

Figure 4.6: The schematic diagram depicted seven scenarios of thetat{s of the
system (4.2) and (4.7) for the cases 0 ((a), (b) and (c))2 = 0 ((d)), andd > 0 ((e),

() and (g)). The red points denote the fixed points: one sté&wlid) and another one
unstable. The one-dimensional invariant curve is alsourelbin red if it exists. The blue
curves are the stable and unstable manifold of the unstadgld fioints. The dashed line
denotesy = 0. Asw increases, i.ed moves from negative to positive, a pair of fixed
points appear through a saddle-node bifurcation(&)); the system then undergoes a
global bifurcation (as is shown in (c)) when the invariamveudisappear; the fixed points
then move from below to above the lige= 0 ((c),(d) and (e)); another global bifurcation
happens (as is shown in (e)) and the invariant curve reagptias pair of fixed points

then disappear through another saddle-node bifurcatipr (§)).

approximated by the continuou-time dynamical system

{y = -y+ yasins ’ 4.4)
§ = PA-2y)
wheren? = 6w,/(eX1y) is a parameter.

Figure 4.7 displays that the ODE system (4.4) does possadarsdynamics
as the map system (4.2) neay. Here, we takev, = 0.053 andx™= 2.2- 1073, for
the case = 0.2001,e = 0.2, u3 = 27 andy = 2- 107°. The parameterg and A

are computed according to their definitions.
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Figure 4.7: The dynamics of the system (4.4) at (a)= 0.05 (1 = —0.3725), (b)w =
0.053 @ = 0) and (c)w = 0.056 @ = 0.3725), forc = 0.2001,e = 0.2, uz = 27 and

y = 2-107°. We takewy = 0.053 andx= 2.2-10°3. The curves are the transients of three
initial points and the fixed points aye= “€1. Comparing to figure 4.5, the ODE system
(4.4) demonstrates similar dynamics as the map system 1i@é&)wy. (For schematic

diagrams of these three scenarios, see Figure 4.6 (b), ddf)an

Combining the two equations in (4.4), we obtain

2wy

S = .y
= P2y -2 \@sins
= =S+ PA-1"2L \@gsins
After rescaling time derivatives y/dt — nd/dtandsby s — (w/wy) v/azs, we
obtain the canonical equation for a damped pendulum witlsteor torque:

§+nls+sins= X N (4.5)
w

Physically, the;~1sterm corresponds to linear friction: oscillations are sty
damped whem is small. The+/@a; 1 term corresponds to a constant applied
torque.

The dynamics of equation (4.5) are quite simple and have hélgrinvesti-

gated ([15, 35, 6]). If“ ya; 1| > 1, the only invariant set is a stable periodic
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W
Stable Equilibria
Stable (frequency locked) Stable
periodic periodic
orbit orbit
(attracting (attracting
invariant invariant
curve) curve)
Bistability Bistability
-15 -1 -05 0 0 0.5 1 15
W

Figure 4.8: The bifurcation diagram of the forced pendulumn with tor¢@i®) which is
equivalent to our Poincaré map (4.2 fosmall enough. . In our map (4.2), the centre of
thek!" frequency-locking interval iw is denoted byuy, 77 is a constant and is relative to

lw — wy|. As w moves away fronwy, we expect to see the changes of the dynamics from

frequency-locked only to bistability and then to an atfraginvariant curve only.

orbit. If [ Va2 1| < 1 andytis large, then only equilibria exist. However,
bistability may occur when ya;"*1| < 1 andy* is small. In this case, the
stable equilibria and periodic orbit coexist. See Figui@ fér the bifurcation
diagram of (4.5).

We now use this analysis to explain the dynamics of syste) (dr small
e. Firstly, note thaty — 0 asxX'y — 0. In other words, (4.2) can be well
approximated by the ODE equation (4.5) for small enoygh Therefore, as

Wk

moves away fromwy, i.e. < a, 11 moves away from 0, the dynamics of the

system (4.2) will also change from only frequency-lockiadpistability, and then
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to having only a stable invariant curve, as was shown in [eigué.

Therefore, we have proved the following proposition:

Proposition 4.3.2 The dynamics of the system (4.2) are equivalent to the dynam-
ics of a damped pendulum with constant torque (4.5) near ¢éinéres of each of
the frequency-locking intervals when the parametesiady are both syiciently

small as long age, y) € @, for some p> 1.

4.3.3 The dynamics forw near 0

As was shown in 4.3.2, a one-dimensional attractor exisas thee center of
each frequency-locking intervals except when the fixed fpaitnactor dominate
the whole dynamics. However, we are not sure if this is alvithgscase for gen-
eral w although our numerical simulation suggests that this amedsional at-
tractor always exists for alb. In this section, we prove the existence of this
one-dimensional attractor fe¥ small enough.

We first prove a similar theorem analogous to Afraimovichfedrem 4.2.1
which provides a dfticient condition for the existence of an invariant curve a&s th
maximal attractor for their map (3.26). As we have discussesction 4.2, their
result is only valid forx ~ O(y%), which is irrelevant to the original ODE system.
Nevertheless, this is also true for the case O(yY), i.e.d near 1.

Consider the following systenx(@) = F(x, §) defined by:

|

Fix y. Recall thatx’satisfies the equation = uX¢ + v and suppos& i of order

wxd + y(1 + asinb)

(4.6)

| X

= 0+w-—1logx.

y¥/? for somep > 1, which is stficiently large such that > r. This can be done
by lettingd be close enough to 1. We begin by proving that

2a 2a

D= ) 0<X———y < X< K+ —m—
{(X’) <X l—dy)?d‘ly_x_x-l_l—d,uf(d‘l%

059sz% (4.7)
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is an invariant region foF.
Lemma 4.3.1 D is an invariant region for F.

Proof: DenoteA = ﬁ If (x,0) € D, then, by Taylor expanding the first term
of the following inequality,

X < u(%+Ay)d+y(1+asing)

IA

= uXd+ )/d,u)A(d_lAT+ y + yasing + O(y?)
= K+ yduXd-1A + yasing + O(y?)
< K+ y(dustA + a) + 0(?)

N -1
= X+ + 009

< X+ Ay + 0>,
sincedus@! < duxd-1 = 1 by the definition of, in section 4.2. Similarlyx> Ay
provides a lower bound for of F in D since

X > u(k-Ay) +y(1+asing)

W%

= u%d = yduf31A + y + yasing + O(y?)
= R —yduX-1A + yasing + O(y?)
> K —y(duXd 1A + a) + O(y?)
- YT + 00
> X— Ay + 0(y?).

Il
>

Hence,D is an invariant region foF. m

This lemma implies the existence of an attractor Fom D. However, we
cannot at the momentidentify what it looks like. The ’AnnaiRrinciple’ provides
suficient conditions forF to possess an invariant closed curve as its maximal

attractor. Here, the maximal attractorféfin D is defined to bex>” , F"(D).

Theorem 4.3.1 ("Annulus Principle” [2]) Let ¥ : (X,0) — (X, 6_'),x e R" 0 €

R™, be a map of the form
X=f(x6), 6 =06+ g(x 6) (mod2n),
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where fg are djferentiable functions which ar@r-periodic ing = (04,.. ., 6m).
Assume tha¥ maps an annulus B {(x,60) : [X < ro}, ro > O, into its interior.
Introduce the following norms of vectors or matrices in [P:|| = SURygep | - |
where| - | is the Euclidean norm. If

@ M0+ o)l < oo,

(b) Il <1,

© 110 +go) M- 11l > 210 + Qo) 212 - 119l - 11 Fell,

(@) L+ +go) M- 11l < 2111 + o),
where | is the nx m identity matrix and subscripts indicatef@rentiation with

respect to the corresponding variables, then the maxim@ahetor in D is an
invariant m-dimensional torus which is the graph of somefiom x = h(6), where

h is 2r—periodic ing, and is smooth.
Now, we are ready to prove the following theorem:

Theorem 4.3.2 Suppose d ang take values so that > y. Then there exists a
constants, depending on d ang, such that ifja < 5 and a< %;d“xdl) then

there exists an invariant closed curve as the maximal atittvafor F in D.

Recall thatx,, is defined to satisfguxd* = 1.
Proof: Within and only within this proof, leff (x,6) = uxd + (1 + asiné)y,

g(x,6) = & —ilogx, M = K+ ﬁy andm = X — ﬁy. Sincea <

(=R (1-dus )
2y

Let (x,0) € D. We proceed to check each of the conditions (a)-(d) in turn.
(a)

, M < X

nacosdy
uxd + (1+asinf)yl|”
It is easy to prove that for each fixeglthe maximal value of the right hand side

19| =

in this last equality when varyingis
nay
V@ +r2—azy?
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which is smaller than 1 faya'small enough. In this case,

1
I+ )l = ————— <o

nay

Viuntrz—azy?
is always satisfied.
(0) (1Tl = llduxd-Y| = duM? < duxd-! = 1 sincex’is smaller tharx,, and

duxd-1 = 1 by the definition ofikandx, in section 4.2.

5 dudt .
(©)llgull = ll-Tim 22l <

4.3.1 and|fyl| = ay. By lettingria — 0, [I(1 + g) Y| will tend to 1 andi|gqllll fll

d“'\,fqd_l sinceuxd+y(1+asing) > mby Lemma

will tend to 0. Thus, the third condition of the ’Annulus Feiple’ is clearly true.

(d) Sincell(1+go) (2 IIfd) — 2—]/f4| > 1 asja — 0, the fourth condition
is also valid.

Hence, the conditions of Theorem 4.3.1 are met in our casgafsuficiently
small, so we are dore.

Theorem 4.3.2 completes the case which is not consideredrayfovich in
the proof of Theorem 4.2.1 in [3]. More precisely, recallttAfraimovich’s map
(3.26):

X = A(Bx+ y(1 + asint))?
{ {=t+ - nlogBx+ y(1+ asint)) (mod2r)
They prove that for the casexf~ O(y%), i.e. d is large, there exists an invariant
curve as a maximal attractor for the system (3.26) if the d@r in Theorem

4.2.1 are satisfied. For the cateear 1, the first equation of this map is

X

A[(BX)? + yd(BX®1(1 + asint) + O(?)|
ABHA + y(1 + asint) + O(?) ’

X

for |d — 1] small enough, while the second equation of this map is

t = t+w-2(logx-logA)

t+a—nlogx.
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In other words, Afraimovich’s map (3.26) is equivalent te timap (4.6) whem
is near 1. It follows that, by Theorem 4.3.2, if the corregjiog conditions are
satisfied, then their map (3.26) also has an invariant cusvis anaximal attractor
for d near 1.

In our casef = 2wt, a = /a; andn = 2wé. Note that the definition of the
invariant setD in (4.7) depends ow. Nevertheless, sincg/a, ,” 1 asw \, 0,
we can always find an uniform invariant 98§, which is independent ab, by
replacinga by 1. Then, because botjia = 2wé¢ 4/a; andatend to 0 agv — 0, we

have

Corollary 4.3.1 Suppose d angl are such thak > y. Then there exists adny,
depending on d angt, such that ifw < wg, then system (4.2) has an invariant

closed curve as its maximal attractor ihD

4.4 elarge

For large enougla, by the results in section 4.29 becomes far smaller than
v. In this case, the whole dynamics of the first equation of4Bdzpends on all
the terms except®. Therefore, our Poincaré map can be further approximaged b

dropping thex® term to take

X

f1(x, t)

¥ [p1 + pa(—ay cos(2vg) — by sin(2vg))

—4(—a1 cOS(2u(t — 65)) — by sin(2w(t - 63)))
—ps(—az cos(2wt) — b, sin(2wt))] + O(y?)

t = f(xt) = g-vyi[l-a cos(@ut)+ by sin(2wt)]x ! + O(y?)

, (4.8)

whereg =t + uz — £log x.
This system is far more complicated than the system (4.2Yiestty we will

deal with two extreme casesi > 1 (section 4.4.1) and < 1 (section 4.4.2).
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Figure 4.9: The dynamics whe — . The upper subplot shows that the ODEs system
tends to the averaged one (a blue dot on the right end). Tharlirelationship between
periodT and logy is displayed on the lower subplot. The slope of this line isado .
The graphs are plotted for parameter valoes0.25 e = 0.2 andy = 1075.

In general, both cases provide circle map dynamics. Numlergsults will be
displayed in section 4.4.3 for the case of intermediateesmbfw, where detailed

analytical study is not possible.

4.4.1 The dynamics for largew

From the first equation of (4.8), we see that- u1y| ~ O(y?) asw — 0. The
second equation of (4.8) indicates that the limit of the sipggntime of the map,
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Tn = tn+l - tn, WI” be

T = ps—£loglury + O0%) - Yaimrees + OO
= 3= 5 — £l0g(uy) + O()
= Ci—&logy +O(y),
whereC, = u3 - 75— — £logp is a constant.

In the limitw — oo, we expect that the forcing term of our ODE system (3.23)
can be replaced by the averaged é(ﬂe— X)y. In fact, the diferences between the
Poincaré maps of the ODE systems for the perturbation 'rtnrm%t and siff(wt)
are those terms in (4.8) with sin and cos which tend to O as .

Note that the above argument is also valid for the easear 0. But nowx"
becomes the asymptotic attractor for thedynamics ass — ~. Therefore, we

have proved the following proposition

Proposition 4.4.1 The dynamics of the system (3.23) will tend to the averaged on
asw — co. For a giveny, if € is large enough, then the period of the attracting

periodic orbit T ~ C; — ¢logy for some constant C

The computational results also confirm this fact, (see leigu®), and they
also demonstrate the linear relationship betw&eand logy for large w. The
slope takes the valugwhich provides another independent confirmation of the
analytic reduction carried out in Chapter 3.

Takingw large enough such that ~ a, ~ O(y), thenx ~ u;y. Substituting
this into the second equation of (4.8), we have
t+ 13 = £109(ury) = 757 (1= Vag sin(2wt)
= t+v+ 52 sin(2wt) ’

t

wherey = us — £log(uay) — 2%%. Lets = “t, then

= w Ewrag _:
S = S+ %y+=2==sin(2s
RV gy SIN2TS) , (4.9)

~ S+ 2y+ %m sin(2rs)
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since va; ~ 3= whenw > 1. (4.9) is actually the canonical family of the circle
maps

_ B .
0=60 — 2r),
+a+2ﬂsm( )

which are invertible if8 < 1 and noninvertible i3 > 1 as discussed in section
2.3.2. Comparing to this, we see that lettiagtend toco in our map (4.9) is
equivalent to lettingr tend toco and fixing = % in the canonical family of the
circle maps. Therefore, we have proved the following prajmos

Proposition 4.4.2 For large enoughw, there exists a constapt near&/2 such
that (i) if uy > uo, system (3.24) is equivalent to the canonical family ofritivie

circle map; (i) if uy < uo, it is equivalent to the noninvertible ones.

In conclusion, the map (4.8) is roughly a periodic osciltdtr w nearco.
However, in detall, it still demonstrates a rather compédadynamics as that of

the canonical circle map.

4.4.2 The dynamics forw near O

In this section, we consider the other limiting cage,— 0. In this case,

a; ~ a, andb; ~ b,. The map (4.8) can then be further simplified to the form

Gt & pry + (uz VaSIN(wG + 0) + s ar SiN(2w(f - 63) + 6)
+415 /3 SIN(2wt + 6)) (4.10)
fa(xt) ~ t+puz—£log(x) — £(1- yarcos(wt))xy,

whered = tamr* & ~ tan* 2 ~ Z.
1 2

We will take us near—u; to satisfy the assumption (A.1), and drop (heand
g terms for simplicity. In other words, we are looking at thendgnics in the

parameter space wheug andyu, near 0. In this cases = pu1y(1 — /a; cos(at))
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Is clearly an invariant curve for the system. Thereforessititing this expression
for x(t) into (4.10), the whole dynamics can be represented by alonensional

map

t=h(t) =t+v-¢&log(l- vagcos(2wt)),

wherev = us — £log(uay) — 2%%.

Let s = wt/n to normalize the fect of w, the last equation then becomes

S=h(s) = s+ %v - %glog(l— a1 cos(2s)). (4.11)

Numerical simulation shows that the dynamics of (4.11) &tdignamics of the
original ODE system (3.23) very well. See Figure 4.10. Here takev = 232.
A sequence of periodic windows with periogfor n = 2, 3,4, ..., can be easily
observed when we traek down to O.

Equation (4.11) is the lift of a degree 1 circle map defining[@sl) and,

becausey/a; is near 1, this map will never be a homeomorphism fowatk 0.

2wé \Jag sin(2rs)
1- +/as cos(Zrs)

for all w because the upper bound of the absolute value of the Iaststé%%% =

More precisely, the equatidmni(s) = 1+ = 0 has at least one solution
c/e+ (c/e)? + (c/e)® which is larger than 3 sincg/e > 1.

As we have mentioned in section 2.3.2, this kind of maps canotstrate
more complicated dynamics than their homeomorphism copartes as they can
possess rotation intervals instead of rotation numbergurgi4.11 shows the ro-
tation intervals of the map (4.11) which indicate the posis where the system
(4.11) has infinitely many periodic solutions. Recall tHa totation interval is
defined byp(f) = [o(f.), p(f,)], where f_(s) is the largest monotone function
which is smaller tharf(s) and f,(s) is the smallest monotone function which is

larger thanf (s). The definition ofo(f) is, as usual, the set of all possible rotation
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Figure 4.10: The dynamics of (a) the ODE system (3.23) and (b) the map Y4dtl
w € [1073,107?]. Here we set thev-axis to be log-scaled. In both the ODE system and
the map, we can see that period-2, period-3,..., perioditiens exist whenv decreases
toward 0. Each perio#f-solution appears due to a saddle-node bifurcation and tisen d
appears through a sequence of period-doubling cascads.isTan indication that both

systems can demonstrate chaotic dynamics in some intafvals

numbers:
(1% = fim L=
for different initial pointsx. Sincef_ andf, are monotongy(f_) andp(f,) are not
sets but two single values. Figure 4.11 is plotted by catmganumerically the
rotation numbers of_ and f, for eachw.
By R.S. MacKay and C. Tressers’ result [49], a non-trividatmn interval of
f implies topological chaos. As a result, system (4.11) ha®tth dynamics at

thosew where it has a non-trivial rotation interval. Note that tldentification
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Figure 4.11: Rotation intervals of the map (4.11). Here we set thexis to be
log —scaled. For eacty, we plot the maximum (green) and minimum (blue) of all possi-
ble rotation numbers of the map (4.11). The existence ofaioot interval for somev

indicates the existence of infinitely many periodic solnsi@f the system for this.

doesn’t give the whole intervals i@ where system (4.11) has chaotic dynam-
ics. As we have displayed in section 2.3.2, R.S. MacKay andr€sser [49]
also proved that there exist maps with frequency-lockingtdypiological chaotic
dynamics. Therefore, there might be some intervals imhere system (4.11) is
frequency-locked but chaotic.

Comparing Figure 4.10 and 4.11, we can see that the pergmutions are
located at thoses whereo(f_) = p(f,). Also, we can note that, the interval where
periodh periodic solutions exist in Figure 4.11 is larger than inufe4.10. This
is due to the fact that period-doubling doesn’t change tkegtion number. In the
following, we gives a first-order estimate for these intésva

To derive the boundaries of the regions where penablutions exist, we

first consider a general circle mags) = s+ a + Sp(s), wherep(s) is a periodic
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function with p(s + 1) = p(s). It is clear that a perioth solution exists when
a = 1/nandp = 0. Therefore, fopy small enough, we can Taylor expand=

1/n+ aB + bs? + O(5%). By induction,

89 = s+na+ 5> PO,
k=0

Substituting the expansion afinto the equatio"(s) = s+ 1, we have

n-1
a= L p(s+ -)
n k=0
and
s k : I-1
b=-= Z p'(s+ ﬁ)(a+ Z p(s+ —))
k=1 I=1
In our casea = 2v, B = 2£ andp(s) = —log(l - +/a;cos(zs)) where
a = ﬁ Consider the first order estimate of the region @f3) where a

periodh solution exists
)
l0g(1~ Va; cos(ar(s-+ -)))—¢.
T

and letM,, andm, be the maximum and minimum ¢fy_; log(1— /a; cos(2r(s+

X)), respectively. Then

< w 1\ nr M
_V _—— —_— .
h = T n/wé A
which implies
T T
f<w< ——.
nv — myé nv — Mpé

Therefore, the first order estimate of the intervalinvhere a period: solution

exists is
T T

nv—mé nv—Mpél
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This sequence of periodic intervals is actually an infindgueence as tends

to O if the only parameter is taken to satisfy > £log 2. More precisely, since

n-1
M'(9) = s+ "oy = ¢ )" log(L - V& cos(ah(9),
T T =0

we have

D M eog(1+ var) < h'(9) - s< 2y - Meiog(1- vay).
T T T T
If v > £log 2, then the lower bound &f(s) — sis greater than 1 for large enough

n and for a fixedw since

n Melog+ va) > e (log2-log(1+ vap)) > O,
T T

T

Note that, for a fixed, h"(s)—sare bounded smooth periodic functionsddr all

n. Therefore, if we consider the sequences of the gréphs {(s, h"(s) — s)}, for
eachw, there exists a,, such thatifn > n,, then the graplh,,, is above the hori-
zontal lineL : {(s,1)}. In addition, itis easy to see that the upper bounkl'¢f) — s
tendsto 0 as — 0. In other words, thosk, , which are above the horizontal line

L will eventually intersect it if we decrease Sinceh"(s)— sis smooth, it follows
that, for each fixeah, periods solutions of (4.11) appear through a saddle-node
bifurcation and disappear through another saddle-nodedaifion asv decreases.

Hence, we have proved

Proposition 4.4.3 For each ne N, if v > £log 2, then there exists an interval of

w within which a period-n orbit appears for the system (4.11).

The periodn interval can only ensure us the existence of a period-nisolut
However, the occurrence of a rotation interval can be vieaged synonymous of
chaos since it indicates the existence of infinitely manygoke orbit of different

periods.

94



Chapter 4. 4.4.¢large

0.045- .
! PV H, B
0.041 ‘ H3
P+
0.035 3
0.03F i
A
0.025-
[an ]
0.02
0.015f
0.01F
0.005F
0
0 1/8 1/6 1/5 1/4 1/3 1/2
o

Figure 4.12: The boundaries of the Arnol'd tongueR,( and P}, red) and the homo-
clinic bifurcation curvesid,, purple) of the map (4.11). The blue line is the points where
(@, B) = (2v, 2£), which is the case of (4.11). When lettingdown to 0, we are following
the blue line down to the origin point. For each fiygdf P, < « < P}, then there exists a
periodh solution. IfP, < @ < Hy, then the system has infinitely many periodic solutions

including periodn due to the homoclinic bifurcation occuring .

Figure 4.12 is the bifurcation diagram of the map (4.11). Blue line denotes
the points whered, 8) = (2v, 2£). For each fixedv, we have a normal Arnold’s
tongue picture for the map= s+ « — log(1 - +/a; cos(zs)). So for a given
value ofg = 2¢, we can record those where the bifurcations occur. The red and
purple curves then show the valuesaoivhere we have saddle-node!(andP;)
and homoclinic bifurcationsH), respectively. Specifically, thes&’s, P;’s and
H,’s are functions of3. Recall that a homoclinic cycle exists after a homoclinic
bifurcation and, as we have discussed in section 2.3.2h@msoclinic cycle gives

chaotic dynamics. A& moves toward 0, we move down on the blue line and
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we expect a periog-solution to occur ife € [P, P;] before the homoclinic bi-
furcation, after which infinitely many periodic solutiongpear and coexist when
a € [P,, Hn]. This periodn solution then disappear when passing through the
other endP;, of periodn region.

All in all, system (3.24) displays noninvertible circle mdgnamics forw
small enough and the parametetsus ~ 0 andus ~ —u;. The sequence of

periodhintervals always exists for everye N if u; andus satisfyuz—£ log(uyy)—

£
o > &£log 2.

4.4.3 The dynamics for intermediate values o

Within our Poincaré map (4.8), the dynamics are decidediayrhain terms
coming from the derivation of local and global maps. Redal the terms con-
taining wg come from local maps while those containiat from global ones.
When the forcing frequency is very small, the #ect of perturbation on local
map is expected to fade out because of longer spending tmtbkisisense, taking
U to be near 0 in section 4.4.2 becomes reasonable.

As w increasing, the dynamics of (4.8) are aldteated more and more by
the local terms. In other words, local and global terms campeeach other for
the dynamics of (4.8) and we cannot reduce the form of ourddo@map further.
Therefore, we will only display numerical results for thendynics of (4.8).

The numerical integration of the ODE system and the itematibour 2D
Poincaré map, in the casec: = 0.25,e = 0.2 andy = 107, agree very well
as shown in Figure 4.13. Here, we get= 9.6, u, = 0.3, u3 = 17,u4 = 26.4 and
us = =35.7.

The main features of the dynamics of the ODEs system as wikleaRoincaré
map system are a sequence of frequency-locking areas waibticlregions in

between. At the ends of the frequency-locking intervals, gleriodic orbit un-
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Figure 4.13: Frequency locking windows for the ODEs system (upper) anddacé map
(lower) whenc = 0.25,e = 0.2 andy = 105, The parameters in the Poincaré map are:

u1 = 9.6,ur =0.3,u3 =17,u4 = 26.4 andus = —-35.7.

dergoes a saddle-node bifurcation and then disappeansieFgl4 confirms this
assertion. Denotg modrn/w ast, for simplicity. We plott,,; against, for fixed
w = 0.0428,c = 0.25 ande = 0.2 (other parameters are the same as those in
Figure 4.13).

Note also that the bistability phenomenon, which happeremwimear 1, dis-
appear. This is due to the saddle-node bifurcations, wigistltin the occurrence
of equilibrium points, all occuring at the maxima and miniwfathe invariant
curves whert/eis large enough. More precisely, suppase h(t) is the invariant
curve of the system and denoiv) is the fixed point of (4.8) if it exists. Then for
thosed large enough, mak(t) atw; = X(w;) and minh(t) atw, = X(w, ), where

w;, w, are the end points of the" frequency-locking interval ofo. In contrast,
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Figure 4.14: Circle-map-like dynamics. We pldt, 1 againstt, for fixed w = 0.0428
e= 0.2 andc = 0.25.

the invariant curve is around+ O(y) which is far away fromx(w;) andx(w, ) in
the casal near 1.

Although the disappearance of the bistability looks just lihe result of in-
creasing; ! in the forced damped pendulum system (4.5), we emphasizéhtha
period-doubling bifurcations, which happen in some fremyelocking intervals
of w with lower indexk, are not captured by (4.5).

A better way to explain this is through circle maps. In settdod.1 and 4.4.2,
we have shown that our Poincaré map is equivalent to twdifesrof circle maps:
S=s+%v+ %ﬂl sin(2rs) for largew, ands = s+ v — 2£log(1- /@, cos(Zrs))
for w near 0. It turns out there might be a transition between thesdamilies
when we varyw from near 0 to neas.

In our numerical simulatiory; is 9.6 which is slightly larger thag/2. By

Theorem 4.4.2, this indicates that, for large enougthe dynamics of our Poincaré
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Figure 4.15: 0-1 test result computed by regression methodcfer 0.25, e = 0.2 and
y =107,

map is equivalent to the canonical family of invertible &rmaps
_ w b .
S=S+ —v+ — sin(2rs), (4.12)
n 2n

whereb < 1. Therefore, for large enough, our Poincaré map will turn, from
a noninvertible circle map, into a near invertible or inugd canonical circle
map. In other words, the period-doubling bifurcations valgan be seen in some
frequency-locking windows (see Figure 4.13) must evehtuhsappear as in-
creases.

From this point of view, the regions that we have called 'd¢ltadn the last
few paragraphs might not be actually chaotic, especialtyldaye w. Indeed,
almost all maps of the family (4.12) with< 1 possess periodic dynamics except
for values ofw in a set of measure near 0, ferbetween two frequency-locking

intervals. It is well-known that the canonical circle magsle) in the invertible
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case cannot produce chaotic dynamics. In contrast, siragticldynamics are a
common phenomenon for a family of noninvertible circle maggsllows that our
Poincaré maps are expected to demonstrate truly chaatanaigs for smaliv.

The '0-1 test’ has been implemented to confirm this assertiiamerically.
Recall from section 2.4 in Chapter 2 that the 0-1 test disiisiges between regular
and chaotic dynamics in a deterministic system. If the aggtigogrowth rateK
of a time series of data is 1, the test proves the occurrencigaaitic dynamics. In
contrast, the test returiés = 0 if the underlying dynamics is regular (i.e. periodic
or quasiperiodic). Figure 4.15 shows that the dynamics kvays regular for
large enouglw even in the ‘chaotic’ regions. Here, for eaohwe use regression
method for 9,000 data points and take- 900. K is defined to be the median of

K. for 100w € (0, 7). For the definitions of notations, please refer to sectidn 2

4.5 The dfect of varying y

So far, we have presented a thorough study on the dynamidsedyistem
(3.23) for diterentd and fixedy. In this section, we discuss th&ect of changing
v for a fixedd.

In section 4.2, the order of the time-averaged system waarstho depend
on a combination ofl andy. Nevertheless, changirgywill never be the same
as changingy. This is because changesdraffect the unstable manifolds of the
equilibrium points in the unperturbed system and herttectall the unknown
parameters in Poincaré map (3.24).

Firstly, we consider the case whens large. Figure 4.16 displays the bifur-
cation structure of the ODE system and shows how it scaldsyfior ¢ = 0.25
ande = 0.2. The figures for each value gfare quite similar except that more

period-doubling bifurcations occur for smallerWe explain why this happens in
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Log 10y+(Tn+ 1—Tn)/400

Figure 4.16: Bifurcation structure of the ODE system and its scaling wiflor c = 0.25
ande = 0.2. The ends of thk™" frequency-locking intervals are located on the gree dashed

curves and the red dashed lines which are defined by (4.13¥ah#), respectively.

the following paragraph.
Recall that, forw small enough, the system is equivalent to a non-invertible

circle map (4.11):
— w w
s=h(s) =s+ —V- ;glog(l— va; cos(Zrs)),

wherey = uz — £log(uyy) — ﬁ. Supposew, is such that the ODE system can
be well-approximated by (4.11), and that period-doublifigrbations happen in
all the frequency-locking intervals for which @ w < w.. Note that the term
—=£log(l - +/a; cos(2rs)) will not be dfected if we change. Therefore, by
decreasingy, we are only increasing>v and hence including more and more
frequency-locking intervals ab within w < w..

Also, by (4.11), we can notice that the engfs w, of thek™ frequency-locking
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intervals inw all satisfy

ey - Zeglog(lx vaD) =k
T T

which implies

k M3 1

Zor + ? - ZTqul —log(ui(1 + va)), (4.13)

wherek = 1, 2, ..., is small enough such that the ODE system is equivalent to the

logy = -

non-invertible circle map (4.11). We denote these curvdsgnre 4.16 by green

dashed curves. These curves can be replaced by straight line

logy = —(fki == +E- % ~ logpz. (4.14)

for large enoughw where the ODE system is equivalent to the invertible circle

map (4.9)

sin(2rs).

o A

The red dashed lines display good match in Figure 4.16.

Figure 4.16 also demonstrates an interesting phenomeriome 1ix « and
let y decrease, we will trace out a similar bifurcation structaseve observe in
the usual case of fixing and increasingv. In other words, for a fixed periodic
perturbation, changing the strength of the forcing termpvibdduce a sequence of
isolated intervals where periodic attractors exist, wamplex dynamics between
them. This has implications for a coupled heteroclinicegysbecause in this situ-
ation of coupled heteroclinic cycles, thifextive frequency of the forcing term is
unknown and all we can do is to control the forcing strengtbulgh the coupling
codficient.

In the case near 0, the ODE system near the centré&dbfrequency-locking

interval ofw is equivalent to the forced damped pendulum (4.5):

T [ —
§+n 18+ sins= — @, 1A,
w
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wheren™ = /5. By section 4.2, we have to be very careful in lettipng
decrease. lfy is too small, the average of x will becomeO(y) and thus the
ODE system cannot be well estimated by (4.5). Therefore,amsider only large
enoughy such that the ODE system remains equivalent to (4.5). Incdmse, de-
creasingy makes intervals iw in which we have only frequency-locking (and no
bistability) smaller becausg? is also decreasing. However, the whole bifurcation

structure remains qualitatively unchanged.

4.6 Comparison with a periodic system perturbed
by a periodic forcing

Consider a more general perturbation in the form ¢ (6(f (2wt) — A) + yA)
wheres andy are independent parameters, @nd % foz’r f(t)dt. Then the system
(1.3) becomes

X = X1-(X+y+2-cy+ed+(1-x((f(2wt) — A) +yA)

Yy = y1-(X+y+2-cz+eX . (4.15)

z = Z1-(x+y+2-cx+ey
Foré = vy, we recover the original system (1.3). The independentnpeterss
andy enable us to vary the amplitude and mean of the perturbatioctibn sep-
arately. As the mean and amplitude of the perturbation fangt(1 — X) sir’(wt)
are the same, the analysis we have done so far can be onlydsesve model
for a heteroclinic system with such kind of perturbation. d&parating the mean
and amplitude of the perturbation function, we obtain thedbi¢ of being able to
understand the dynamics of a heteroclinic system with argéperiodic pertur-
bation function. In this section, we will show how the dynambf the system
(4.15) changes as we move from the cés& vy to the cas& = y. To keep the

biological meaning of (4.15), the cage- y will not be discussed.
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Firstly, we prove that there exists a periodic attractowferO:

X = X(1-(X+y+2-cy+ed+y(l-xA
y = yY1l-(x+y+2-cz+eX . (4.16)
Z = Z(1-(X+y+2 —-cx+ey

There is no need to derive the Poincaré map of this systembgtstep again since
we need only to refer back to the general expression for tliecB@& map given

by (3.18). Substituting\ into it, we get

T5(0
Li(xt) = e9TO-T0 [ 2?(())) -T2 Ady
AJC(L — eSTO-T200) = 3, — 5.

wherey; andy, are constants, and,

Tl(O) A X
L(x 1) = e OAgr = 2 (— _ 1).
Z(X’ ) \[; e h

Since the unstable manifold &, is time-independent in this casg;(x,t) and
Gy (x,t) give two constants. Therefore, the Poincaré map of theesy$4.16) is

of the form

X + [vs + vaxly + O(y?)
= X+ vy + O(y™9)
fBb(t) = t+us—£logx+L(1/h-x)y

fl(X, t)

(4.17)

= t+puz—¢logx+O(y)
wherey; andy, are constants.

Clearly, there is an attracting fixed poirg for y small enough for the first
equation of (4.17) sincd > 1. This implies the existence of a periodic attractor
for the corresponding system (4.16). Moreover, the peritkiis periodic solution
is approximately:; — £ log Xo.

Therefore, in some sense, system (4.15) for whiehO is merely a periodic

oscillator perturbed by a periodic function.
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In the following, we takef (2wt) = sirf(wt). As we have shown in Remark
3.3.3, the Poincaré map of system (4.15) wWitBwt) = sirf(wt) is:
X = fxt) = uwx+ym
+6 [u2(—ay cos(2vg) — by sin(2wQ))
—a(—a1 cos(2u(t — 83)) — by sin(2w(t — d3)))
~is(~82 cos(2vt) — b, sin(2wt))] + O(y?)
fa(x.t) = t+pus—¢&log(x)

—£ [y — 6 (3 cos(@wt) + b, sin(2wt))] X + O(y?)
(4.18)

In the case wheais large andv is near 0, the first equation of this map (4.18)

™
Il

can be reduced further, by assumingandu, to be near 0 angds to be nearpu;

and noting thak® term can be ignored as we did in section 4.4.2, into:

x= fu(x1) = w(y - 6 vay cos(2ut)).

So,x = us(y — § y/aj cos(2t)) is an invariant curve for the system. Substituting
this expression fok(t) into the second equation of (4.18) and lettsig wt/x,

this map can then be represented by a one-dimensional map:
— w w -1
s=h(s) = s+ —v- ;g log(1 -y =6 v/a; cos(&s)), (4.19)

. , 2wEy~1s in(2r .
wherev = us — £log(uyy) — ﬁ. Sinceh'(s) = 1+ P?T\/m’ (4.19) is
invertible if and only ifh’(s) = 0 has no real solutions, which is true if and only
if (y715)2 < % Note thatﬁ“;é;2 /' lasw \, 0. Therefore, (4.19) is
invertible over the whole range of for which it applies ify~1¢ is small enough.
Moreover, ifs < vy, (4.19) is very close to the rigid rotatia= s+ 2v and hence
we expect that all the perioklintervals have widths that tend to zeros&s» 0;
thus they will be very dficult to observe in numerical simulations.

In the casey~16 near 1, (4.19) remains invertible for all small enouglbut

becomes non-invertible at large This is always the case ungit's = 1, at which
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Figure 4.17: The transition of the dynamics of (4.15). Here we comparealmamics for
afixedy = 1076 with differents: (a)6 = 9.99x 1077 = 0.999, (b)6 = 9.5x107 = 0.95y

and (c)s = 1077 = 0.1y. Thew-coordinate is ifog-scale.

point it becomes non-invertible for all valid. This is consistent with the results
we proved in section 4.4.2.

Figure 4.17(c) shows that the dynamics of the ODE systenb)4dt w near
0 are almost the same as a rigid rotationdfok y. The dynamics appears to be
periodic or quasiperiodic for alb. As we increase, the widths of the period-
intervals increase, and they can be clearly observed, asnsimoFigure 4.17(b).
Compared to Figure 4.10, period-doubling bifurcationsesgppn some, but not
all, periodk intervals ofw for 6 = 9.99x 10-" andy = 10°®. This indicates that
the dynamics of (4.15) here correspond to the non-invertistle map case.

By a similar argument as we did in section 4.4.1, we discuss#sev large

ande large as follows. Takingw large enough such thai ~ a, ~ O(y), then
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the first equation of the Poincaré map (4.18) gixes u,y sincexd term can be

ignored in this case. Substituting this into the second eguaf (4.18), we have

f\/_

t=t+v+y SIh(?wt)
wherev = uz — £log(ury) — . Since ya; ~ o, by lettings = “t, the last
equation then becomes
Sts+Zyy iy‘lé sin(2rs),
m Aty

Clearly, it is always an invertible circle map for any fixedif 6 is small enough.
Figure 4.18 shows the regions where the ODEs system (4.Jéquwsalent
to an invertible or non-invertible circle map. The greerelis the case when
v = &, which has been studied in previous sections. As was showeposition
4.4.2, for large enough, andw, the casey = ¢ provides invertible-circle-map
dynamics. This implies that the blue cur@e will eventually intersect the green
line. However, this is not the caseus$ is not large enough. As it stands, we are
not sure if the two blue curves intersect or not for small eogr?s.
For the case ot near 0, by the same way as we did in section 4.3.2, the

Poincaré map (4.18) now takes the form

X = uxd+ us [y + d(—az cos(2wt) + b, sin(2wt))]
t+us —&logx ,

which can be reduced, by defining a ngwandus, into

I
Il

X = pd+y(1+y 6 yEsin(2wt))
t+us—&Elogx ,

I
Il

Clearly, the analysis in section 4.3.2 for the dynamics tiearcentre of the

k-th frequency-locking interval can be proceeded direcylyhly replacing+/a;
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Non-invertible
Cl

Invertible Invertible

()]

Figure 4.18: The schematic diagram depicted the regions where the 2 pteaai@DESs

system (4.15) is equivalent to an invertible or non-indeticircle map fork large.

with y~1§ v/@;. Therefore, system (4.15) is equivalent to the forced dahpes-

dulum with torque:

§+nls+ sins =y 12 v ia, (4.20)
w
wheren? = %A‘. Referring to Figure 4.8, the only attractor of (4.20) is a st

ble periodic orbit if|1] > y‘ldwik vaz, and a stable equilibrium exists otherwise.
Therefore, what we observe in the- T figure of system (4.15) when decreasing
¢ is only the shrinking of the frequency-locking intervalsdaihe decreasing of

the amplitude of the invariant curve.

4.7 Discussion

In this chapter, we have presented analytic studies of tlmamycs of the

Poincaré map of a G-H system perturbed by a periodic functidhe frequency
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w of the perturbation function is varied continuously in artte examine the bi-
furcation structure of the system. The results also proeixj@danations of the
frequency-locking phenomena in the original ODEs systeponted by Rabi-
novichet al[63].

We first notice that the order of the time-averaged map dependbothy
andc for a fixede. Therefore, to make the problem in the same scale, we have
to adjustc when lettingy tend to 0. This argument was not found in the work
done by Afraimovichet al. Moreover, we can now identify two filerent cases in
which the maps can be reduced into twéfelient forms and the dynamics they
demonstrates are twoftkrent types of oscillators weakly perturbed by another
oscillator.

More precisely, we call the casenear O’ if, for a giveny, € is small enough
such that term plays an important role for the dynamics of our Poiacagp. In
this case, we observe stable equilibrium points and stallien&énsional invariant
curves dominate the dynamics in turns when varying here are overlappings of
these two scenarios where bistability occur. We have prtvaicthe model map,
which demonstrates similar dynamics as the original ODEesysis basically
equivalent to a damped pendulum with constant torque neacehtres of each
frequency-locking intervals.

As for the case whereis large enough that® term doesn’t fiect the dynam-
ics, bistability disappears. What we can see is a sequenteqafency-locking
intervals ofw with chaotic-like windows in between; see the- T plot in Figure
4.13. We have proved that the map (or the original ODE sysienmjw equivalent
to circle maps. These circle maps could be invertible or imveftible depending
on the size otw and the parameters in the map. Therefore, for large enaugh
and parameters, the chaotic-like windows are actually habtic but periodic or

quasi-periodic. However, for some intervals of smallthe system does demon-
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strates topological chaos. This is supported by strong neaievidence from (i)
0-1 test and (ii) the calculation of rotation intervals.

We have also demonstrated that the G-H system perturbed bgeaa class
of periodic functions (3 x)(6(f (2wt) — A) + yA) can be regarded as an oscillator
perturbed by a periodic function. As we have shown previptml the special
casey = ¢ in section 4.3 and 4.4, there are intrinsidfeiences between the
casee near 0 anck large for all 0< 6 < y. For the case near O, there is no
major diference in the dynamics between the case § andd < y. However,
if € large and < v, the system is equivalent to an invertible, non-inverteohel
then invertible circle map whew increasing from O teo. The results here can
be considered as good descriptions in general for the dyrsaofia heteroclinic
system perturbed by a periodic function.

A well analytic study forw of intermediate size is still needed. Thefdiulty
comes from the fact thab is now the same order afande and hence we are

unable to reduce the Poincaré map into a simpler form.
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Chapter 5

Symmetric Solutions in Coupled

Cell Systems

5.1 Introduction

It is well known that symmetric periodic solutions couldbin a system with
symmetry. For example, tH&O(2)-equivariant dterential equation
X = (1-(C+y)x-y
y = Q-(C+y)y+x
has a periodic solutior(t) = cost, y(t) = sint with SO(2)-symmetry. However,
symmetry in a system doesn’t generically imply that eveltytson is symmetric.
Note that ifXx = f(X) is I'-equivariant and the action 6fonR" is irreducible then
f(0) = 0. So the solutiox(t) = 0 isT"-equivariant, i.e. in this case there is always
at least ond-symmetric solution trajectory.
Spatially symmetric periodic solutions in a symmetric systpossess tem-
poral symmetry automatically [28]. More precisely, suppas= f(x) is al-
equivariant system, wheieis a symmetry group, an(t) is a T-periodic solu-

tion of it. If v € ' is a symmetry of(t), thenyx(t) and x(t) must be identical,
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.e. y{x()} = {x(t)}. By the unigueness of solutions of ODE system, there exists
6, € St = [0, T] such thatyx(t + 6,) = X(t). In other words, £,6,) € I' x St is

a spatio-temporal symmetry of the periodic solutigt). We denote the group of

all spatio-temporal symmetries gft) by Zy).

It is clear that the mapy(6,) — vy is an isomorphism fromi,, to H, where
H={y e I' 1 y{x(t)} = {x()}}.

In other wordsH is the group of all spatio-temporal symmetriesx@). We call

a symmetryy of x(t) a spatial symmetry i, = 0 and let
K={yel:yx()=x({), Yt}

be the group of all spatial symmetries x{t). In the caseK = {1}, we call the
periodic solution trivial. For exampley(t) = (esint, esint, esint, esint) is a

trivial periodic solution of the system
X =ecost, fori=1,...,4,
which is aZ4-symmetric (cyclically symmetric) system
xi =0, fori=1,..,4,

perturbed by periodic functionscost.
The following theorem, due to P-L. Buono and M. Golubitskyaracterizes
possible spatio-temporal symmetry of periodic solutioha D-equivariant sys-

tem.

Theorem 5.1.1([28]) Let I be a finite group acting oi". There is a periodic
solution to somé-equivariant system of ODEs @&{' with spatial symmetries K
and spatio-temporal symmetries H if and only if

(a) H/K is cyclic,
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(b) K is an isotropy subgroup,

(c) dim Fix(K»> 2. If dim Fix(K)=2, then either H= K or H = N(K),

(d) H fixes a connected component of FiX(KJ).

Moreover, when these conditions hold, hyperbolic asynygatiby stable limit cy-

cles with the desired symmetry exist.

We are not going to discuss this theorem in detail. Nevesslaccording to
this theorem, it is necessary thdfK is cyclic for a periodic solution to have a
spatio-temporal symmetry. In this sense, we will only cdasperiodic solutions
of Z,-symmetric systems in this chapter, whé&gis the cyclic group generated
by o @ (X1, .0y Xn) = (Xny X1, ovvs Xn_1)-

In a system containing a robust heteroclinic cycle whichable, we can pro-
duce an attracting periodic solution either by adding pbstion terms to break
the parts of the symmetry group which lead to the existenah®fixed point
subspaces which support the connections, or by couplingytstem with another
one. In the second case, we expect that synchronizatiod cmgur and the ra-
tio of frequencies of two heteroclinic cycling subsysterosld be rational. The
question then arises: in a system with symmetry, what is éme@l form of the
ratio of frequencies between two oscillating subsysterttsely are symmetric?

M. Tachikawa in [74] considered an ecological system caimgj®f two repli-
cator equations coupledftlisively. Of these two replicator equations, one has
a heteroclinic cycle attractor and the other one has a ligmlecattractor. In his
paper, frequency-locking intervals with specific ratiodrefquencies can be ob-
served numerically when varying the strength of couplinge &uthor explained
graphically that these specific ratios come from the extgaf symmetric peri-
odic solutions. In this chapter, we investigate analylyctile possible ratios for
symmetric periodic solutions.

Instead of studying coupled systems directly, we firstlysider a single sys-
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tem with periodic perturbations. This is similar to considg the projection of
the whole coupled system to a single one. More preciselypasgpthe coupled
system is

X =Fi(X) + e(y — X)

y=Fay) + e(x-y),
wherex,y € R" and the system has a periodic solutiodt), y(t)). We call it
a coupled cell system with two cellx-cell andy-cell. Then thex-cell can be

written as a system with periodic external perturbatiorcfiom y(t):
X = F1(x) + ey),

for which x(t) is a periodic solution. It follows that the possible rataf§requen-
cies between periodic solutions in the two cells is the sasrth@se between the
periodic solution and the perturbation functiornxeell system.

Therefore, we consider

% = F(X) + (1), (5.1)

wherex € R", ¢(t) = (¢1(t), ..., ¢n(t)) andg;’s are periodic functions of period,.
Suppose that the action of the cyclic grafjpon R" is generated by

o (Xg, oo Xn) = (Kns X2, oy Xno1),

and the unperturbed system="F(X) is Z,-equivariant. In other wordsrF(x) =
F(oX). In the case when there exists a non-trivial periodic sotuk(t) in the
system, i.e. the spatial symmetryXft) is K = {1}, we are interested in whether
this periodic solution hag,-symmetry or not, and the ratio of frequencies between
the periodic solution and the perturbation function.

The structure of this chapter is as follows. In section 5 @€ give a necessary
condition of the perturbation functions for system (5.1h&ve a non-trivial peri-

odic solution withZ, symmetry. The ratio of frequencies betweefy,asymmetric
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periodic solution and the perturbation function will benti&ed in section 5.2.2.
The results obtained in these two sections can be easilp@atieto a general,-
symmetric case wherg, is a subgroup o¥,. We show these in section 5.2.3
followed by a discussion of the ratio of frequencies of a sgmmetric periodic
solution in section 5.2.4. In section 5.3, we consider thekeéoheimer-Holmes
system with periodic perturbations as an example to chexkahdity of the re-
sults. By analysing the Poincaré map of the system, we presuts analogous
to those in section 5.2.1 and 5.2.2. As a result, we are abteetdify the possi-
ble positions of the frequency-locking windows where patioperiodic solutions
with Zz-symmetry exist. Here, we call a periodic solution a perloderiodic
solution if it intersects any cross section at only one poilé then discuss cou-
pled cell systems in section 5.4 where we prove that perdiits have the same
cyclic symmetry in each of the two cells and also derive thenfof the ratio of
frequencies between two symmetric periodic solutions i ¢ells. Tachikawa’s
system is studied as an example of our analytic results. B¢ ¢his chapter with
discussion in section 5.5.

The periodic solutions we considered in the following sawdi will always
be non-trivial. Therefore, for simplicity, the term 'nonvial’ will be neglected
throughout this chapter without further comment. Also, wk always take suf-

fixes to be modulm in this chapter.

5.2 Symmetric solutions in systems with periodic per-

turbations

In this section, we study non-trivial symmetric periodittdmns in the system
(5.1).

SupposeX(t) is a periodic solution of perio® and letrs be a temporal op-
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erator which translates time by an amount.e. 7 X(t) = X(t + s). We firstly

consider th&,-symmetric case.

5.2.1 Z,-symmetric periodic solutions

The periodicity ofX means thatpX(t) = X(t) andrpX(t) = X(t) for all t. This
implies F(X(t + P)) + ¢(t + P) = F(X(t)) + ¢(t) for all t. ThereforeP = kT, for

somek € N,

Definition 5.2.1 Suppose ¥) is a periodic solution of system (5.1).(tXpos-
sesses Zsymmetry ib-{X(t)} = {X(t)}.

If X(t) possessed,-symmetry, then by the uniqueness of ODE solutions there
exists af such thator o 74X(t) = X(t) for all t. By induction, X(t) = o"X(t) =
X(t — no) for all t. Thereforep = IP/n for some integel. Conversely, it is trivial
that X(t) possesses th&-symmetry ifo o 7pn X(t) = X(t) for all t for somel. In
short, a spatial-symmetric periodic solution also indueesporal-symmetry.

Moreover,X(t) hasZ,-symmetry if and only if
o™ o TpX(t) = X(1). (5.2)

for all t and some integam with (m,n) = 1, i.e. mandn are coprime. This is
because thatl, o™} can generate the whole grodp if and only if (m,n) = 1.
More precisely, (5.2) is valid if and only if

o"X(t) = X(t — P/n).
Since there exists an integesuch that"™ = o, the last equation is equivalent to

o X(t) = X(t - IP/n).
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By the last paragraph, this is equivalent to ti¥dt) has theZ,-symmetry. In
other words X(t) hasZ,-symmetry if and only if there exists an integarwith
(m,n) = 1 such that-™X is doing att = 0 whatX did at a timeP/n ago.

For example, irR* as depicted in Figure 5.1, a poir¢ on aZ,-symmetric
periodic trajectory could arrive at the poinixz (the casem = 1) or o3xe (the
casem = 3) after a period of timé&/4. Note that the solution could possess only
Z,-symmetry instead oZ, if it takes a quarter of the period from Xz t0 o2xg

(the casen = 2).

Remark 5.2.1 In the case R) is trivial, (5.2) is not a necessary condition for

Z.,-symmetry. For example, consider
X =ycost, fori=1,..4.

Then Xt) = (y sint, y sint, y sint,y sint) is a periodic solution with Zsymmetry.
However,

oo Tzﬂ/4X(t) = X(t + 7T/2) * X(t)

Condition (5.2) can be achieved by the following two corafis:

o™ o 1piX(to) = X(to), for somety, (5.3)

and
oMo e X(t) = X(1), for all t. (5.4)

The first condition states that there exists an initial painére (5.2) is true, whilst
the second one ensures that the tangent vectors at eaclopo{(t) also satisfy
this spatio-temporal condition. Hence, by integratiomgl¥(t), these two condi-
tions are equivalent to (5.2).

Condition (5.4) is equivalent to™F (7p/nX) + c"¢(t + P/n) = F(X) + ¢(t).
Therefore, ifX(t) is Z,-symmetric, therw™F (7p)nX) = F(X) and hence we have

the following proposition sinc® = KkT,:
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() (b)

Figure 5.1: Schematic diagrams depicting the two cases of-aynmetric periodic so-
lution inR*: (@)m = 3 andj = 2, (b)m = 1 andj = 2. Here,mis taken to be the integer
such thato™xg is the next symmetric copy ofg along the periodic trajector¥(t), and

j — 1 is the number of loops thaf(t) passes througk. We only show the part of the

trajectory betweeng and its next symmetric copy™xg alongX(t).

Proposition 5.2.1 Suppose system (5.1) has a non-trivial periodic soluti¢) X

with period P= kT,. If X(t) has Z-symmetry and satisfies (5.2), then
k
Giem(t + ﬁTrﬁ) = ¢i(t), (5.5)
forallte R, i=1,2,...,n.

Proposition 5.2.1 implies that in order to hav&asymmetric periodic solu-
tion, the perturbation functions mustf@r only by a phase shift. By periodicity
of ¢, we can note that both = kT, andP = (In + k)T, for some integel give the
same necessary condition (5.5). Conversely, if (5.5) isfsad andP = (In+k') T,
wherek’ # k (modn), then the periodic solution is ndt-symmetric for otherwise

we will end up with a diferent necessary condition. Therefore, for a firednd
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kin (5.5), the period of &,-symmetric periodic solution satisfying (5.2) is of the
form (In + K)T, for some non-negative integer
In practice,¢ is fixed at the beginning of the study of a specific collectibn o
ODEs, saypi.1(t + £T,) = ¢;(t) for a fixedk. This impliesgi.m(t + ZT,) = ¢;(t).
Therefore, the period of &,-symmetric periodic solutioX(t) which satisfies
(5.2) is of the form
P=(n+mKkT,,

if gt + 5T4) = ai(0).

Corollary 5.2.1 Suppose system (5.1) has a non-triviglYmmetric periodic so-
lution X(t) satisfying (5.2) an@;,(t + r—'quj) = ¢i(t). Then the period of ¥) is of

the form P= (In + mKT, for some integer .

For example, irR*, suppose we take(, ¢», ¢3, ¢s) = (f(t), f(t + T/4), f(t +
T/2), f(t + 3T/4)) whereT is the period off . In this caseg;,1(t + 3T/4) = ¢;(t),
i.e. k = 3. By the results of the last paragraph, the period @-&ymmetric

periodic solution could be (4 3)T whenm= 1 or (4 + 1)T whenm = 3.

5.2.2 The ratio of frequencies

We now consider the ratio of the frequencies between thegieriforcing
functions and theZ,-symmetric periodic solutioX(t). SupposeX(t) satisfies
(5.2). By Proposition 5.2.1 and Corollary 5.2.1, to ensine possibility of the
existence of a periodic solution with-symmetry, we assume the periodX(t)
is (In + MR T, andgi.1(t + XT,) = ¢ for alli.

Let E be any cross section ¥{(t). Thenc'E,i =0,1,2,..,n— 1, are theZ,-
corresponding cross sectionsX{(t). Denotexg to be a point oiX(t) on E. If X(t)
satisfies (5.2), thee™xg is the next symmetric copy of= alongX(t). See figure

5.1. Define the frequency of(t) to be 2r/T whereT is the average of the first

119



Chapter 5. 5.2. Symmetric solutions in systems with pegipérturbations

return time forX(t) corresponding t&. The frequency of the forcing functions is
defined as usual byrZT,.

It can be easily seen tha(t) intersects all the cross section&E, for i =
0,1,...,n—1, atotal ofjn — mtimes betweenxg ando™xg for some integef, and
n times betweenxg and its first return point. Since the tinxt) spends between

Xge ando™xg is P/n, T is therefore equal to

P n
n" jn-m
which simplifies to
In+m
jin—-m ~

So, we have

Proposition 5.2.2 Suppose K) is a non-trivial periodic solution of system (5.1)
satisfying (5.2) and;,1(t + 'ﬁT,z,) = ¢;(t) for all i, then the ratio of the frequencies

between the periodic forcing function andt)Xs of the form

In + mk
jn-m’

(5.6)
where | and j are non-negative integers.

Again, let us consider the same exampl&frin which we take ¢1, ¢, ¢3, ¢s) =
(f@), f(t+T/4), f(t+T/2), f(t+ 3T/4)) whereT is the period off. In this case,
di1(t+3T/4) = ¢i(t), i.e. k = 3. By Proposition 5.2.2, the ratio of the frequencies

betweenp and aZ,-symmetric periodic solution could be

4
. +3 for the casem =1,
4] -1
or
4
. +1 for the casem = 3,
4j -3

for some integerkand j.
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Proposition 5.2.2 also implies that a regular pattern sxist the positions
where Z,-symmetric period-1 periodic solutions could occur. Hexgyeriodic
solution is called period-1 if it intersects any transvecsass section at only one
point. To have a period-1 periodic solutianmust ben — 1 and alsgy must be 1.

The following corollary then follows:

Corollary 5.2.2 Suppose ¥) is a non-trivial period-1 periodic solution of system
(5.1) with Z-symmetry and;,(t + §T¢) = ¢;(t) for all i, then the ratio of the
frequencies between the periodic forcing function arft) ¥ of the form In- Kk,

where | is a positive integer.

We will present an example to demonstrate this result ini@e&t 3.

5.2.3 Zy,-symmetric periodic solutions

Suppos€Z, is a subgroup oF,, i.e. n = pqfor some positive integey. We
can easily derive results analogous to those in sections &r&l 5.2.2 foiZ,-
symmetric solutions. Sincg, = Z,/ ~, where~ defines an equivalence among
the members oZ, by o™ ~ o™ if my = m, (mod p, this suggests that we need
to defineq of the functions ing to construct a system containi@gy-symmetric
solution inR". We will see this in Proposition 5.2.3.

In general X(t) is aZ,-symmetric periodic solution if and only if
™o 1pp(X(1)) = X(t), (5.7)

for all t and for n, p) = 1. Sincer™* o7p (0 X(t)) = ™o e p(X(t)) = X(t), for
| =1,2,...,q, there are exactly distinct copies o¥Z,-symmetric solutions without
Zjp-symmetry forj = 2,3,...,q: ' {X()}, | = 1,2,...,q.

By replacingn by p andm by mqin (5.2), the necessary condition f&(t) to
beZ,-symmetric is

k
¢i+mq(t + BTqb) = ¢ (t)’ (5-8)
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for all i. In other words, the perturbation functiopgs can be divided inta
groups each of which consists pffunctions which diter only by a phase shift
Ty

Suppose; 4t + KpT¢) = ¢;(t) for all i. Again, the period oX(t) is of the form
(Ip + mKT, then the averaged return tinfeis

P n

X = ,
pJn-mq

which is equal to
Ip+m
jp-m
for some positive integeldsand j. We summarize this by the following proposi-

ozl

tion:

Proposition 5.2.3 Suppose K) is a non-trivial periodic solution of system (5.1)
satisfying (5.7) an@.q(t + —';T¢) = ¢;(t) for all i, then the ratio of the frequencies
between the periodic forcing function andt)Xs of the form
Ip + mk
jp-m’
where | and j are nonegative integers.

(5.9)

It is clear that condition (5.5) implies condition (5.8). dnsystem satisfying
condition (5.5), a&,-symmetric periodic solution is automaticay-symmetric,
which is reflected by the fact that (5.6) is also of the form=aS)

For example, irR*, consideiZ,-symmetric solutions. Suppose we take

(@1, @2, d3, ¢a) = (£(1), F(t+T/4), £(t+T/2), f(t + 3T/4)),

whereT is the period off. In this caseg;,»(t + T/2) = ¢i(t), m= 1 andk = 1.
So the period of @,-symmetric periodic solution is (2- 1)T and the ratio of the

frequencies is of the form
21 +1

2j -1’
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for some integeflandj.

In fact, (5.8) and (5.5) share the same form. Note thas always taken to
satisfy the conditionry, p) = 1 in theZ, case or i, n) = 1 in theZ, case. As for
k, it is determined by the value of the phase-shift betweetudaation functions.

In the following, we demonstrate with an examplekif how to classify all
the possible ratio of frequencies where a periodic solutigh cyclic symmetry
could exist.

Instead of takingi(t) = f(t + (i — 1)T/6) for some periodic functiori with
periodT, we takeg;(t) = f(t — (i — 1)T/6) this time. This is equivalent to

1
Pt + ET) = ¢i, (5.10)

for alli. The ODE system is as usual assumed t@dhsymmetric in the absence
of the forcing terms. Under this framework, a periodic solutcould possess
Zs, Z3, Z, or no symmetry. In each case, (5.10) gives us a fikég comparing
the conditiong;,q(t + —'F‘)T,p) = ¢;(t) in Proposition 5.2.3. The number of distinct
possible ratios depends on how many values,df < m < p, are relatively prime

to p.

o Zsratio: p=6,9=1, and (5.10) impliek = 1. There are two possible:
m = 1 orm = 5. Therefore, according to (5.9), the ratio of frequences c

be
6l +1 6l +5

6j—1 O 6j-5

e Zzratio: p=3,q=2,and (5.10) implieg;,»(t + %T) = ¢;. Hencek = 1.
There are two possible: m = 1 orm = 2. Therefore, according to (5.9),

the ratio of frequencies can be

3 +1 or 3 +2
3j-1 3j-2
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Symmetry Zs Z3 Z, None
i 6l+1 6l+5 3+1  3+2 21+1 ;
Ratio 6-1' 65 | 3]-1' 3]-2 | 2j-1 otherwise

Table 5.1: The classification of the ratio of frequencies of a perioditison with cyclic
symmetry. The underlying 6-dimensional system hasfasymmetry in the absence of

forcing termg¢ and¢ is taken to bep;, 1 (t + ?13T) = ¢j.

e Zyratio: p=2,q=3, and (5.10) implieg; 3(t + %T) = ¢i. Hencek = 1.
There is only one possible: m = 1. Therefore, according to (5.9), the ratio

of frequencies must be
21 +1

2] -1

e Non-symmetric: Otherwise.

This classification is summarized in Table 5.1.

5.2.4 Non-symmetric periodic solutions

In this section, we discuss whether a given rational numbeldcbe the ratio
of frequencies of a symmetric solution. This question arigem the various

equivalent forms of a rational number. For example,

8 16 24

7 121
each of which demonstrates a ratio formed iffatent ways in terms OZs-

symmetry:
1-5+43 3-5+1 5.5-1
2.5-3 3.5-1 4.5+1

Nevertheless, by Proposition 5.2.3, if a rational numbg@ cannot be written

in the form (5.9), then it cannot be the ratio of frequencitany Z,-symmetric
periodic solution. Hence, we can identify those periodikisons withoutZ,-

symmetry by the ratio.
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Firstly, note that the forms in (5.9) for fierentm with (m, p) = 1 are inter-
changeable. This is because @) = 1 implies the existence of integarsandn,
such thain;p + nom = 1. So multiplying both the denominator and numerator of
(5.9) byn, gives

mlp+mK  mlp+(1-mpk I'p+k
n(jp-m  mjp+mp-1  jp-1

wherel’ = npl — ik andj’ = nyj + ny.

Moreover, jp + N, where @,nT) # 1, cannot be transformed into the form
j’p + m, where @, m) = 1. Therefore, for a rational numbeyg, if 8 = jp+ m
with (p, n) # 1, then the periodic solution is ndg-symmetric. We then have the

following proposition:

Proposition 5.2.4 Suppos@i+q(t+%T¢) = ¢;(t) for alliin system (5.1) and/B8 =
(Ip + K)/(jp — m') is a rational number, where, |, and K are integers and
(@,8) = 1. If (p,m) # Lor K £ mk (mod p, then the non-trivial periodic

solution with frequency ratia/g is not Z,-symmetric.

We close this section with a brief remark showing that it isgble for non-
symmetric periodic solutions to nevertheless have frequeatios of the form
(5.9). This demonstrates that condition (5.9) might be nfigent to guarantee
the existence of &,-symmetric periodic solution.

Consider a four-dimensional case of (5.1) wity (t) = ¢i(t + T,/4). In this
casek = 3andm = 1 orm= 3. A Z,-symmetric periodic solution then must have

one of the following ratios of frequencies:

4 + 3 or 4 + 1
4] -1 4j+ 1

for some integersand j, by Proposition 5.2.3. For example/Jis in this form.

Suppose now tha(t) is a non-symmetric periodic solution with periéd= 7T,
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and it intersects 34 times with the cross sectiong, o E, o°E andoE, which
are defined in the same way as we did in the previous sectiomgjgh a whole

period. Then the averaged return timeés

4
P A A0

*3.2
which is 7T,/3. In other words, the ratio of frequencies of this non-synme
solution is 73, aZ4-symmetric ratio, even though this periodic orKit) has no

symmetry.

5.3 The positions of period-1 periodic solutions with

symmetry — an example

In this section, we consider a 3-dimensional system:

X = X1-(X+y+2) —cy+ed+ypi(2wt)
y = y1-(Xx+y+2-cz+eX+yp(2wt) (5.11)
z = Z(1-(X+Yy+2—cx+ey +yops3(2wt)

where ¢4, ¢, and ¢3 are non-negative periodic functions of period. 2A simi-
lar system was studied in the previous two chapters in whieholserved the
existence of a sequence of intervals in which frequencigihgcoccurs. We use
this system to check the validity of the results obtainechim pirevious sections.
Specifically, we only focus on the period-1 periodic solnfiavhich produce the
frequency-locking windows. Recall that a periodic solnti®classified as period-
1ifitintersects any cross section at only one point. Thetpos of the windows
whereZz-symmetric period-1 periodic solutions exist will be idéied. Instead
of applying the previous results directly, we study the eysby analyzing its

Poincaré map and then prove results analogue to PropoSi2ol and 5.2.2. The
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numerical simulations in section 5.3.3 confirm that the {p@ss of these windows

are at exactly the locations predicted by the analytic tesul

5.3.1 Poincagé map

By the same method of calculation as presented in Chaptee &aw easily
derive the Poincaré map of (5.11). We will omit the detaifiedivation but only
demonstrate the map froh‘i;” to H‘1” briefly in the following. The notations we
use here will be completely the same as those in Chapter 3.

NearP;3, the system can be approximated uiy) by:

X = ex+yp;
Y = —cy+vds , (5.12)
W = -w—(1+c)x+(e—1)y+ yps

wherew = z— 1. Suppose that the trajectory of (5.12) starting at tiraes from
(X1, h,z) € H[,)” intersectsﬂgUt at the point §,y,, z) at timet = T,. Integrating
(5.12) implies

W) = g s e gt (M0 649, (o
+1 fs 70 e°(7‘5)¢2(2w7')dr] vy
T1(0
Taly) = s+|og(x—hl)1/e—[x11% sl()e‘e(f‘%l(zm)dr y

Since the plang¢y = 0} supporting the connection betweBgpandP; is no longer
invariant, the intersections of the unstable manifoldPpfand the cross sections
HS" andH!" are relative to thg-coordinate of?; andP; respectively. Following

the same calculation as in Remark 3.2.1,fewordinate of; is

1 T/ W
(m f(; eCT¢2(2(,U(t + T))dT) Y,

and they-coordinate of] is

7T/ W
(;_1 [) e “oo(2w(t + T))d‘[‘) Y.

e—&’r/w
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Therefore, the map betweetf) andH!" is

X = X4y
o XE/® [EX‘l ftg e ¢, (2wr)dr + r—l] ftg ec(T‘t)qu(ZwT)dT] y

D, : +y [ﬁ oﬂ/w €, (2w(t + T))dT] v ,
s | gk f7 & a2t + D)y

t = t+uz—¢logx-— [% ftg e‘e(T“)qﬁl(Zwr)dr] Xty

where, as beforeg = t + 3 — <logx andy, i = 1,...,5, are constant. Note that

the integrals involvingy can be written as

f ’ e “¢1(2w(t + t))dr,
0

whereg’ = uz — %Iogx by changing variable’ = 7 —t. This is useful becausg
is independent of.

Since system (5.11) stays the same by cyclic-permutatsgutixes, the
Poincaré mag : HI' —» HI" is given by the composition of the three maps
i=1,23:

X = X7®+uy
+upxXCle [gx-l J e 2wt + )dr + £ [ e ¢1(2w(r + )dr|y

@ e ks [ €20t + )dr] v ,
s |z [ € a2t + )|y

t4us - Hlogx— | 7 &g (2u(r + D)dr| x 1y

I
Il

(5.13)
where®, : H" — HI" andd; : HI' — HIN. Thatis,® = ®30®,0®; : HI — HIN

5.3.2 Periodic solutions with symmetry

In this section, we give a necessary condition for systerhl{5to have pe-
riodic solutions withZz-symmetry. We will consider only period-1 solutions in

which the periodT is equal to*, k=1,2,3, ....
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SupposeX(t), y(t), z(t)) is a periodic solution of system (5.11) wifg-symmetry
andH = {y = h}. Let (X0, h, z0) € H be a point of the periodic solution at timg
Then the periodic solution intersedtd’ = {z= h} andH" = {x = h} at (2, %o, )
and , z, Xo) respectively. By definition, the Poincaré méap= ®3 o ®, o O, for
the system (5.11) acts in the way depicted in the followiragdam:

1 2
(%o, to) 33 (XO, to+ %) i (XO, to + %ﬂ) i (XO, to + %) (5.14)
Proposition 5.3.1 Supposeab;(Xy, to) = (Xo, to + %) for a fixed k. Ifg;,1(2wt +
A1) = ¢(2wt) for all t and i, then®,(Xo, to + &) = (Xo, to + 2Z) and dz(Xo, to +

21y = (Xo, 1o + )

Proof: We only prove theb, case.

Thet-coordinate ofD,(Xo, to + &) is

1 (9 ke
s ﬁ e "o (Zw (T + to + @)) d‘r] X{,ly,

t+kﬂ+ lIo
ot 3 M3 o gXo

which is equal to

o+ -0 —Efg’e-ef Quw(r + tg))dr| X2 (5.15)
03w’u3egxoe0 d1(2w(T + 1p))dT [ X577y, .

sinceg,(2w(t + tg + %)) = ¢1(2w(T + tp)) for all 7. In addition, ®,(Xg, tg) =

(Xo. to + &) gives

t+ﬁ—t+ }Io }fg,e‘ef (2w(t + to))dr | x5t
03w_0’u3egxoeo $1(2w(T + 1p))dT | X5y,

kr

1 19 1
3, Mg log xo — [E f(; e 1 (2w(r + tO))dT] Xy

Substituting this into (5.15), it follows that thecoordinate ofD,(Xo, to + %) is

2k
equal totp + 7.
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Sinced(Xo, to) = (X0, to + ) andg;, 1 (2wt + 2 ) = ¢i(2wt), we have

c/e

Xo = X t+uy
itz X(C)/e[c)% fo o h1 (20(t + to))dr + £ fo o (2w(T + to))dr |y
| gty [ da(20lto + )ar |y

T/w
+ﬂ5[e_T1w_l X eer¢2(2w(to+7'))d7']y

= X+ puy
+iz Xg/e[cxo fo g2 (20 (v + 1o+ 57)) T+hfo eCT¢3(2‘“(T+t°+_))dT
s g 7 (20 fo+ 7+ £5) o

+Us [ele_l Oﬂ/w e g3 (Zw (to +T+ %) ]

which is thex-coordinate ofP,(Xo, to + ). Therefore®,(Xo, to + &) = (Xo, to +
%). Obviously, thed; part is similar to theb, one.m

In other words, if the perturbation functiongtér by only a phase-shi?@,
then (5.14) is valid if one of the three parts of (5.14) is trlikis phase-shift con-
dition constrains the form of perturbation functions anddeseems too strong
for (5.14) to be valid at first sight. However, the followingoposition shows
that generically it is a necessary condition for systeml(pt@ possess a periodic

solution withZz-symmetry.

Proposition 5.3.2 Generically, the existence of a periodic solution wigks¥mmetry

and period in the system (5.11) implief, (2wt + &) = ¢;(2wt) for all t and .

By genericity, we mean thatz-symmetric solution always exists in an open
interval ofc ande of system (5.11) for a fixed.

Before proceeding the proof of proposition 5.3.2, we makaescemarks on
¢i andty. Firstly, if (X0, h, 2o) € H‘3n is a point of aZz-symmetric periodic solution
at timety, then @, %o, h) and §, zy, Xo) are the intersection points of the periodic

solution and the cross sectioh’ andH}' at timet = to + & andt = to + 3
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respectively. The existence ofZ&a-symmetric solution also implies the tangent
vectors of the periodic solution must possgssymmetry. For &s-symmetric
periodic solution, thex direction of the tangent vector of the poing(h, z,) at
timety must agree with thg direction of the tangent vector of the poigg,(Xo, h)
at timety + kr/3w. By considering system (5.119,(2wtg + 2 ) = ¢1(2wtp).
Similarly, ¢3(2wto + 2 ) = ¢o(2wtp).

Secondlyi, is in fact a function ot, e andw. We will assume that, depends
smoothly onc, e andw, and we denote by, the derivative ot, with respect tac
in the following proof.

Proof of Proposition 5.3.2:

Suppose that there exists a periodic solution @itsymmetry such that

D1(%0,1) = (%oto+ %)
q)z(X0,to+ %) = (Xo,t0+ %) .
®3(X0,t0+ %) = (Xo,t0+ %)

By the definition of thex-coordinates ofb; and®,, we have

c/e

Xo = X+ pry
o xg/e[cxo 1 e g12u(r + to)dr + 1 [ € ¢,(2u(r + to)dr|y
g [W - [ e o200ty + T))dT]
its [eTll (71 e g2ty + T))dT] y
= X+ uy
iz Xg/e[c’% f o2 (20(r+to+ _))d” B (20 (r o+ ))dT]y
+ﬂ4[ﬁ Oﬂ/we”¢3(2w(to+r+ “))dr

+is [ele_l (7 e g (2w(to+ 7+ 4))dr

p—
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which implies

e [CXO fo (¢1(2w(7' +10)) — 2 (2 (T + to + %))) dr
+% fo (¢2(2(u(7' +19)) — ¢3 (20) (T +lo+ %))) dr|y
s 7 (@it ) = s 20 o+ 7+ £2)) ]
s [eTl_l (7 & (ga(20(to + 7)) — ¢3 (2w (to+7+4))) dT] Y

= 0.

In the generic case, this equality holds in an open inter¥at ande. Since
each collection of terms multiplying one @, us andus has a diferent functional
dependence onande, the integrals in each collection can be considered to taanis

independently of each other, i.e. the above equality irsanditions:

fog, e (¢1(2w(7' +10)) — 2 (20 (T + to + %) ) dr =
& (2200 +10) 0320 (r + to+ &) dr =
B e (pa20(to + 1) - ¢3(20 (o + 7+ &)))dr =
B e (#20tto + ) — ¢ (20 (to + 7 + ) o =

The third equality can be written in the form

o O o o

T/ W 2kﬂ' 7T/ W
f " ¢3 (Zw(to +7)+ ?) dr = f € ¢>(2w(ty + 7))dr, (5.16)
0 0

which is valid in an open interval af. Differentiating the equation with respect

to ¢, we have, for the left hand side of (5.16)

ﬂ/w

dLHS = 7€  P3 (Zw(to +7)+ 2 )

f e A (Zw(to +7) + 2 ) 2wtydr.

By integration by parts, the last term is equal to

2 2 /w 2
eC"/“’t{)qbg (Zwto + ?kﬂ)—téqbg (Zwto + ?kﬂ)—ct(’) f b (Zw(to + 1)+ ?k”) dr,
0

which is equal to
e/t o (2wty) — thda(2wto) — Ctf f €7 ¢2(2w(to + 7))dr.
0
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In other words,

7T/ W

SLHS = [ 1egs(2w(to + 7) + ZE) dr
+EIOtBo(2wto) — thpa(2wto) — oy [ € da(2w(to + T))dr.

Equivalently, diferentiating the right hand side of (5.16) with respeat,teve
obtain

7T/ W

P 1€ gpuwlte + 1) + [,

[ 167 go(2w(to + 7))dT

0
7T/ W

+e7/9t o (2wto) — typa(2wto) — oty [ €7 da(2w(to + 7))d.

4RHS ¢, (2w(to + 7)) 2wtydr

Comparing the expressions #1.HS and-LRHS, it is obvious that

7T/ w 2kﬂ' 7T/ W
f €73 (Zw(to +7)+ ?) dr = f 7€ ¢o(2w(ty + 7))dT,
0 0

T/ w o 2k7T
7€ | P3| 20w(ty + T) + = |- d2(2w(to + 7)) |dr = 0.
0
Differentiating the last equation again and then by inductienhave
e 2k
f 7€ [ p3 | 2w(tg + 7) + =" ¢>2w(to + 7)) | dr = 0,
0

for all integern > 0. This implies

7T/ w
fo P(7)e” (¢3 (Zw(to +7)+ %) — ¢o(2w(ty + r))) dr =0,

for all polynomialsP. Since the polynomial space in dense in the continuous
function space with sup-norm, we have

2

7T/ W
f(; (eCT (¢3 (Zw(to +7)+ %) — ¢o(2w(tg + T)))) dr =0.

Therefore,
(]53 (Zwt + %) = ¢2(2wt),
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for allt. Similarly, ¢,(2wt+ %) = ¢1(2wt) can be proved by the same way. Hence,
we have donem
Combining Proposition 5.3.1 and 5.3.2, we are able to iflettie positions

where the periodic solutions witfs-symmetry exist.

Corollary 5.3.1 Generically, the g-symmetry solutions, with peridjg, of system

(5.11) can occur only for
1. k=3, 1=1,2,..,if ¢.1 = ¢ foralli, i.e. when T= 32,

2. k=31+1,1=0,1,2,..., if g1 (t + Z) = ¢i(t) for all i, i.e. when T= &z,

w

3. k=31+2,1=0,1,2,..., if ¢ia(t + L&) = ¢i(t) for all i, i.e. when T= E27,

5.3.3 Numerical results

In this section, we consider an example and display figureshwittustrate the
three possibilities listed in Corollary 5.3.1.

Let ¢1(2wt) = sirf(wt + 61), ¢2(2wt) = sirf(wt + 6,) andgs(2wt) = sirf(wt +
63). We are interested in the positions where period-1 perisdiutions withZs-
symmetry exist. Firstly, by (5.13), the Poincaré map of ¢beresponding ODE

system is the compositich = @3 o O, o @, of three maps:

X = X+ upy

+ [2(—a1 cos(2wg + 26;,1) — by Sin(2wg + 26;,1))
®; +114(a1 COS(2wt + 26;,1) + by sin(2wt + 26;,1)) ,
+us(a coS(wt + 26;,1) + by sin(2wt + 26,,41))] y

t = t+pus—2logx— 55 [1—axcos(t + 26;) + by sin(2wt + 26,)] Xty
(5.17)

i = 1,2, 3. Figure 5.2 shows that the map agrees very well with ther@ai@DE
system for §1,6,,603) = (0,7/3,27/3), ¢ = 0.25 ande = 0.2. Here, we take
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250

I—ZOO.‘\. ' :

150

250

0.02 0.04 006 0.08 01 012 014 016 018 0.2

Figure 5.2: The dynamics of the ODEs system (5.11) (upper) and the P@maap (5.13)
forc=0.25e=0.2 and 01,6, 03) = (0,7/3, 21/3).

parametergy = 9.6, u, = 0.3, uz = 17/3, uy = 264 andus = —357 for the
Poincaré map. Note that the parameters.., us are the same with the ones in
chapter 4 except that the newis the original one divided by 3. This reflects the
fact that we now divide the whole map into three parts. In #s¢ of this section,
all the figures are plotted for the Poincaré map with thiégarameters.

To detectZz-symmetric periodic solutions of the ODE system (5.11), we-c
sider the diference of theg-coordinate and the-coordinate of points where tra-
jectories intersecH‘l” and Hizn respectively. This is equivalent to checkd® o
D4 (Xo, to) — P1(X0, to) = (O, %) in the Poincaré map. We denote tkeoordinate
of this difference byAx. For each fixed, we iterate 1000 times for the map, take
the last 500 points and then calculate the maximum and mmiwfu\x. Periodic
solutions withZz-symmetry exist generically if and only Mlax(Ax) — Min(AXx) =

0 over an open interval iw.
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(91’ 92’ 93) (O’ O’ O) (O’ 7T/3’ 27.[/3) (O’ 27.[/3’ 7T/3)
k 3,6,9,.. 2,5,8,... 1,4,7,..

Table 5.2: Three possible locations of tHeth frequency-locking windows wher2;-

symmetric solution exists.

Without loss of generality, we may take = 0. Figure 5.3, 5.4 and 5.5 show
that the periodic solutions witdz-symmetry are located at specific frequency-
locking windows for the cas®{, 6, 65) = (0,0, 0), (0, 7/3, 27/3) and (Q2r/3, /3),
respectively. In each upper subplots of these figures, veepdts the hyperbolic
curveskr/w, k = 1,2,3,4,5, 6 for reference. It turns out these symmetric solu-
tions occur only at thé-th frequency-locking windows as shown in Table 5.2.
This matches the analytic results which we have shown in Goydb.3.1.

In addition, we remark that there exist isolated values @fhereMax(Ax) —
Min(AX) = 0 but they are not identified &-symmetric by Corollary 5.3.1. This
happens actually due to a non-generic situation. More geggithey appear just
because we are only comparing the x-coordinates of thegoimthe cross sec-
tions but not looking at the whole trajectories, and as atgbgy can be removed
by changingc or e slightly. In other words, this is not the case in our dissimrss

and should be ignored.

5.4 Symmetric solutions in coupled cell systems

In this section, we consider a system formed by coupling tlEQ@ystems:

X

Fi(X) +y(y - X)
y = Fay) +y(x-y),

(5.18)

wherex,y € R" and bothF; andF, haveZ,-symmetry. We call system (5.18) a

coupled cell system with two cells: thecell and they-cell.
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Figure 5.3: The frequency-locking windows whei&s;-symmetric solutions exist for
(61,62,63) = (0,0,0), c = 0.25 ande = 0.2. We consider the Poincaré map (5.17) and
denote the dierence of thex coordinates ofb1 o @ and®;, o @4 o @' by Ax, wherel is an
integer. Only the last 500 points of the 1,000 iterationgdweed. If Max@x)-Min(Ax)=0

in an open intervals ab, then the periodic solutions at thesecould beZsz-symmetric.

The red curves on the upper subplot are hyperbolic cltwgs. TheZz-symmetric solu-

tions occur only ak = 3,6,9, ....
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N w

Max(Ax)—Min(Ax)

o

w

Figure 5.4: The frequency-locking windows whei&s-symmetric solutions exist for
(61,62,63) = (0,7/3,27/3), c = 0.25 ande = 0.2. We consider the Poincaré map (5.17)
and denote the fierence of thex coordinates ofb; o @' and®, o @1 o @' by Ax, where

| is an integer. Only the last 500 points of the 1,000 iteratiare ploted. If Max4x)-
Min(AX)=0 in an open intervals of, then the periodic solutions at thesecould be
Zz-symmetric. The red curves on the upper subplot are hygderhoictionskr/w. The

Z3-symmetric solutions occur only &t= 2,5,8, ....
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w

N

=

Max(Ax)—Min(Ax)

o

Figure 5.5: The frequency-locking windows whei&s;-symmetric solutions exist for

(61,62,63) = (0,27/3,7/3), c = 0.25 ande = 0.2. We consider the Poincaré map (5.17)
and denote the fierence of thex coordinates ofb; o @' and®, o @1 o @' by Ax, where
| is an integer. Only the last 500 points of the 1,000 iteratiare ploted. If Max4x)-
Min(AX)=0 in an open intervals of, then the periodic solutions at thesecould be

Zz-symmetric. The red curves on the upper subplot are hygderhoictionskr/w. The

Zz-symmetric solutions occur only &t= 1,4, 7, ....
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Suppose there exists a solutiott], y(t)) in the system (5.18), for whick(t)
andy(t) are periodic solutions of-cell andy-cell respectively. We are interested
in the ratio of frequencies betwee(t) andy(t), specifically, when they are also

Z,-symmetric.

5.4.1 Synchronisation of periodic solutions

It clearly follows from (5.18) thak(t) is a periodic solution of the system:
X = F1(X) + y¥(b), (5.19)
whereF_l(x) = F1(X) — yx. Similarly, y(t) is a periodic solution of the system:

y = Fa(y) + yX(1), (5.20)

whereF,(y) = F,(y) — yy. Denote byP, and P, the period ofx andy respectively.
As we have shown at the beginning of section 5.2.1, there pgistive integers

ki andk, such thaPy = k; Py andPy = kyPy. This implies

We denote this common peridd
Note that bothF; andF, are still Z,-symmetric. The following proposition

shows that a kind of synchronisation must occunf@ndy to beZ,-symmetric.

Proposition 5.4.1 Suppose system (5.18) has a non-trivial periodic soluté), y(t)).
Thenx is Z,-symmetric if and only ¥ is Z,-symmetric. Moreoveg™ o 7p/n X(t) =

X(t) if and only ife™ o Tp/nY(t) = y(t), where(m, n) = 1.

Proof: Since (5.19) is &,-symmetric system with a periodic perturbation, the
results obtained in the previous sections can be appliedp&ex(t) is Z,-

symmetric and satisfies™ o rp/nX(t) = X(t), wheremis an integer withify, n) = 1.
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By Proposition 5.2.1x(t) hasZ,-symmetry only if
Fon(t+ 2P) =100
for all t. This is equivalent to
o5 =5t 7).
for all t. In other words,
o™ o Tpmy(t) = (1),
for all t. Thereforey(t) is alsoZ,-symmetric.
Conversely, ify(t) is Z,-symmetric, then by the same argument, we can easily
prove thatx(t) must be als@,-symmetric. The proposition then followa.
Proposition 5.4.1 is very important as it also shows thatstrametric solu-
tions in both cells are always of the same form. More pregistlo™x, is the
next symmetric copy of a poing alongx(t), theno™y; is also the next symmetric
copy of a pointyy alongy(t). This result further restricts the form of the ratio of
frequencies betweer andy. We will give an example of this fact in the next

section.

The following corollary for theZ, case is trivial.

Corollary 5.4.1 Suppose system (5.18) has a non-trivial periodic soluté), y(t))

and Z, is a subgroup of £ Thenxis Z,-symmetric if and only ¥ is Z,-symmetric.

5.4.2 Ratio of frequencies between two cells

We now turn to study the ratio of frequencies. Again, as weididection
5.2.2, we define the frequency »fto be f, = 27/T,, whereT, is the average of

the first return time corresponding to a cross section. &mhyjlthe frequency of
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y is defined byf, = 27/T,. By Proposition 5.4.1, we suppose botlandy are
Z,-symmetric satisfying

o™ o Tp;X(t) = X(t) (5.21)
and

o™ o Tp,y(t) = Y(1), (5.22)
where (n,n) = 1. Then by the same arguments as we had in section 5.2.2, we

have

and
P n P
= — X

we have the following proposition

Proposition 5.4.2 Supposéx(t), y(t)) is a non-trivial periodic solution of the cou-
pled cell system (5.18). If bothandy are Z,-symmetric satisfying (5.21) and
(5.22), then the ratio of frequencies:ofindy is of the form

fy _ jzn—m

f«  jin-m

(5.23)
for some integers;jand p.

Similarly, the following corollary for theZ, case is a straightforward result.

Here,Z, is a subgroup oF.

Corollary 5.4.2 Supposéx(t), y(t)) is a non-trivial periodic solution of the cou-
pled cell system (5.18). If bothandy are Z,-symmetric, then the ratio of fre-
quencies ok andy is of the form

fy _jop—m
) , 5.24
fx Jap—m ( )
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for some integers,j j, and whergm, p) = 1.

Now, we can identify those rational numbers which are notrétm® of fre-

guencies of any symmetric periodic solutions in two cells.

Corollary 5.4.3 Suppose B j1p+ mand g= j,p+ M are two positive integers
such that(p,q) = 1, ji, jo, m and mare integers. Ifim,p) # 1, (m', p) # 1 or
m # m, then ¢ p is not the ratio of frequencies of any non-trivigj-Eymmetric

periodic solution in two cells.

5.4.3 Numerical results- an example

In this section, we use Tachikawa’s example to check numkyithat the
results in the previous sections are valid.

The system consists of two replicator equations coupl&dsively:

X ((AX); — X" AX) + D(y; — X
?q X ((AX) ) + D(yi — %) ’ (5.25)
Yi = Yi((By):i —y'BY) + D(x - ¥)

fori =1,2,3,4. Here, the 4« 4 matricesA andB are defined by

(aii s ai,i+l’ ai,i+2’ ai,i+3) (O’ _20, _10, 10)
(i, biji1, b2, biis) = (0,-1.0,-0.9,2.0)

where the sfiixes are all taken modulo 4.

Without coupling, i.e. the cade = 0, thex-cell has a robust heteroclinic cycle
as an attractor. In contrast, an unstable heteroclinicogxists in they-cell and,
as a result, the attractor within tlyecell is a periodic orbit. As long ad > 0, the
attractors in both cells are periodic or quasi-periodic.

Replicator equations describe the dynamics of the freqasmén-species in

an ecological system. More precisely, ¥etlenote the frequency of thih species

143



Chapter 5. 5.4. Symmetric solutions in coupled cell systems

and suppose that the rate of increage; depends on the flerence between the

fitnessfi(x) of theith species and the average fitné_(;s) = > % fj(x), i.e.
% = %(fi(x) - f(x)), (5.26)

I = 1,..,n. Equation (5.26) is calledeplicator equation Sincex; denotes the

frequency of theth species, the equality

anxi =1
i=1

is trivially true. In other words, replicator equations defined on the-simplex.

Normally, we takefi(x) to be a linear functional of
n
(AX);i = Z aij Xj,
i=1

whereA = (a;) is an x n matrix. In game theory, this matri can be considered
as the payfi matrix. For example, in the rock-scissors-paper fair gafnean be

of the form
a b c

c a b,

b c a
wherea, b, c denote the paydobtained by rock against rock, scissors and paper,
scissors against scissors, paper and rock, or paper agapest rock and scissors,
respectively. Wherfi(x) is linear, which is the case of Tachikawa’s paper, the

replicator equation (5.26) is in the form
X = X((AX); = x"Ax), i=1,2,....n,

A = (&;j), which is equivalent to then(- 1)-dimensional Lotka-\Volterra system
[37]

n-1

j=1
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Figure 5.6: The frequency-locking intervals in system (5.25) when wagythe coupling
strengthD. We reproduce this figure from [74].

wherer;, = a; — an andai’j = a; — a,m- Specifically, by suitable choice of the
paydf matrix A, there exists a stable robust heteroclinic cycle in theicafur
system.

Tachikawa compared the frequencies of the attractors imeglts and showed
numerically that frequency-locking intervals Dfcan be observed when varying
the forcing strengtiD. See Figure 5.6. He also explained some of the ratios are
due to symmetric periodic solutions in both cells. In thédwing, we will check
that our analytic results are confirmed by numerical ingedgtons for this system.

Specifically, we answer the following questions:
e Are the period of periodic solutions xcell andy-cell the same?
e Do they both share the same symmetry?

e Does the ratio match the form given in Proposition 5.4.2 awoCary 5.4.27?
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Since both cells have robust heteroclinic cycles conngdtire four points
(1,0,0,0),(0,1,0,0),(0,0,1,0) and (90,0, 1), we investigate periodic solutions
near the heteroclinic cycles by putting cross sections tiesse four points. Let
E = {x3 = 0.2} be the cross section near, (00, 1) in the x-cell, thenc'E =
{o'x3 = 0.2} are the cross sections nes#(0,0,0,1) fori = 1,2, 3,4. The cross
sections in they-cell are defined by the same way and denotedrty. See
Figures 5.7, 5.8 and 5.9.

Supposex(t) andy(t) are periodic solutions in the-cell and they-cell, re-
spectively. By Proposition 5.4.2, the ratio of the freques®f twoZ,-symmetric
periodic solutions is of the form (4—m)/(4j, — m), wherem = 1 or 3. To detect
Z,-symmetric periodic solutions, we record tkecoordinate of points ix(t) N E
and thex,-coordinate of points ix(f) N o°E, which are denoted byt and xﬁf’E
respectively, and then compare the last 50 points to seeiiétexists the same
sequence of points which occurs periodically. If this semeeexists, the periodic
solution is aZ4,-symmetric one om = 3 type.

Although thex,-coordinate of points ix(t) N o E is not computed, we are still
able to identify symmetric periodic solutions of thre= 1 type by knowing only
xE andx]E. In fact, the number of loops the periodic solution circlewnrd is
different in these two cases. It can b&,31 ... form= 1, while 15,9, 13, ... for
m = 3. For example, if bothxt and x‘fE are period-7 sequences, we then know
the underlying symmetric solution is af = 1 type.

The periodicity and the symmetry of the solutions in theell are studied
in the same way and all the cross sections as well as othetiontare defined
analogously. See Figures 5.7 and 5.8 for schematic diagrams

In the following, we will consider three values bBffor which the system has
Zs, Z, and non-symmetric solutions. These valuesre 108, D = 2.1 x 107°

andD = 3.3x 1075,

146



Chapter 5. 5.4. Symmetric solutions in coupled cell systems

°

cE cE’

Figure 5.7: Schematic diagram depicting the existenceZgisymmetric periodic solu-
tions in thex-cell (left) and they-cell (right). In thex-cell, m= 3 andj; = 2. In they-cell,

m = 3 andj, = 3. The ratio of frequencie§,/ fx = 9/5 in this case.

o Z,-symmetry

By Proposition 5.4.2, & could be the ratio of frequencies &f-symmetric
solutions inx andy-cells ofm = 3 type. From Figure 5.d) = 108 gives
this ratio. So we integrate the system with initial point{1Q0%, 104, 1 -
3x 104104104104 1 - 3 x 104 for this value ofD to look for a
Z4-symmetric solution. As is shown in Table 5.3, there exisfgedod-5
periodic solution in the-cell and a period-9 one in thecell. By comparing
the sequences of andx] , the periodic solution is indee-symmetric.
This is also the case for thecell. In addition, we note that the period »f
andy, which can be calculated by summing up the return tifeandT,,

are both equal to 407.04, as we expect.
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Xt || 7.288e-09 4.569e-08 4.459e-08 2.038e-11 2.597e-12 7(BBe
X‘fE 4.569e-08 4.459e-08 2.038e-11 2.597e-12 7.288e-09 4HHYe
T 82.62 84.62 84.63 80.50 74.67 82.67
yE || 1.484e-08 2.487e-10 6.829e-08 7.097e-10 6.382e-08 L@BH2e
5.475e-09 6.393e-09 2.057e-10 1.484e-08
ny' 6.829e-08 7.097e-10 6.382e-08 1.962e-09 5.475e-09 6(3D3e
2.057e-10 1.484e-08 2.487e-10 6.829e-08
Ty 43.62 45.45 46.48 43.12 48.76 41.34
49.28 41.42 47.56 43.62

Table 5.3: The x; andx4-coordinates of the last few points x(t) on the cross sectiors
andoE, and they; andys-coordinates of the last few points yt) on the cross sections
E’ ando3E’, respectively. The system (5.25) is integratedor 1078 starting from the
initial point (104,1074,104,1-3x10%,104,104,10%, 1-3x10%). The data shows
that there exists a periodZ-periodic solution in thex-cell and a period-Z4-periodic
solution in they-cell. This gives the ratio of frequencieg® By summing the return

timesTy andTy, we see that the period of both periodic solutions is 407.04.
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cE

Figure 5.8: Schematic diagram depicting the existenceZgisymmetric periodic solu-
tions in thex-cell (left) and they-cell (right). In thex-cell, m= 1 andj; = 2. In they-cell,

m= 1andj, = 3. The ratio of frequencie§,/fx = 11/7 in this case.

e Z,-symmetry

Here, we consider/Bb = (2x4-1)/(2x4-3) as this could be the ratio of a
Z4-symmetric periodic solution ah = 3 type in thex-cell and one o = 1
type in they-cell. See Figure 5.9. By Proposition 5.4.1, this is actuadt

the case.

However, by Proposition 5.4.2/% could be the ratio of tw@,-symmetric
periodic solutions in the two cells. Figure 5.10 shows how pleriodic
solutions circle around in two cells to produce this ratioork Figure 5.6,
D = 2.1 x 10°° gives this ratio. So we integrate the system with initialjoi
(103,103,103,1-3%x 103,103,103 10°3,1 - 3 x 1073 for this value
of D to see if the periodic solutions in both cells atesymmetric. As is
shown in Table 5.4, there exists a period-5 periodic satuiiothe x-cell
and a period-7 one in thecell. By comparing the sequencesqf, xﬁfE
and ><‘3’2E, the periodic solution is indeed n@j but Z,-symmetric. This is

also the case for thecell. In addition, we notice that the period aindy
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cE

Figure 5.9: Schematic diagram showing a situation which cannot happesystem
(5.25). AZy-symmetric periodic solution in the-cell of typem = 3 (left) can not ac-
company aZs-symmetric periodic solution in the-cell of typem = 1 (right). In other

words, 75 is not a ratio of frequencies of tway-symmetric periodic solutions.

are both equal to 218.64.
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Xt || 4.275e-05 6.907e-05 9.160e-05 2.141e-09 8.130e-05 4@55e
xfE 9.166e-05 5.260e-05 8.693e-05 1.978e-06 7.550e-05 90Bbe
xng 9.160e-05 2.141e-09 8.130e-05 4.275e-05 6.907e-05 90aB0e

Tx 38.24 51.71 38.50 43.12 47.07 38.24
Y= | 7.272e-06 8.045e-05 3.412e-07 8.702e-07 1.204e-04 40®2e

2.861e-07 7.272e-06

yZSE' 2.125e-06 1.418e-04 1.138e-06 4.538e-07 3.597e-05 I@EYe
2.211e-07 2.125e-06

y‘S’ZE' 1.204e-04 4.793e-06 2.861e-07 7.272e-06 8.045e-05 3@A3e
8.702e-07 1.204e-04

Ty 34.86 26.42 29.68 36.46 31.05 25.59

34.59 34.86

Table 5.4: Thexz, X4 andxz-coordinates of the last few points x(t) on the cross sections

E, o°E ando?E, and theys, ya andys-coordinates of the last few points gft) on the

cross sectiong’, oE’ ando?E’, respectively. The system (5.25) is integrated Boe

2.1x107° starting from the initial point (16,1073, 103,1-3x1073,10°3,10°3,1073,1-

3 x 1073). The data shows that there exists a periaf-Symmetric periodic solution in

the x-cell and a period-Z,-symmetric periodic solution in thecell. This gives the ratio

of frequencies /5. By summing the return timels, andT,, we see that the period of both

periodic solutions is 218.64.
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Figure 5.10: Schematic diagram depicting the existenc&gtymmetric periodic solu-
tions in thex-cell (left) and they-cell (right). In thex-cell, m= 1 andj; = 2. In they-cell,

m= 1andj, = 3. The ratio of frequencie§,/ fx = 7/5 in this case.

e Non-symmetry

Apparently, 32 is the ratio of the frequencies of neitt&mor Z,-symmetric
solutions by Corollary 5.4.3. From Figure 5B, = 3.3 x 107 gives this
ratio. So we integrate the system with initial point (40.03,103,1-3x
1073,103,10°3,10°3,1 - 3 x 10°®) for this value ofD to see if the periodic
solutions in both cells have any symmetry. As is shown in @&bb, there
exists a period-2 periodic solution in thecell and a period-3 one in the
y-cell. By comparing the sequences)gfand xng, the periodic solution is
indeed noZ,-symmetric. As a result, it is n&;-symmetric as well. This
is also the case for thecell. In addition, we see that the periodéndy

are both equal to 1046.
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X- | 1.482e-05 1.841e-08 1.482e-05
><ng 1.326e-05 1.982e-06 1.327e-05
T 49.32 55.54 49.32
yE' || 5.248e-08 2.146e-05 3.409e-07 5.248e-08
yng’ 1.024e-06 3.594e-06 3.131e-08 1.024e-06
Ty 39.38 35.36 30.11 39.38

Table 5.5: The x; andxs-coordinates of the last few points gft) on the cross sectiors
ando?E, and they; andys-coordinates of the last few points yt) on the cross sections
E’ ando?E’, respectively. The system (5.25) is integrated Boe 3.3 x 10°° starting
from the initial point (103,1073,103,1-3x102,103,10°3,103,1 - 3x 10°3). The
data shows that there exists a period-2 non-symmetricgiersmlution in thex-cell and a
period-3 non-symmetric periodic solution in thxeell. This gives the ratio of frequencies
3/2. By summing the return timeg, and Ty, we see that the period of both periodic

solutions is 10486.
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5.5 Discussion

In this chapter, we have demonstrated a systematic apptoatie analysis
of coupled cell systems consisting of two cells which arepted difusively. We
concentrated our investigation on the existence of namatmperiodic solutions of
systems with cyclic symmetry. Such a coupled cell systembsadecomposed
into two systems with periodic perturbations when periagbtutions occur in
both cells. Consequently, we first studiggsymmetric ODE systems perturbed
by periodic functions.

For this kind of system, we have shown that to have a nonatrieiclically
symmetric, periodic solution, the perturbation functionast dtfer by only a
phase-shift. Once we fix a set of perturbation functionssatig this necessary
condition, the ratio of the frequencies between a cyclcayimmetric periodic
solution and the perturbation functions can be identified.

A Guckenheimer-Holmes system perturbed by periodic fonstis then stud-
ied as an example to check the validity of results obtaineskeition 5.2.1 and
5.2.2. Instead of applying these results directly, we dated the Poincaré map
of the system and then give analogous results by studyinghtye analytically.
Our result shows that a regular pattern for the frequencikihm windows where
Zz-symmetric period-1 periodic solution exists can be obsgiyenerically.

By applying the results for the system with periodic peratidns, we are able
to extend our study to symmetric periodic solutions in cedptell systems. Our
results show that the symmetry is always 'synchronizedwvken two cells and
again the ratio of the frequencies of the non-trivial synmuogieriodic solutions
in two cells can be identified. Moreover, the symmetric pgigsolutions in each
of the two cells must be of the same type. These observatipnidexplain the
numerical results given by Tachikawa.

There are still many questions unsolved in the coupled gstesns with cyclic
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symmetry. For example, ficient conditions for the system to have a cyclically
symmetric solution are unclear. So far, we only understaadl for some ratio
of frequencies the periodic solutions could be symmetriowelver, knowing the
ratio of frequencies is not flicient to identify what symmetry a periodic solution
possesses. An example can be found in Tachikawa’s systeb fob.5 x 1077
where the periodic solutions in both cells are @gtsymmetric even though the

ratio of frequencies, 3, is of theZ,-symmetric form.
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Chapter 6

Conclusion and Future Work

Chapters 3, 4 and 5 contain the central results of this thaisisled into these
three parts: the construction of Poincaré maps, the asatyone specific ex-
ample, and the investigation of symmetric periodic orbitsiag in coupled cell
systems. In this chapter, we give concluding remarks on e&tiese topics in

turn and describe directions for future research on each.

6.1 Constructing Poinca& maps for time-periodically
forced heteroclinic systems

In Chapter 3, we have presented a systematic method to dbeveoincaré
map of the time-periodic forced Lotka-\olterra systenRth The derivation in-
volves careful calculation of (i) the local maps by integrgthe linearized system
near each equilibrium point, and (ii) the global maps byneating the unstable
manifold of each periodic orbit bifurcating from the origirequilibrium points
due to the perturbation. Unlike the method by Afraimovichle{3], we keep the
time-dependent terms in each step of the derivation. Thigptioates the calcula-

tions but enables us to obtain a more general and, indegéctogsult. Our result
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should be able to be extended to higher dimensional asyiogligtstable simple
heteroclinic cycles, which by definition are heteroclinycles with connections
lying in two-dimensional planes.

Essentially, the Poincaré map can be divided into two pafts time-independent
terms reflect a constant forcing term corresponding to thamaod the perturba-
tion function. On the other hand, the oscillating comporarthe perturbation
function contributes to the time-dependent terms tigciing the form of the lin-
earized systems and the unstable manifold of each periodiichofurcating from
the original equilibrium points. From this point of view,snot too hard to write
out the form of the Poincaré map.

Finding the parameters in the Poincaré map (3.25) is naigstiforward. All
we know is that they are functions ofe and depend on the form of the perturba-
tion function. This results in two diculties: (i) it is very hard to find a suitable
set of parameters for simulating an ODE system (it involMesity of trial and
error), and (ii) it is very hard to analyze the changes of teaghics of the ODE
system when varying ande because the dependence of the parametecsamial

eis not known.

6.2 Analysis for time-periodic forced heteroclinic sys-

tems

Based on the Poincaré map we derived, we are able to carrg thatrough
mathematical analysis of the dynamics of the systems.

In Chapter 4, we first discuss the asymptotic order ofx#o®ordinate. The
results show that an analytic study of the Poincaré mawelgty Afraimovich
et al. [3] can not explain the dynamics of the original ODEteys Moreover,

the results also predict twoftierent scenarios: the casesear 0’ and ¢ large’,
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occur. (Recall that we define= (c/e)® - 1.)
In summary, we are interested in the dynamics of the ODE systleen vary-

ing the frequency of the perturbation function and the main results are:

e If eis near 0, the system is equivalent to a damped pendulum arigjue.

In this case, bistability arises in some intervalguof

e If € is large, the system is equivalent to a circle map. Dependmthe
frequency of the forcing function, it can be non-invertiblehere chaotic
dynamics can be observed, or invertible, where only regigariodic or

guasiperiodic) dynamics can exist.

Although we have attempted to understand the dynamics o$ykeem for
all w andc/e, the case: large andw of medium size remains analytically in-
tractable. So far, we explain the dynamics of the system bbgider the case for
w of medium size as some kind of transition state whemoves from small to
near infinity. However, we are not completely sure, in thisec@lthough it seems
reasonable), whether the Poincaré map is still equivateatcircle map and how
many bifurcations may take place as the system switcheseatleing equiva-
lent to an invertible and a noninvertible circle map. Theidulty of this case is

due to the complicated form of the Poincaré map.

6.3 Symmetric periodic solutions in coupled cell sys-
tems

In Chapter 5, we consider coupled cell systems in which twdEGpstems
with cyclic symmetryZ, are coupled dfusively. We are interested in the interac-

tions between non-trivial periodic solutions with cyclimsmetry in the two cells.
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Specifically, the ratios of the frequencies of periodic sohs in the two cells for
which the periodic solutions are symmetric are identified.

To study a coupled cell system when periodic solutions gwistreduce the
coupled system to a single system subjected to a periodiarpation. Our re-
sults prove that to have a non-trivial symmetric periodilcison, the perturbation
functions must dter only by a phase-shift. The ratios of frequencies betwieen t
non-trivial symmetric periodic solutions and the pertuitua functions are also
identified.

With these results, we are able to analyze systems compds$ed coupled
cells. The study proves that a 'synchronization’ of symmetways exists be-
tween the non-trivial periodic solutions of two cells. Mgnecisely, if there exist
non-trivial periodic solutions in the two cells, then theripdic solution in the
first cell is Z,-symmetric if and only if the periodic solution in the othesllas
alsoZ,-symmetric. Moreover, they share the same kind of symmety,they
have the sammdefined in (5.2). In addition, all the possible ratios of freqcies
of symmetric periodic solutions in these two cells can besifaed.

The work in Chapter 5 provides necessary conditions of tietence of sym-
metric periodic solutions in a coupled system with two cellsis only helps to
identify systems which do not have any symmetric solutiord systems which
could have a symmetric solution. It is then important to find $uficient condi-
tions for the existence of symmetric periodic solutions.

As was shown in [74], bistability exists over a range of valoéthe coupling
stengthD. Moreover, it is possible to haveZa-symmetric ratio (147) and, at the
same time, a non-symmetric ratigZ23. In other words, the ratio of frequencies
obtained depends on the initial condition.

So far, we have studied the coupled systems of two cells. @naltexten-

sion of our results could be the consideration of latticepted cell systems. It
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has been reported in the literature that coupled cell systeith symmetry pro-
duce spatial-temporal patterns [73]. A question arises&anng the existence of
'synchronization’ of symmetry between the periodic sauos of these cells for
a coupled system with cells. A similar question has been studied by M. Gol-
ubitsky et al. in [27]. In the following, we briefly review thieesults and then
describe how they may be related.

Golubitsky et al. [27] considered networks of coupled phassllators:
0 = F(6), (6.1)

whereé = (64, ...,0\) € SV, F = (fy, ..., fy) € RN. Here,S=R/Z = [0, 1).
Firstly, they defined the termsinding numberaverage frequencgnd coe-

volve

Definition 6.3.1 ([27]) Let 6(t) be a solution of (6.1) on an interval = [ty, t5]
andg*(t) be the lift ofg(t). The winding number af(t) on the intervalk is given

by
P} = 65 (t2) — 05 (t).

If 4(t) is a T-periodic solution of (6.1), then the lift satisfies
-t +T) = 64(t) + p,

wherep = (o1, ..., pn) € ZN is a vector of integers. The winding numbe®pfn a

periodic orbit is defined by
AT = p,

where T is the minimal period for the solution as a whole.

Definition 6.3.2 ([27]) The average frequeno;{ of 6;(t) overr is defined by

—
= }
-ty
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If the limit

T

Vi = lim V]

|r| >0

exists, we say that; is the average frequency of cell j. d{t) is a T-periodic

solution of (6.1), then we have

Definition 6.3.3 ([27]) Two phase oscillators i and j coevolve if the torigse
SV : 9, = 0;} is flow-invariant. They are in the same collection if theréstxa
chain of distinct oscillators & ky, ..., kni1 = jsuch that all pairgko, ky), ..., (Km, Kme1)

coevolve; m is the length of this chain.
Then they proved the following results:

Proposition 6.3.1 ([27]) Suppose that oscillators i and j coevolve, then thedwi

ing numbers of a periodic solution to a phase oscillatoregs{6.1) are equal and
the winding numbers of any solution to the system (6 /igrdat most by 1. If the
average frequency; is defined, then the average frequengys defined as well

andvi =Vj.

Proposition 6.3.2 ([27]) The collections of oscillators in a network have tiog f
lowing properties: (a) Winding numbers of a periodic sabatiare equal for all
cells in the same collection. (b) If average frequency isneeffifor one cell in a
collection, then it is defined for all, and this average fregay is the same for
all cells in the collection. (c) Leti and j be two cells in thense collection and
let m be the length of the shortest chain of oscillators retathem. Then for a
general solution, the winding numbers of cells i and j on d@erival djffer at most

by m+ 1.
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In short, the coevolution of two cellsand j, states that there exists an invari-
ant torus in the,6;-plane which forces frequency-locking to occur. In theis&a
the invariant torus i$6; = 6;} and hence the two cells are 1 : 1-locked. However,
in the two examples we have considered in Chapter 5, coevnldbes not always
exist due to that the two oscillators we coupled are not ideht Therefore, we
expect the occurence of other locking modes.

Therefore, we might be able to exploit this idea to extendwleecell systems

to N-cell systems. More precisely, if we consider the system:
% =fi()+r9(x) 1=12_.N, (6.2)

wherex; = (X1, ...Xin), g IS a function depending on how we couple the cells, and
fi’'s areZ,-symmetric. We then say thatandx; coevolve if there exists a periodic
solution in thex;x;-subspace. In this way, we might be able to extract a two-cell
system from then-cell system, and two-cell systems were studied in Chapter 5
A 'collection’ of cells can be defined in a similar way. Work tnis problem is

ongoing.
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