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Abstract

A frictional spring—block system has been widely used hisédly as a model to display some of
the features of two slabs in sliding frictional contact. €at, Dawes and Willis (2008) demon-
strated that equations governing the sliding of two slahddcbe approximated by spring—block
equations, and studied relaxation oscillations for twdsldriven by uniform relative motion
at their outer surfaces, employing this approximation. phesent work revisits this problem.
The equations of motion are first formulated exactly, with &liowance for wave reflections.
Since the sliding is restricted to be independent of pasitio the interface, this leads to a set of
differential-diference equations in the time domain. Formal but systemsgimptotic expan-
sions reduce the equations tdfdrential equations. Truncation of thefdrential system at the
lowest non-trivial order reproduces a classical sprimgehisystem, but with a slightly fierent
“equivalent mass” than was obtained in the earlier work eRidn of the next term gives a new
system, of higher order, that contains also some explifgtes of wave reflections. The smooth
periodic orbits that result from the spring—block systentha regime of instability of steady
sliding are “decorated” by an oscillation whose period iated to the travel time of the waves
across the slabs. The approximatinfjeliential system reproduces thitest with reasonable ac-
curacy when the mean sliding velocity is not too far from thigaal velocity for the steady state.
The diferential system also displays a period-doubling bifuoratis the mean sliding velocity
is increased, corresponding to similar behaviour of theedifferential-diterence system.
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1. Introduction

Frictional spring—block systems have been studied for diez@n search of a better under-
standing of friction. For practical and engineering ingtsethey also constitute good mechanical
analogues of experimental apparatus, machines and tooledVer, they are useful “toy model”
nonlinear systems for studying the dynamics of frictiortalksslip oscillations (Burridge and
Knopaf, 1967, Rice and Tse, 1986) which represent a possible meschaasponsible for the
recurrence of earthquakes (Brace and Byerlee, 1966). Quld,dmowever, argue legitimately
that a spring—block system cannot “correspond closely tacamal fault” (Rice and Tse, 1986)
whose behaviour depends on continuum mechanics fields.

In this paper, we present a method for reducing the dynamg&iwtional elastic continuum
to the dynamics of a sliding block pulled with a generalizezlih—\Voigt model (a spring and
a dashpot in parallel) when elastic radiation and boundetfigation are accounted for. This
particular aspect concerns only the modelling of the stnes®s and is independent of the model
of friction that is employed to complete the formulation. We&s propose a systematic method
for deriving sliding—block mechanical analogues of fiocil elastic continua that are useful for
the investigation of the nonlinear dynamics of slidingtioa and the states of erratic sliding of
frictional systems and may provide new insight into the egis recurrence of earthquakes and
aftershocks.

Earthquakes are recurrent and aperiodic, while basic-stiploscillations are periodic. Ex-
perimentally, irregular slip patterns have been observ@ery low driving velocities for which
elastic radiation is commonly disregarded (Ruina, 1983g6Gal., 1984, Gu and Wong, 1994).
We will show that taking into account elastic radiation alothe appearance of complex slip
dynamics even for low driving velocities.

Fully developed stick-slip oscillations are relaxatioritiations that comprise a long quasi-
stationary phaseduring which the stress builds up linearly in time followegl & sudden and
short harmonic slip phase accompanied by a stress drosiieihe elastic energy stored dur-
ing the first phase (Rice and Tse, 1986, Putelat et al., 20ABhough Coulomb’s model of
friction captures the essence of stick-slip oscillatiomsf the diference in values between the
static and dynamic cdicients of friction (Bowden and Tabor, 1954), it cannot actddor the
existence of a velocity-dependent critical value of thérstiss for the appearance of stick-slip
and the increase of stick-slip amplitude for decreasirfinstss or velocity induced by slip mem-
ory effects (Rabinowicz, 1957). These experimental observati@ns reproduced theoretically,
as we recall below, only from the concept of rate-and-statéidn proposed by Ruina (1983)
and Rice and Ruina (1983) following Dieterich (1979).

Rate-and-state friction is a general framework for the ¢jtetive description of friction laws
in which the frictional shear stresss determined by relations of the type

r=F(v,¢;0) and ¢ =—-G(v,;0), (1)

wherev ando denote the interfacial slip rate and normal stress whitepresents an internal
variable characterising the state of resistance to slidirthe interface. The evolution law (1)
models the memoryfiects typical of the response of frictional interfaces todardvelocity

1in this paper we define the “quasi-stationary phase” as tiegbaa periodic orbit on which the acceleration is
negligible, reserving “quasi-static” for a part of an orlait a system, in which elastic wave propagation is disregghrd

3



changes. The instantaneous frictional response desdripttk law (1) implies the steady-state
friction law
7 =FsdV;0), (2)

obtained for slipping at constant rate= V and constant interfacial stafe= ¢s{V; o) given
implicitly by solving G(V, ¢ss o) = 0. Accounts of the phenomenological description and geo-
physical applications of such laws can be found in the re\aeticles of Marone (1998) and
Scholz (1998), while the present state of our physical wtdading of such laws and their mi-
crophysical foundations are reviewed and discussed in Bauger and Caroli (2006) and Putelat
et al. (2011).

Phenomenologically, the concept of rate-and-state drictissumes that a reference value of
the friction codficient associated with a reference slip rdtés modified by correction terms that
depend on the velocity and the interfacial state. It is sgpgddhat the interfacial state relaxes
to a steady state after sliding over a length characterigea tmemory lengti.. A common
realisation of such friction laws is the Dieterich ageing lBefined by

7 =[a, +aln(v/V.) + bIn(¢/¢.)] o with ¢ =1-vep/L, (3)

whereg¢, = L/V. is the steady-state reference value of the interfaciat st@pical values for
the material parameters are given in Table 1. From a micrsipalpoint of view the memory
length is usually thought to correspond to the slip distarecgiired for the rejuvenation of the
population of interacting microasperities which consétthe interface topography (Dieterich,
1979, Dieterich and Kilgore, 1994, Baumberger and Car@&). Besides, in the thermody-
namic theory for slip events based on the Eyring transititate theory of rate processes (Heslot
et al., 1994, Rice et al., 2001, Putelat et al., 2011), we tiaethe reference slip ralé can be
identified as the product of a reference frequency of slime/and a characteristic length corre-
sponding to the average separation between the energgisaiovercome in relation to some
thermal activation mechanism. We finally note that the aiclform of the state evolution law
is empirical and is still open to discussion (see e.g. Pugtlal., 2011). We will use the law (3)
to illustrate numerically the analyses reported in thisgoap

Within this rate-and-state framework, consider a block afssM pulled with a constant
speedV by a spring of stthessk. When friction is velocity-weakening, stick-slip motiorises
from a Hopf bifurcation located at a critical vall4gof the stiftness given by

ke = —~GyFis+ Mo, (4)

where
w? = —~GiFL/F\, (5)

denotes the critical frequency of oscillations (Rice anthRu1983, Gu et al., 1984, Heslot et al.,
1994, Putelat et al., 2010). The criticalfBtess and frequency depend only on the velocity-
dependent frictional properties of the interface, conddygthe slopd=,(V) < 0 of the steady-
state friction law and the partial derivatives = dF/dv andG, = 0G/d¢ > 0 evaluated at the
steady state\{ ¢sg. We note that the inertia of the block promotes positiveiaigns from the
quasi-static valuk, = —G,F¢ of the critical stifness at high frequency.

In Putelat et al. (2008), a first step towards connecting yimanhics of a slipping interface to
the dynamics of a spring—block system was performed in timegd of the problem illustrated
in Fig. 1. Two horizontally infinite identical elastic slab&thicknessh/2 are driven in opposite
directions with a uniform speed/2 and slide against each other along a flat frictional interfa
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atz = 0 subjected to a normal strass The density, the shear wave speed and the shear modulus
of the slabs are denotgg cs andG = pc2 respectively. Assuming the interfacial slip to be
uniform, the displacement in the two layers is horizontad @enotedu(z t), wherez is the
vertical coordinate.  Assuming symmetry, ittBces to consider a velocity field in the upper
layer of the form

Uz t) =V/2+ f(t-(z-h/2)/c) - f(t+(z-h/2)/cy), (6)

which accounts for shear waves radiating away from thefeterand reflecting back from the

top boundary. Equation (6) implies that the interfacigh shtev(t) = u(0*,t) — u(0~, t) and the

rate of interfacial shear stres@) (from the time derivative of Hooke’s lawy; = GU,) are given
V + 2[f(t +h/(2cs)) — f(t—h/(2¢cs))],

by
{ Y , ) @)
T —pcs[f'(t +h/(2cs) + f/(t — h/(2cs))].

The complete system upon which the analysis of this papeassedcomprises (7) together
with the interfacial friction law (1), or equivalently aftdifferentiating (1),

T=FV-GFs, and ¢=-G, (8)

where the function&,, F, andG are evaluated at/(¢, o).
The analysis in this paper extends the analysis of Putekdt €008) which proposed that
(7) could be approximated by

7= (G/h) (V - V) — (oh/12)V, 9)

by Taylor expanding the functiofiin the limit in whicht > h/cs. Equation (9) together with
(1) describes the dynamics of a spring—block system of fthssoh/12 and stiftnessk = G/h.

The contents of the paper are as follows. We revisit and irgom the analysis of Putelat
et al. (2008) in section 2 where we describe a consistentedioe for reducing (7) to a sys-
tem of ordinary diferential equations (ODESs). The exact formulation (7) defiéiferential-
difference system of equations which is studied in section 3mitie framework of rate-and-
state friction (1). In both cases, the linear stability &f Hteady-state sliding is presented together
with leading order approximations of the quasi-statior@rgise. Section 4 reports the results of
some explicit computations using the Dieterich law (3). $table periodic orbits that arise after
a Hopf bifurcation from the steady-state solution for thaaxsystem of dferential-diterence
equations are reproduced with reasonable accuracy by #tensyof ODEs. Further results are
then obtained for the ODE system, illustrating the complaxasinics facilitated by wave rever-
berations. Such results would be less easy to access fordoe ®/stem. Section 5 presents a
few remarks in conclusion.

2. A spring—block mechanical analogue

2.1. Derivation

We assume that the interfacial slip rate varies very littierty the timeh/cs with a view to
Taylor expanding the functiont + h/(2cs)) and f’(t + h/(2cs)). Up to third order irh/cs, this
leads to the system

2(h/cdT'(t) + (N/eP T (/12 = vV, 0
20/(t) + (W2 f” (/4 = —t/(ocy). (10)
5



Further derivatives of could be retained but keeping only those shown has the intate’ (t)
and f’”(t) can be expressed solely in termswf) and r(t).We remark that all such levels of
approximation are singular perturbations in the senseithathigh-order derivatives that are
lost. This in turn implies that we do not necessarily recdlierdynamics of the delay@iérential
system from our asymptotic approximation in the limits — 0. Solving (10) and demanding
for consistency that the double derivativefoft) must equaf’”’ (t) gives the “equation of motion”
of the interface

7= (G/h) (V = V) — (oh/8)V — (h/cs)® T/24. (11)

We recognize that (11) takes the form of the equation of mdtioa block of mas$ = ph/8
pulled at constant velocity with a spring of stifthessk = G/h connected in parallel with a
generalized ‘dashpot’ representing the radiative force

F, = (h/cy)?7/24. (12)

We use the analogy of a dashpot as we expect the friction foreelepend on the slip velocity.
We note that this radiative force generalises the radiaéue c,qX derived by Johansen and
Sornette (1999).

We make contact with the work of Putelat et al. (2008) by rpthat combining the double
time derivatives of equations (10) in order to elimin&té(t) provides us with the expression

T = —pcs [(Cs/ NV + (h/cs)? FO (1) /6],
which introduced into (11) gives
7= (G/h) (V - V) - (ph/12)V - pcs (h/ce)* FO(t)/144 (13)

We thus see that the approximatiéff(t) ~ (cs/h)V/2 proposed by Putelat et al. (2008), which
neglects the term of orden/(cs)® in the double time derivative of (1Q)takes into account only
the v contribution of the radiative force. We will show later iretipaper that the higher order
term in f® in equation (13) is responsible in particular for fast datibns during the slow
guasi-stationary phase.

Choosing characteristic scales of lengithtime L/V, and stresg-, we write the interfacial
stress in the form = uo-, wherey is the codficient of frictior?. It is convenient, however, not to
introduce further notation to replaseandv but to regard them instead to be measured in units
of V.. Equation (11) can then be expressed in the dimensionlass fo

ric=e(V-v)—er?v/8-rdi/24, (14)

where
€ =pCsV./oo and r = (h/cg)/(L/V.), (15)

(recallG = pc2). This parametrisation reflects the fact that the normabstr and the system’s
thicknessh are the two independent parameters that can be easily mgraslly varied in addi-
tion to the driving velocityv, while the other quantities, cs andL, V. represent respectively the
material properties of the slabs and the interface and ameosed constant.

2As definedu depends in general on the normal stress
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We interpret as the ratio of the slab impedane® to the frictional impedance/V. which
measures the relative resistance of the wave propagatitretslip resistance of the interface.
The second parameter corresponds to the ratio of theftjiodor the information carried by the
elastic waves to be sent back to the interface after the yndflection to the characteristic
time scald./V, of the interfacial state relaxation. It is necessary that 1 for the validity of the
truncated Taylor expansions upon which the approximatatsmu(11) is based. We note that
the dimensionless $iness of the system

k=kL/o=¢€/r

is not independent af andr and would not be a suitable choice of parameter if we werertp va
the system’s thicknegs®

As an aside, we remark that the corresponding dimensiofdessof the Dieterich ageing
law (3) is

7 a. + aln(v) + bin(¢),
{ ¢ = 1-vp.

Equation (14) with the friction law (8) constitute the systef differential equations which
approximate the sliding dynamics of the interface whea 1.

The system (14,8) can be expressed as a system of first-affégedtial equations. Writing
[ =y ands =y - u, wherey = (e/r)(V — v), the system is of fourth order and can be written in
the form

(16)

ro = e(V-v)-ry,
¢ = -G(v,4), (17)
Vo= [x+ Fs(v 9)G(V, 8)|/Fu(V, 8),

ry = 246/r—3ev.

The new variablé(t) denotes the dierence between the spring forgand the friction forceu.
We note that equation (1/¢orresponds to a time integration of (14) with initial caiath 6(0) =
y(0) — u(0) = er v(0)/8 + r?i(0)/24, in order to ensure that, in steady state, friction baarice
elastic spring force so that{V) =.

We observe that the usual quasi-static limit in which wawgppgation is disregarded corre-
sponds to the limit — O which implies thay = u from (17), and hence: =y, reducing (17)
to

{ 7 (e/r) (V- V),
¢ = _G(V’ ¢)s

where the interfacial slip ratgu, ¢) is obtained directly by solving (1 for v.

2.2. Linear stability of steady-state sliding
The possible growth ratesof infinitesimal perturbations of the steady-state solutb(17),

(6,9,V,x) = (0,455 V, 0),

are given by the eigenvaluef the 4x 4 Jacobian matrix of (17) which are the roots of the
quartic
rs[1+ (rs)?/24](Fys+ GyFLg + €[1 + (rs)?/8](s+ Gy4) = O, (18)

3Using dimensionless ratiasandr, equation (14) would read = « (V — V) — (kr?/8)V — (r2/24) i.
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where the derivativeBg, Fy, G, are evaluated atp(Vv) = (¢ss V).

Steady-state motion becomes unstable awreases, when a root of (18) first acquires a
positive real part; the corresponding critical vatwefT is that for which a root has zero real part.
The simplest possibility, that= 0, can never happen sine€,, > 0. It is appropriate, therefore,
to investigate the possibility of a Hopf bifurcation, for izh a pair of complex conjugate roots
become pure imaginary, say= +iw;. Substituting these values into the quartic equation (18)
and taking real and imaginary parts gives

{ —rF,[1- (rwc)2/24]wg + eGy[1 - (rwe)?/8] 0 (19)

rGyFidl— (rwc)?/24] + €[1 - (rwe)?/8] = 0O
when the parameter is criticak= f.. Their combination gives the frequency at criticality
w§ = -G3FLJ/Fy, (20)
which, when inserted in (19)yields the polynomial
P2 —3r, 72 — (24/w?) Te + (24/w?) 1. = 0, (21)
determining the critical value of the parametewhere we have defined
r. = —€/(GyFgg, (22)

the quasi-static value of the critical The cubic equation (21) can be solved explicitly; there are
several equivalent forms available in which to present tfwts. Employing the notation

p=r3 q=r2+8/w (23)

the roots are
Fe+1 VB —=12)/2=(r1+12)/2, 1, —iV3(IrL—r2)/2=(f1+12)/2, T, +T1+T2  (24)
where
rn=[p+i@-p"" r2=[p-i@ - p" (25)
Thus, the roots are real, and are written in ascending ond@4). The smallest root has to be
negative while the other two are positive. The relevant idterefore the intermediate one,
Fo=r, —i V3(r1—r2)/2— (rL+12)/2, (26)
since this is encountered first agicreases from zero. It is interesting to rewrigeas
fe = 1. +2r. sin@/3 - x/6)/ cos’3(6) (27)

with 6 = tarr*( va) where we define = (1 + 8/(r.wc)?)® — 1 > 0. We note that the quasi-static
limit is then obtained fo® — n/2 which corresponds to the conditiofiv; — 0.

Finally we can conclude that the steady-state sliding islstahenr < ¢, the four roots of
the quartic equation having negative real partsr Atf. the two least stable complex conjugate
roots cross the imaginary axis. The dash-dotted line infiéi@urepresents; as defined by (27)
for the Dieterich law, and using the parameter values foepgjven in Table 1.
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A complementary way of looking for the criticalis to find the stability boundary in the
parameter plane (e) defined by (21) and (22), i.e.

12 — 24/w?
3(2 - 8/wd)’

The term-G,4F¢r would be the value to reach criticality under the quasi-static limit. It cor-
responds to the asymptote gfdasr — 0. & is not defined forvV8/we < r < V24/we. The
boundaryeg for r > V24/w, corresponds to a second pair of complex conjugate rootsiogs
the imaginary axis. The stability boundary (28) for the Biéth law is shown by the dash-dotted
line in Figure 3.

Ec = _GaﬁF;sr (28)

3. Differential-difference formulation

3.1. Formulation

The exact dterential-diterence formulation of the single interface problem is gitsgrihe
combination of the wave and interface dynamics (7) and aatestate friction (1). We begin by
time-shifting the undetermined functidnby definingg(t) = f(t + h/(2cs)) so that system (7)
reads

{ V() = V+2[g() - g(t-h/c)], 29)
T = —pcg'(t) + g'(t—h/cy)].
We also suppose that a curve of initial da(#) is specified:
g(t) =y(t) for —h/cs<t<O. (30)

We will denoteg(0) andy(0) the limits from the right and from the left of the funct®gandy
respectively. In the general theory offdirential-diference equations (Bellman and Cook, 1953)
it is possible to introduce initial jumpg0) # v(0).

Then the time integration of (29tombined with the rate-and-state equation (1) gives the
algebraic-diferential-diference system

{ 7s(V) — pcs[g(t) + g(t - h/cs)] FIV + 2[g(t) - o(t - h/cs)]. 4],
¢ ~G[V + 2[g(t) - g(t - h/cs)]. ¢].

which determines the dynamics of the interface. Imporyamte have assumed that the initial
conditions involved in the time integration of (2%atisfy

7(0) + pcs[9(0) + ¥(=h/cs)] + pcs[9(0) - ¥(0)] = 7s(V), (32)

in order to allow the possibility of a steady-state solutfon (31) associated with no elastic
radiation, i.eg(t) = 0.

As a result, formulation (31) suggests that the unknown viawetiong(t) combines with its
retarded valug(t — h/cs) to define the perturbations of stress and velocity

ot(t) := —pcg[g(t) + g(t — h/cs)] and ov(t) := 2[g(t) - g(t - h/cs)]

of the steady sliding state of the interface. Given the ahigierturbationsito = 67(0) =
—pCs[g(0) + v(=h/cs)] andsvy = 6v(t) = 2[g(0) — y(=h/cs)], we can write the initial condi-
tions required for the forward time integration of (31) as

9(0) = —070/(20Cs) + 6Vo/4, (33)
9
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with the initial value of the interfacial statg0) obtained from the inversion of the friction law
F[V + 6vo, ¢(0)] = 7s4V) + 670. (34)

Finally, we nondimensionalise using the same charadtesséles as in section 2: length
time L/V. and stress-. The dimensionless form of (31) is

{ TSS(V) - 6[g(t) + g(t - r)] F[V + 2[g(t) - g(t - r)]’ ¢]’ (35)
¢ = —G[V+2[g(t) -9t ¢l

wheree = pcsV., /o andr = (h/cs)/(L/V.) are defined exactly as in (15). The natural interpreta-
tion is thate measures the magnitude of the stress perturbation wisilédne single (and constant)
dimensionless delay time for thisfirential-diference system.

3.2. Linear stability of steady-state sliding

We consider a smaIIAperturbation of the steady-state soili ¢) = (0, ¢s{V)) of (35) such
thatg = § and¢ = ¢ss+ ¢. The stapility of the steady-state sliding of the interfeecgoverned
by the equations (linearised gnahdg):

{ —e[8) +8-1] = 2R (60 - 8- )] + Fod.
& = -26,[60 -8t - Nl -Gy,

where the partial derivatives & andG with respect tor and¢, denotedr, F,, Gy andG,, are
evaluated at\, ¢) = (V, ¢s9.

A non-trivial solution of (36) with time-dependene®is possible if the growth ratesatisfies
the transcendental characteristic equation

(36)

Q(sr)=A(s) +C(9e°"'=0 (37)

whereA(s) = (Fy + €/2)s+ Gy(Fss+ €/2) andC(s) = —(Fv — €/2)s— Gy4(F5s— €/2). Since the
polynomialsA(s) andC(s) are of the same degree, thdfdiential-diference system is termed
‘neutral’ (Bellman and Cook, 1953). This means that theenirrate of change of the function
g, which in turn determines the rate of change of the intealatiress, depends on the past rate
of change ofy in addition to the past and current valuesgafsee equation (29)). We note that
the quartic equation (18) cannot be recovered from theserxpansion of (37) for — 0 since
this is a singular limit as far as the asymptotic expansiaeiction 2 is concerned.

Study of solutions to (37) shows that in the quasi-statigtlim— O steady-state sliding is
stable. As the delay increases, a pair of complex conjugate rogpts s =+ iw crosses the
imaginary axis from the left half plane to the right half péanith the frequency

wi = -GiFL¢/Fu, (38)
when the delay reaches the critical value

_ tam(r.we/2)
B we/2 ’

c (39)

where we recall that. = —e/(G4F5). The critical frequencyy. depends only on the friction

law; given this fact it is not surprising that the same valwsswbtained from the approximate
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ODE formulation. However, the critical value ofs different. The solid line in Figure 2 shows
rc given by (39), together with its approximatiog given by (27), shown dash-dotted, for the
Dieterich law. As mentioned previously, in this and all seding figures, the parameter values
were chosen as those shown for paper in Table 1. The approamigfollows the exact stability
boundary very closely. The right-hand plot in Figure 2 shiived the relative error is very small
for V < 103V, but grows to the order of 10% Asapproaches f¥.,.

The quasi-static approximation = r, = —e/(G4F3) is recovered in the limit.w; — 0. As
for the spring—block analogue and the boundary (28), espre$39) gives the stability boundary
in the parameter plane,()
tan( wc/2)

we/2
As a result, steady-state slidings are unstable when they deb r; or alternatively ife <
e. Figure 3 compares the approximate and exact stability deies in ther €) plane for the
Dieterich law.

Interestingly, in the quasi-static limitw; — 0, the series expansion of (39) leads to

€ = —GyFgs (40)

Ke = €/Fc = Ky +er*w(2:/12+~-~

wherex, = €/r. = —G4F,is the quasi-static dimensionlesdistess. We recognize the classical
critical stiffness of a spring—block system (4) whose dimensionlessmassr. /12 corresponds
to the approximation studied in Putelat et al. (2008) basedquation (9).

4. An illustrative example

In this section we present numerical results using the B&tageing law (3). For the ODE
system, the results are obtained with the continuation ggelAUTO (Doedel et al., 1991);
for the time integration of dierential-diference equations they are obtained using the package
RADARS V2.1 (Guglielmi and Hairer, 2001, 2005). AdoptingetDieterich ageing law, the
ODE system comprises (14) together with (16). It was found/eaient for the computations to
express the first-order system (17,16) in the form

’

W=y,
3\// z f((I/cr_sz’v) /In(10), (41)
X = [24-w) - 3ev]/r,
where time has been rescaled so thatt/r and ()’ = d(-)/df, w = log,,(¢) and
v =exp[u —-a. —bIn(1l0w)/a] sothat v =(v/a)( - bIn(10Ww), (42)

from (16).

Computations were performed fof = 100V, ande = 2.8 x 10°°. For these values, the
critical valuer: for the ODE system is very close to the critical valye~ 10725% for the
differential-diference system (see Figure 2).

Figure 4 shows plots relating to the stable periodic orfait tesults when = 107298, slightly
greater tharre. In the units f/cs) employed fort, the period for this value of is Toge =
70.73. The new feature introduced by the ODE formulation (14hpared to the spring—block
formulation (9) of Putelat et al. (2008) is the occurrencdast oscillations superimposed on
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the slow increase of the interfacial stress= uo during the quasi-stationary phase. The fast
oscillations can be understood from equation (14) whiclaleb at leading order like

21124+ 1 ~ (/1) V,

since the inertial ternar /8 and the interfacial slip rate <« V are negligible over the quasi-
stationary phase. We see that the slow linear ramp resols thhe quasi-static elastic contribu-
tion (e/r) V (see Putelat et al. (2008) for more details) while the fasillations originate from
wave reverberations. This leading order approximatiotdgian estimate for the frequency of
wy = 2V6/r and hence an oscillation period of

T, =nr/ V6~ 1.28r, (43)

which is clearly set by the delay induced by the reflectioefwaves radiated from the frictional
interface. We note that these oscillations are intrinsiiheoformulation (14). They correspond
to natural oscillations of the system determined by itskihéss and do not depend on the details
of the friction force. The frictional properties of the infizce will determine, in response to this
forcing, the very low speed sliding.

No corresponding figure is shown but the same conclusiorache from the delay formu-
lation (29) although in the delay case the vibration pergdxactly the delay. In the quasi-
stationary phase where< V, at leading order, the unknown functigrsolves the first order
linear diference equatiog(t) ~ g(t — r) — V/2 obtained from (29) Its solution is

g(t) = -V/(2r) + (1),

wherey(t) is anyr-periodic function that satisfie0) = y(0). The interfacial stress follows
from inserting this leading-order approximation ft) into (35) to obtain

7(t) = eVt/r — 2e y(t) + Ts{V) — €V/2.

Solutions for the ODE formulation and the exact DDE formiolatire compared in Figure 5.
The figure includes corresponding plots for the spring-bkgproximations withM = ph/8
(obtained from (14)) and witiv = ph/12 as developed by Putelat et al. (2008). These cannot,
of course, exhibit the rapid oscillations but follow the exarbit “on average”, wititM = ph/8
being perhaps the closer of the two. The full ODE approxioratias all the correct qualitative
features. Quantitatively, however, the period of the erduit for the parameters used in Figure 5
is Tqge 735 and, as observed above, the frequency of the fast osmiltator the ODE system
is about 28% too high.

The periodic orbit itself undergoes a bifurcation and beesmnstable asincreases. Nu-
merical bifurcation theory for DDEs is less developed thHaat for ODESs, and the continuation
code RADARS for the DDE formulation provides less infornsatthan AUTO does for the ODE
approximation. We therefore present detailed resultdi®@QDE formulation and anticipate that
the DDE formulation will display similar features. A detil study of the DDE formulation will
be the subject of future work.

Figure 6 shows bifurcation diagrams for the ODE system, Witk 100V, ande = 2.8 X
1075, The first feature to notice is the initial Hopf bifurcatiomin the steady-state solution, at
r ~ 107269, The bifurcation is very mildly subcritical and gives bitit an unstable primary
periodic orbit which then restabilizes at a saddle-noderbétion (not distinguishable in Fig. 6).

12



The subcritical or supercritical nature of the Hopf bifurca appears broadly to be preserved
between the spring—block approximation and the ODE fortrarigsee Putelat et al. (2010) for
a detailed weakly nonlinear analysis of the Hopf bifurcatd a spring—block system).

Figure 6(a) shows two sets of curves. The upper set givesitheeétion diagram for the
interfacial stress dropu = umax — Umin, together with those for the two spring—block approxi-
mations, while the lower set gives the diagram for the alagtiess drop\y = Ymax — Ymin. The
noticeable dierence between the amplitudes\af and ofAy is caused by the fast oscillations of
the instantaneous interfacial stress around its averdge yauring the quasi-stationary phase.
Even when inertia is negligible, the equation of motion (hjitten with respect to the short
time scald = t/r,

3ev =24y —u) — u”

reveals thaj: # y along a cycle because of the radiative term, converselydapining—block
approximations. The “smooth” cycles produced by theselattovide an envelope for the stick-
slip cycle of the Kelvin—Voigt approximation. Figure 6(d¥@ presents estimations af: and
Ay for the exact DDE systerhln both cases the exact stress drops are larger than thaselgiv
the ODE approximations, with a relative error which incesawithr.

Along the primary branch of periodic solutions (cf. Fig. B(lseveral connected period-
doubling bifurcations separated by saddle-node bifuscatare found until a torus bifurcation is
encountered (atrg = 1072468 for V = 100V, ande = 2.8 x 10-°) from which the periodic orbits
never become stable again for larger value of the delay.r&i§(b) gives a blow-up of the bifur-
cation diagram fon\y, that shows more clearly the development of complex dynahiough
successive period-doubling bifurcations. Figure 7 iHatgts both the unstable periodic orbit and
the stable period-doubled orbit after the first period-dmgjbifurcation, at the parameter value
r = 10725, The period of the unstable orbitTgge ~ 79.09. The upper graph shows slip velocity
v against time, normalized to the relevant peridd< Toqe for the unstable orbit an@l = 2Tyge
for the period-doubled orbit). In real time, the peak veipéor the unstable orbit would appear
twice, superimposed on the two slightlyfidirent peaks realized by the period-doubled orbit.
The lower figure plots the projections of the orbits on the/{ plane and demonstrates how the
period-doubled orbit is close but not identical to two swsbee traces of the unstable periodic
orbit.

Figure 8 presents the delay dependence of the stick-slipgef the primary periodic or-
bit. Compared with the period of the spring—block approxiores, we emphasize that the wave
reverberation induces lower period values in relation ®ltdss of energy used for the fast os-
cillations during the quasi-stationary phase. Becauseén®d of the stick-slip oscillation is
proportional to the elastic stress drap (Putelat et al., 2008)

Ay
(e/r)\V’
the amplitude reduction afy shortens the recurrence time of slip events of the elasteréa Its
estimation for the DDE formulation was further obtainediirthe direct numerical integration of

system (41) with RADARS for dferent values of the delay. It is found that the stick-slipqur
of the DDE formulation is intermediate to the ODE and sprigek approximations

Tstick—slip ~

Tode < Tdde < Tspring-block

“The elastic stress drop is calculated from the numericaliare in time of/ = (V — v) for which the slip rates
is provided by (29), the functiong being computed with RADARS.
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Finally, whenr is chosen further inside the stick-slip domain, i.e. forues of the delay
larger than the value at which a torus bifurcation occurshengrimary periodic orbit, some
features of complex stick-slip patterns can be found adaiiegd in Figure 9. Using direct nu-
merical time integration for both the ODE and DDE system$iwit= 10723, V = 100V, and
€ = 2.8x 107°, Figure 9 also exposes the limitations of the ODE approxonatThe temporal
patterns are dierent for the two systems. With variable interfacial strésgps associated with
variable velocity slip events, the ODE approximation loot@re irregular (cf. Fig. 9(a)) than the
exact DDE system whose cycles share some similaritieseghisding the quasi-stationary fast
oscillations, with the spring—block relaxation osciltats described in Putelat et al. (2008) at a
first glance (cf. Fig. 9(b)). For this value of the delay, theBcycles are characterised by rather
constant interfacial stress drop amplitudes combined sritall amplitude slip rate oscillations
around the steady-state line during the inertial phase.fasteoscillations decorating the quasi-
stationary phase show new structures, whose shapes morewyd€rom one quasi-stationary
phase to another. On the contrary, the ODE cycles exhihitizi@hases marked by stick-slip
like high amplitude oscillations while the quasi-statipnéast oscillations remain sinusoidal,
although of diferent amplitude between subsequent quasi-stationargphas

5. Conclusion

The main thrust of this paper is to develop a systematic sidenof the dynamics of a
frictional interface that includes thefects of elastic waves propagating through the (thin) slabs
either side of the interface and reflecting from the outemuolauies of the slabs. This results in a
system of nonlinear lierential-diterence equations that areftiult to treat mathematically.

We then derive, more systematically than in Putelat et 8082, ordinary dferential equa-
tion approximations to the exactftérential-diference equations. The lowest non-trivial order
approximation provides a slight correction for the masmitiar the approximating mass—spring
system developed in Putelat et al. (2008); it also produtetetading-order term that is required
to account for wave reflections. Approximations of highetesrcould be developed quite easily
but these would contain derivatives of the wave functias internal variables, in addition to the
“physical” interface variables, vandg. Approximations of this type could also be developed for
other problems involving one or more thin layers. The pa&eidvantage of such approxima-
tions is that the theory of nonlinear ODEs is very well adwah@nd detailed numerical results
relating to the development of complex dynamics can be nbthusing existing code such as
AUTO.

We find that the nonlinear frictional dynamics of two ideatielastic slabs is governed, in
addition to the slab driving velocity, by the relative impedee = pcsV./o and the relative
reverberation time = (h/cs)/(L/V.). These two dimensionless parameters highlight the role
of the interfacial state relaxation time-sc&lgV, and the frictional impedance/V. in the oc-
currence of stick-slip oscillations and their control by timterfacial microstructure evolution
processes. We show that the steady slipping mode of thefradtinterface is destabilized when
the system’s reverberation time is large compared to thieardelay (39), or equivalently, when
the system’s relative impedance is smaller than the critigpedance (40); critical values which
define a surface in the three-dimensional parameter space), Regarding the stick-slip oscil-
lations, we find that the slabs’ inertia involved in the wagearberation drives fast oscillations
during the quasi-stationary phase of the stick-slip cy€leeir amplitude is significant compared
to the stress drops which accompany the slip events of tiréahphase. In the present formu-
lation, these fast oscillations do not fade away over threktlip cycle because of the absence
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of further energy loss. Interesting extensions of this weduld then include the addition of a
visco-elastic component for the behaviour of the slabstlaathclusion of only partial reflection
of the elastic waves at the system boundaries. Overall welwde that wave propagation cannot
be neglected for the stick-slip dynamics of such a continuum

In detail, the ODE approximation that we develop here is shtwreflect accurately prop-
erties of the exact system such as the critical detgyfor the onset of the Hopf bifurcation
from the steady-state solution, and its frequency. It alewiges a good picture of the oscilla-
tions produced by wave reverberations, although these tibave quite the correct frequency.
Period-doubling bifurcations arise and are easily detbgtemerically) in the ODE system (they
are less easily accessible in the exact DDE system). Sucleatémn of period-doubling bifur-
cations does not occur for the spring—block approximatiave reflections thus provide one
credible mechanism for the development of complex dynawifigaterfacial slip. We remark
finally that our work retained an assumption of symmetric vpvopagation above and below
the interface. It appears that relaxation of this resticttould be made, but at the expense
of producing a system with additional variables that carlmeoexpressed solely in terms of the
“physical” variables that are defined on the interface.
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Material  a. a b L[m] V.[m/s] plmkg?] G[Pa] o[Pa]

paper  0.369 0.0349 0.0489 .9k 10°®  10° 800 16 108
rock 06 001 0015 2010° 10° 2500 16° 108

Table 1: Typical material parameter values used in the Battéaw (3) (Heslot et al., 1994, Marone, 1998).
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