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a b s t r a c t

The physics of dry friction is often modelled by assuming that static and kinetic frictional
forces can be represented by a pair of coefficients usually referred to as μs and μk, re-
spectively. In this paper we re-examine this discontinuous dichotomy and relate it
quantitatively to the more general, and smooth, framework of rate-and-state friction. This
is important because it enables us to link the ideas behind the widely used static and
dynamic coefficients to the more complex concepts that lie behind the rate-and-state
framework. Further, we introduce a generic framework for rate-and-state friction that
unifies different approaches found in the literature.

We consider specific dynamical models for the motion of a rigid block sliding on an
inclined surface. In the Coulomb model with constant dynamic friction coefficient, sliding
at constant velocity is not possible. In the rate-and-state formalism steady sliding states
exist, and analysing their existence and stability enables us to show that the static friction
coefficient μs should be interpreted as the local maximum at very small slip rates of the
steady state rate-and-state friction law.

Next, we revisit the often-cited experiments of Rabinowicz (J. Appl. Phys., 22:1373–
1379, 1951). Rabinowicz further developed the idea of static and kinetic friction by pro-
posing that the friction coefficient maintains its higher and static value μs over a persis-
tence length before dropping to the value μk. We show that there is a natural identification
of the persistence length with the distance that the block slips as measured along the
stable manifold of the saddle point equilibrium in the phase space of the rate-and-state
dynamics. This enables us explicitly to define μs in terms of the rate-and-state variables
and hence link Rabinowicz's ideas to rate-and-state friction laws.

This stable manifold naturally separates two basins of attraction in the phase space:
initial conditions in the first one lead to the block eventually stopping, while in the second
basin of attraction the sliding motion continues indefinitely. We show that a second de-
finition of μs is possible, compatible with the first one, as the weighted average of the rate-
and-state friction coefficient over the time the block is in motion.
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1. Introduction

It has long been recognised that the force required to initiate sliding between two solid interfaces in (dry) frictional
contact is usually greater than the force needed to sustain sliding, see Persson (2000) for a brief historical summary. This
behaviour of solid frictional contact led to the distinction between the static and dynamic coefficients of friction, denoted μs

and μk respectively, and forms the basics of Coulomb's model of friction (Bowden and Tabor, 1954; Rabinowicz, 1995;
Persson, 2000). Although being a convenient simplified description of the physics of friction, considering these two coef-
ficients as different constants allows a first account to be made of the motion of a rigid block sliding on an inclined surface or
the classical stick-slip phenomenon which characterises the saw-tooth dynamics of spring–block systems (Bowden and
Tabor, 1954) and is also pertinent to many engineering situations as well as a source of stimulating mathematical problems,
e.g. see Duvaut and Lions (1976) and di Bernardo et al. (2008) for examples with emphasis on piecewise-smooth dynamical
systems models relevant to friction.

However, several decades and many studies have been required to shed light on the physical processes at the origin of
the apparent non-smooth nature of the frictional force, either for dry or lubricated frictional interfaces (e.g. Rabinowicz,
1951; Berthoud et al., 1999; Baumberger et al., 1999; Persson et al., 2003). Noticeably, it was recognised early on that
explaining the variation of the amplitude of stick-slip oscillations, as observed experimentally, requires consideration of the
velocity-dependence of kinetic friction and the time-of-stick dependence of static friction together with the past history of
sliding, see Rabinowicz (1957, 1995) and references therein. Indeed, Rabinowicz (1957) argued that the memory of sliding
over some preceding critical distance also affects the value of the kinetic friction coefficient and determines the shape of the
stick-slip cycle.

The framework of rate-and-state friction allows these three main physical ingredients to be unified into a single phe-
nomenological theory of friction (Dieterich, 1979; Ruina, 1980, 1983; Rice and Ruina, 1983; Gu et al., 1984). In effect, the
concept of rate-and-state friction makes possible the link between the two friction coefficients by recognising that the
logarithmic time variation of μs and the velocity dependence of μk both result from the complex evolution of asperities in
interfacial contact, controlled by some characteristic memory length (Dieterich, 1979). Roughly speaking, the true contact
area increases from the creep of asperities in stationary contact while the contact population is rejuvenated during inter-
facial sliding (e.g. Heslot et al., 1994). This phenomenology can be captured by introducing internal variables which char-
acterise the interfacial state and whose evolution is governed by empirical nonlinear evolution equations measuring the
departure from or relaxation to an equilibrium interfacial state (Rice et al., 2001).

In the rate-and-state friction formalism it is not possible to make a clear distinction between static and dynamic friction
coefficients. Nevertheless a static coefficient is often defined as the peak value of the friction coefficient which follows a
sudden interfacial slip like the one promoted in slide-hold-slide experiments performed with a spring-block system
(Dieterich, 1979; Beerler et al., 1994; Berthoud et al., 1999). The time dependence of this static friction coefficient corre-
sponds to the holding time before sudden slippage or velocity variation.

We adopt in this paper a complementary viewpoint and work backwards towards the empirical distinction between
static and dynamic friction coefficients by analysing the motion of a block which slides on an inclined slope. This is the
simplest situation that allows the study of the transient frictional slip dynamics, starting from rest and subjected to a
constant gravitational driving force. From consideration of the stability of such a sliding configuration, our first result is an
interpretation of the static friction coefficient as the local maximum of the steady-state friction coefficient at very small slip
rates.

Next, we revisit the impact experiment of Rabinowicz (1951) who studied the response of the block to the impulse
provided by the elastic impact of a rolling ball. When friction is velocity-weakening, we can identify Rabinowicz's persis-
tence length (over which, in Rabinowicz's proposal, the friction coefficient is taken to keep its static value), as the block slip
distance as measured along the stable manifold which divides the phase space into sets of initial conditions that ultimately
lead to either eventual rest or unbounded sliding. We compare the persistence length with the memory length associated
with rejuvenation of the interfacial state; this analysis leads to a second definition of the static friction coefficient as the
weighted average of the dynamic friction coefficient during motion.

Overall we advocate, on primarily mathematical grounds, the necessity of rate-and-state friction models whose steady-
state velocity dependence is not monotonic, and in their most complicated form correspond to a ‘spinodal’ (i.e. N-shaped)
dependence. Moreover, this theoretical need (so that the mathematical model is well-posed) is supported by many ex-
perimental observations obtained with various materials. These indicate the existence of crossovers between velocity-
weakening and velocity-strengthening friction regimes, albeit attributed to diverse microphysical mechanisms. Examples
include Grosch, 1963 for rubber, Shimamoto (1986), Weeks (1993), Kilgore et al. (1993), Tsutsumi and Shimamoto (1997) for
rocks, and Heslot et al. (1994) for paper. A recent concise review is given by Bar-Sinai et al. (2014). We note also the physical
considerations discussed and developed by Bréchet and Estrin (1994), Estrin and Brechet (1996) and Baumberger and Caroli
(2006) and the examples of applications given in our previous work (Putelat et al., 2007, 2008, 2010).

The structure of the paper is as follows. In Section 2 we review the construction of rate-and-state friction laws. We
propose a general framework from which several well-known specific constructions follow through different choices of
various functional forms. We describe briefly how the regularised ‘spinodal’ law, that we have proposed in earlier work, also
fits into this framework. In Section 3 we discuss the dynamics of a block sliding on a slope at a fixed angle, under different
choices of rate-and-state friction law, concentrating on the spinodal case. Section 4 discusses the impact experiments
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carried out by Rabinowicz, and uses the rate-and-state framework to re-interpret and understand his results. Section 5
concludes and discusses various consequences of our results, in particular within geophysical settings such as fault me-
chanics and the earthquake nucleation phase as well as the stability of slopes and landslides and their sensitivity to finite
amplitude perturbations in relation to spinodal friction.
2. Rate-and-state friction

Rate-and-state friction laws are phenomenological models for sliding interfaces that, from one point of view, can be seen
as a mechanism for introducing higher order corrections in order to regularise the traditional discontinuous Coulomb model
of friction. Typically rate-and-state equations are constructed by assuming that the frictional stress depends, in addition to
the usual normal stress parameter, on both the instantaneous slip velocity and on one or more state variables describing the
sliding ability (loosely speaking referred to as the ‘roughness’1) of the interface. These state variables effectively introduce a
memory of the past evolution of the interfacial slip rate, allowing more complicated dynamical evolution of the system
(Dieterich, 1978, 1979; Ruina, 1980, 1983; Rice and Ruina, 1983). The memory effects modelled by the state variables evolve
through empirical evolution equations which attempt to capture the macroscopic behaviour resulting from complex in-
teractions between microscale asperities on the interfaces.

Various different analytical expressions for rate-and-state models have been introduced over the years, especially re-
garding the interfacial state evolution law (see e.g. Ruina, 1983; Gu et al., 1984; Weeks, 1993; Heslot et al., 1994; Perrin et al.,
1995; Rice and Ben-Zion, 1996; Baumberger and Caroli, 2006; Putelat et al., 2007, 2010). The literature in which experi-
mental data is used to discriminate between these different models remains unfortunately sparse. We emphasised pre-
viously that the analytical details of the rate-and-state law matter in determining the nonlinear dynamics of friction, see
Putelat et al. (2010). With this in mind, we present in this section a very brief overview of a general framework for rate-and-
state models within which a number of commonly used models can be placed. This clarifies the relationship between them,
and the relationship to the spinodal law that we introduced and discussed in a number of recent papers (Putelat et al., 2007,
2008, 2010, 2011). These different choices are summarised for convenience in Table 1.

Provided that thermal effects remain negligible, i.e. for sliding velocities well below the flash temperature critical ve-
locity (Archard, 1959), rate-and-state constitutive laws are specified (Rice et al., 2001) by pairs of (dimensional) equations in
the form

F v d dt G v( , ; ), and / ( , ; ), (1)τ ϕ σ ϕ ϕ σ˜ = ˜ ˜ ˜ ˜ = − ˜ ˜ ˜

where τ̃ and σ̃ are the interfacial shear and normal stresses, respectively. The interfacial slip rate ṽ is defined by v δ˜ = ̇ where
u uδ ≡ ˜ − ˜+ − is the interfacial slip; this is the relative displacement in the direction of sliding. The state variable ϕ̃ models the

‘roughness’ (slip resistance) of the interface; the time evolution (1)2 describes the frictional memory effects. Throughout this
section, dimensional variables are given tildes ˜ in order to distinguish them from dimensionless variables.

Commonly used realisations of such laws (e.g. Scholz, 1998; Marone, 1998; Scholz, 2002) use the same formula for the
friction coefficient v( , )μ ϕ˜ ˜ :

a v V b/ ln( / ) ln( / ), (2)μ τ σ μ ϕ ϕ≡ ˜ ˜ = + ˜ + ˜ ˜
⁎ ⁎ ⁎

where μ⁎, Vn and ϕ̃⁎ are reference values of the friction coefficient, velocity and the state variable, respectively, and a and b are
constants (parameters of the material). The realisations differ in the definition of the state evolution law. Three well-known
Table 1
Summary of the different functional choices in (4) leading to common rate-and-state laws. The characteristic timescales of dynamic rejuvenation and
quasistationary interfacial healing are t L V/=⁎ ⁎ and t Rt=⁎⁎ ⁎, respectively. A state evolution kinetics of type (4)2 is referred to as ‘hyperbolic’.

Law ( )ψ ϕ̃ ( )θ ψ v( )ssψ ˜ t v( )˜⋆ ϕ⁎ Kinetics

Dieterich /ϕ ϕ˜ ⁎̃ ln ψ V v/ ˜⁎ L v/ ˜ tn First order

Generalised Dieterich /ϕ ϕ˜ ⁎̃ ln ψ V v/ ˜⁎ L v/ ˜ tn Hyperbolic

Ruina ln( / )ϕ ϕ˜ ⁎̃ ψ V vln( / )˜⁎ L v/ ˜ tn First order

Perrin ln( / )ϕ ϕ˜ ⁎̃ ψ V vln( / )˜⁎ L v/ ˜ tn Hyperbolic

Spinodal ϕ̃ cln( / )ϕ ϕ+ ˜ ⁎̃ Rv1/(1 )+ t v( )ssψ⁎⁎ R1/(1 )+ First order

Generalised spinodal ϕ̃ cln( )ψ+ R Rv(1 )/(1 )+ + t Rv/(1 )+⁎⁎ 1 Hyperbolic

1 We use the term ‘roughness’ loosely since the link between the interfacial roughness and the magnitude of the friction coefficient is complex, for
example smooth interfaces with a high microscopic contact area are able to generate high frictional forces.
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choices for the state evolution law are

⎧
⎨⎪

⎩⎪

d dt v L

d dt v L v L

d dt v L

/ 1 / (Dieterich/ageing law),

/ ( / ) ln( / ) (Ruina/sliplaw),

/ 1 [ /(2 )] (Perrinlaw). (3)2

ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ

˜ = − ˜ ˜
˜ = − ˜ ˜ ˜ ˜

˜ = − ˜ ˜

Expressions (2)–(3) were originally proposed to embed three main experimental observations: (i) static friction increases
logarithmically in time, (ii) in steady sliding, dynamic friction decreases logarithmically with increasing velocity, and (iii)
sudden velocity jumps are observed to result in an adjustment of the dynamic friction coefficient which relaxes to the new
value on a timescale intrinsic to the material. The diversity of proposed equations (3) reflects the choice and degree of detail
retained by different models for interpretating experimental results in slide-hold-slide experiments (see e.g. Kato and Tullis,
2001). For instance, (3)1 allows the prediction of the time-dependence of friction in stationary contact, while (3)2 disregards
this feature of stationary healing but accounts for the slip control of quasistationary friction strengthening (see Marone,
1998 for an exhaustive discussion with respect to experimental results). Nevertheless, we note that it is possible to propose
a “composite state evolution law” which can resolve these drawbacks by adding to the right-hand-side of (3)2 a velocity
dependent quasistationary ageing term v Vexp( / )c− ˜ , whose effect is therefore negligible for slip rates much larger than a
velocity cut-off parameter Vc (see Kato and Tullis, 2001, 2003).

A common feature of these models, however, is that they all rely on the assumption that the interfacial state relaxes on a
characteristic length scale L, independent of sliding velocity. This length is the so-called ‘memory length’ of the system, i.e.
the distance over which the interface must slip before the effect of past variations in velocity on the current asperity
population is lost. In this paper we challenge this point of view, as it seems to us more natural and general to introduce a
relaxation timescale, rather than lengthscale, as we show below.

It is both interesting and instructive to observe that every one of the laws (2)–(3) can be derived from the pair of generic
dimensionless expressions

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

{ }a v b a

d dt v t v

sinh ( /2) exp ( ( ))/ ,

/ sinh ( ) / ( ), (4)ss

1μ μ θ ψ

ψ ψ ψ

= +

= − −

−
⁎

⋆

where v v V/≡ ˜ ⁎ is a normalised velocity, f ( / )ψ ϕ ϕ≔ ˜
⁎̃ is a (similarly dimensionless) generic state variable possibly related to an

empirical state variable ϕ̃ 2, and ( )θ ψ is a function describing the contribution of ψ to the friction coefficient μ. The form of
(4)1 can be derived from considering thermally activated Eyring rate processes which introduces the sinh function. Similar
processes are also assumed here for the interfacial kinetics (4)2, for which a first order differential equation is the usual form
considered in the literature (e.g. see Putelat et al., 2011 and references therein). Interestingly, it has recently been proposed
in Hulikal et al. (2015) that a first order kinetics for the interfacial state evolution is justified if the internal state variable ψ is
defined to be the nth statistical moment of the friction force τ. In Putelat et al. (2011), we discussed both the derivation of
such a general formulation for rate-and-state friction, and experimental procedures that might be able to confirm these
functional forms, or support the use of others.

In order to complete the specification of a rate-and-state friction law within this formalism, we have to specify four
components in (4):
�

2

In t
In t
too
The functional form ( )ψ ϕ̃ between the variable ψ and the underlying state variable ϕ̃.

�
 The functional form ( )θ ψ that captures the relationship between the friction coefficient μ and the state variable ψ.

�
 The functional form of v( )ssψ which describes the steady-state (hence the subscript ss) relation between the state variable

and the instantaneous slip velocity.

�
 The function t v( )⋆ that gives the effective timescale over which perturbations to the state variable relax to their equi-

librium (i.e. steady-state sliding) value.

Two remarks are in order here. First, the first two components ( )ψ ϕ̃ and ( )θ ψ should be considered in combination since
together they describe a change of coordinates that allows the treatment of different sets of assumptions about the ther-
modynamics and evolution of asperities on the microscale. Second, it is the dimensional homogeneity of (4) that first
suggests the introduction of a timescale t⋆ describing the interfacial state kinetics. Contrary to the hypothesis that memory-
length-controlled state relaxation has a constant timescale, the formulas (3) suggest that t⋆ certainly depends on the in-
terfacial slip rate. It is quite possible that t⋆ depends also on the normal stress and the interfacial temperature. We leave the
consideration of such additional complexity to future work.

We now consider each of the well-known friction laws in turn.
As discussed in Putelat et al. (2011), the identification of a state variable with a precise physical process is a difficult task and still is a matter of debate.
hat paper we showed in particular that different microphysical processes can lead to the same macroscopic functional form for the friction coefficient.
he absence of further physical evidence and a complete homogenised theory of friction, we prefer to view state variables as convenient mathematical
ls for modelling the complex and incompletely known microscopic mechanisms at work during the sliding of rough interfaces.
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Dieterich law

To derive the Dieterich/ageing law we make the following choices:
�
 /ψ ϕ ϕ= ˜
⁎̃ where L V/ϕ̃ ≔⁎ ⁎ is a reference value of the timescale variable ϕ̃. As mentioned above, L is the memory length and

Vn is a characteristic slip rate for the system. Note that ϕ̃ has dimensions of time and ϕ̃⁎ characterises the dynamic
rejuvenation of the contact population,
�
 ( ) lnθ ψ ψ= which describes the effect of surface roughness on the friction coefficient,

�
 v V v v( ) / 1/ssψ = ˜ =⁎ so that the steady-state value of the interfacial roughness decreases with increasing velocity, and

�
 t v L v( ) /= ˜⋆ the characteristic timescale for the interfacial state to adjust to changes in the slip velocity.
Note that L V/ ⁎ is an intrinsic timescale of the system even if other choices of relation between ψ and ϕ̃ are made. We define
t L V/=⁎ ⁎ and use tn consistently to refer to this timescale throughout this section. Note that we could have written
t v t v( ) ( )ssψ=⋆ ⁎ linking the relaxation rate t⋆ to the steady-state value of the interfacial state. Substituting the above choices
into the general form (4) and making two approximations (that x xsinh ( ) ln (2 )1 ≈− for large x 1⪢ in (4)1, and that x xsinh( ) ≈
for x 1| |⪡ in (4)2) we recover exactly the Dieterich law (3)1. Note that μ takes its reference value μ⁎ exactly when v V˜ = ⁎ and
ϕ ϕ˜ = ⁎̃.

If the approximation in (4)2) is not made, we obtain a generalisation of the Dieterich law that will be useful for com-
parisons later; we refer to this system as the generalised Dieterich/ageing law:

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

{ }a v b a

d dt v t v

sinh ( /2) exp ( ln )/ ,

/ sinh ( ) / ( ) ,
,

(5)ss ss

1μ μ ψ

ψ ψ ψ ψ

= +

= − −

−
⁎

⁎

where we note that t v L V V v L v( ) ( / )( / ) /ssψ = ˜ = ˜⁎ ⁎ ⁎ .
Ruina law

Similarly, a choice of functions that leads to the Ruina law is as follows:
�
 ln( / )ψ ϕ ϕ= ˜
⁎̃ ,
�
 ( )θ ψ ψ= ,

�
 v v v V( ) ln( ) ln ( / )ssψ = − ≡ − ˜ ⁎ so that again the steady-state value of the interfacial variable decreases with velocity, and

�
 t v L v( ) /= ˜⋆ .
As for the Dieterich case, the further simplifying assumption in (4)1 that x xsinh ( ) ln (2 )1 ≈− reduces the constitutive law to
(2). The second assumption, that x xsinh( ) ≈ in the state evolution equation, implies that

⎡⎣ ⎤⎦ ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

d
dt

v V

L v
v
L

v
V

v
L

v
L

sinh ln ( / ) ln ( / )

/
ln ln ,

(6)

ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ
ϕ ϕ˜

= − ˜
˜ ˜ + ˜

˜
≈ −

˜ ˜ ˜ ˜
˜ = −

˜ ˜ ˜ ˜⁎ ⁎

⁎ ⁎

which is the usual form of the Ruina, or ‘slip’, law. Note that the relaxation rate t⋆ now takes the form t v t v( ) exp[ ( )]ssψ=⋆ ⁎ .
The generalised form of the Ruina law, in which we do not make the approximation x xsinh( ) ≈ in the state evolution
equation, is known as the Perrin law.
Perrin law

The Perrin law follows from the same collection of functional forms as specified for the Ruina law. A minor difference is
that we specify the reference state of the state variable to be L V2 /ϕ̃ ≔⁎ ⁎ rather than L V/ ⁎. Secondly, and more importantly, the
evolution equation for the state variable is not linearised around the steady-state value as in (6). Instead we recall that

x x xsinh(ln ) ( 1/ )1
2

= − so that

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

d
dt

v
L

v
L v L

v
L

1
2 2

1
/(2 )

1
2

,
(7)

2ϕ ϕ ϕ
ϕ

ϕ˜
= −

˜ ˜ ˜ ˜
−

˜ ˜ = −
˜ ˜

Thus the Perrin law is a generalisation of the Ruina law that exactly parallels the distinction between the generalised
Dieterich law (5)2 and the original Dieterich law (3)1.



T. Putelat, J.H.P. Dawes / J. Mech. Phys. Solids 78 (2015) 70–93 75
Spinodal law

The laws described above suffer from non-physical behaviour at both small and large velocities: the state variable either
does not evolve at all at zero velocity (in the case of the Ruina law) or increases without bound (for the Dieterich law). At
large velocities the interface becomes very smooth (ϕ̃ becomes very small) and so the slip velocity increases unboundedly. In
order to regularise the behaviour in these limits we introduced in previous papers (Putelat et al., 2007, 2011) a modification
of the Dieterich law that (i) proposed that the state variable evolves in stationary contact (i.e. when v 0˜ = ) to reach a
characteristic interfacial strength of order unity, and (ii) proposed that the interface retains a residual strength c even at very
high slip rates, thus avoiding unbounded acceleration at high velocities as in Weeks (1993). This regularisation effectively
makes the velocity-dependence of the steady-state friction law v( )ssμ ˜ non-monotonic, with velocity-strengthening branches
at low and high velocities and velocity-weakening behaviour over a range of intermediate velocities; the steady-state
friction law thus exhibits a characteristic ‘spinodal’ N-shape.

The introduction of a finite maximum strength at low velocities implies the introduction of a new characteristic time-
scale t⁎⁎ over which the interface relaxes towards this maximum value when v 0˜ = . This timescale t⁎⁎ is distinct from both
the characteristic timescale over which adjustments to the interfacial state take place as a result of velocity variations (this is
t⋆), and from the timescale tn which is based on the memory length L. On physical grounds we expect the ratio R t t/≔ ⁎⁎ ⁎ to be
much larger than unity.

Our spinodal law (Putelat et al., 2007, 2011) follows from the following choices:
�
 ψ ϕ= ˜,

�
 c( ) ln( / )θ ψ ϕ ϕ= + ˜

⁎̃ ,

�
 v Rv( ) 1/(1 )ssψ = + ,

�
 t v t v( ) ( )ssψ=⋆ ⁎⁎ .
where we introduce the reference value of the interfacial state R1/(1 )ϕ̃ = +⁎ so that, as before, μ μ= ⁎ when v V= ⁎ in steady
state. On substitution into the general formulation (4) we obtain

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )a

v
a c

d
dt

Rv
t

Rv
Rv

sinh
2

exp( / ) / , and
1

sinh
(1 )

1
,

b a1 /
μ μ ϕ ϕ ϕ ϕ ϕ= + ˜ ˜ ˜

= − + ˜ − − ˜
+

−
⁎ ⁎

⁎⁎

which, on linearising by setting x xsinh ≈ , yields

d dt t v L/ (1 )/ / . (8)ϕ ϕ ϕ˜ = − ˜ − ˜ ˜⁎⁎

This form shows clearly the role of t⁎⁎ as the characteristic timescale over which ϕ̃ relaxes towards 1. Note that for this
formulation the variable ϕ̃ is in fact dimensionless rather than having the dimensions of time as in the Dieterich, Ruina or
Perrin laws.

Although this spinodal law resolves several non-physical issues that are present in the Dieterich, Ruina and Perrin laws, it
remains unsatisfactory in one respect that will be important for the particular problem we consider later in the paper: at
low velocities, the evolution of the system is such that the interfacial velocity increases markedly while the interfacial state
remains almost constant. This is counter-intuitive: at very low velocities we would expect the interfacial state to roughen
towards its finite limiting value, and for the velocity to remain small.

Happily, this issue can be implemented through a slightly different formulation of the spinodal law: this is essentially a
redefinition of the reference value of the interfacial state 1ϕ̃ ≔⁎ and a compensating redefinition of the steady-state re-
lationship v( )ssψ so that t⋆ remains unchanged. We take
�
 ψ ϕ= ˜,

�
 c( ) ln( )θ ψ ψ= + ,

�
 v R Rv( ) (1 )/(1 )ssψ = + + ,

�
 t v t v R t Rv( ) ( )/(1 ) /(1 )ssψ= + = +⋆ ⁎⁎ ⁎⁎ .
Substitution into (4)1 yields

⎡⎣ ⎤⎦{ }a v b c asinh ( /2) exp ( ln( )/ , (9)
1μ μ ϕ= + + ˜−

⁎

while substitution into (4)2 yields

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

d
dt

Rv
t

Rv R
Rv

1
sinh

(1 )
1

.
(10)

ϕ ϕ ϕ˜
= − + ˜ − + − ˜

+⁎⁎

Note that if we were to linearise the sinh function in the above expression, we would recover exactly (8). But in the
nonlinear regime the behaviour differs in the two cases, and (10) has physically intuitive (and therefore preferable)



Fig. 1. Comparison of the Dieterich law (dashed lines) and spinodal law (solid lines) in steady state. Parameter values are as in Table 2. (a) Friction laws
showing the value of the friction coefficient as a function of imposed sliding velocity. For the spinodal law we set c¼0.001. The local maximum and
minimum of the steady-state friction coefficient μss are respectively located at V 2.49 10 msM 8 1= × − − and V 4.05 10 msm 4 1= × − − . The + symbols indicate
experimental data from ref. Heslot et al. (1994). (b) Regime diagram for the dynamics of a block pulled horizontally at velocity ṽ by a spring of stiffness k,
subject to a normal force s, indicating the onset of stick-slip behaviour. For the Dieterich law (3)1, stick-slip occurs below the dashed line; for the gen-
eralised spinodal law (10), stick-slip occurs only below the solid line.
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behaviour at low velocities. Thus we will refer to the system (8) and (9) and as the ‘spinodal law’, and the system (9) and
(10) as the ‘generalised spinodal law’.

Analysis of the steady-state friction coefficient v v( ) ( , )ss ssμ μ ϕ≔ computed by solving the state evolution equation for ϕ as
a function of v indicates that v( )ssμ takes the form shown in Fig. 1(a). There is a local maximum in v( )ssμ at

V aL b a t/(( ) ), (11)M ≈ − ⁎⁎

due to the competition between (quasi-)stationary interfacial strengthening controlled by the time scale t⁎⁎ and dynamical
weakening that takes place on the time scale L v/ ˜ . The residual interfacial strength coefficient c produces a second turning
point in v( )ssμ where the velocity-weakening regime gives way to the high-velocity frictional strengthening branch. Hence
there is a local minimum of v( )ssμ at

V b a V c( / 1) / . (12)m ≈ − ⁎

We remark in passing that, for the classic mechanical problem of a block pulled horizontally by a spring of stiffness k across
a frictional surface at a constant speed v, an important consequence of the existence of these local extrema in the steady-
state friction law is to close up the domain of stick-slip sliding in the (V,k) parameter plane, see Fig. 1(b).
3. Sliding stability

In this section we use the rate-and-state friction framework of Section 2 to understand a specific elementary mechanical
situation: the dynamics of a rigid block of mass m sliding on a flat plane inclined at an angle α to the horizontal, as shown in
Fig. 2. The motion of the block is determined by two forces: the gravitational driving force mg sin( )α and the resistive friction
force mg vcos ( , )αμ ϕ− ˜ ˜ . The dynamics is therefore given by Newton's Second Law coupled to the state evolution law, which
we write in dimensional variables as

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦v g v

G v

sin ( , ) cos ,

( , ). (13)

α μ ϕ α

ϕ ϕ

˜ ̇ = − ˜ ˜

˜ ̇ = − ˜ ˜

It is obvious from (13)1 that the block slides downward in steady state with a velocity v V˜ = and an interfacial state
V( )ssϕ ϕ˜ = ˜ that are determined by the angle α. V and V( )ssϕ̃ are solutions of the pair of

V G V V( , ) tan , and ( , ( )) 0.ss ss ssμ ϕ α ϕ˜ = ˜ =

The growth rates s of infinitesimal perturbations to the velocity and the interfacial state of the steady state V V( , ( ))ssϕ̃ are



Fig. 2. A block sliding on a slope. Slow increments in the angle α allow the naive determination of a critical ‘angle of friction’ αc at which the block first
begins to move.
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given by the eigenvalues of the Jacobian matrix of (13) evaluated at V V( , ( ))ssϕ̃ . This yields the characteristic equation

⎡⎣ ⎤⎦s s G g g Gcos cos . (14)v ssαμ α μ+ + = − ′ϕ ϕ

We denote the slope of the steady-state friction coefficient evaluated at v¼V by the total derivative d dv/ss ssμ μ≡ ′. We denote
the partial derivatives of the functions G and μ with respect to ϕ̃ and v by Gϕ and μv; these are assumed further to be the
values evaluated at the steady state V V( , ( ))ssϕ̃ . As previous authors have commented, we suppose that the partial deriva-
tives Gϕ and μv are positive, in agreement with observations (Rice et al., 2001). Plotting the left-hand side of the
characteristic equation (14) graphically shows that one of the growth rates is positive when 0ssμ ′ < . Therefore, the steady-
state sliding of the block is unstable for slip rates which correspond to a velocity-weakening branch of the friction
coefficient.3 In other words, the equilibrium point V V( , ( ))ssϕ̃ of (13) is a saddle point in this regime, whereas it is a stable
node in regimes for which friction is velocity-strengthening (i.e. V( ) 0ssμ ′ > )4.The change in the nature of the steady-state
sliding, from stable node to saddle point, suggests that a saddle-node bifurcation occurs at slip rates V at which the slope of
the steady-state friction coefficient V( )ssμ changes sign.

We remark briefly that analyses of exactly this kind have been carried out, using the monotonic Ruina law, in order to
understand the dynamics of landslides, see Chau (1995), Chau (1999), and Helmstetter et al. (2004).

3.1. Sliding dynamics with the spinodal law

As the discussion at the end of Section 2 indicates, we expect two saddle-node bifurcations to take place when we adopt
the spinodal law (9)–(8) or its generalised form (9)–(10). In this section the choice of the linearised, or generalised form is
immaterial since we study only the steady-state sliding dynamics. The velocities at which the saddle-node bifurcations
occur are close to the approximate values (11) and (12). Physically, as we now discuss, it makes sense to associate the
bifurcation at V V VM m= < , at which there is a local maximum in the steady-state friction curve, with the notion of a static
friction coefficient. Consider the thought experiment in which we slowly increase the angle α starting from the horizontal.
We imagine that this is performed quasi-statically so that steady-state sliding (i.e. at constant velocity) is reached after each
increment of α. In such a case, the block slides with extremely low velocities V VM< that increase very slowly with α until
the angle attains the critical value cMα that is given by the relation Vtan ( )cM ss Mα μ= . For angles cMα α> , the constant velocity
state is linearly unstable and the block accelerates rapidly. Therefore, the static friction coefficient μs measured in such an
experiment corresponds to the value of μ at the local maximum of the steady-state friction law:

Vtan ( ). (15)s cM ss Mμ α μ= =

Hence both the static friction coefficient μs and the angle of internal friction cMα can be expressed in terms of the material
parameters involved in the friction law (10). Numerically, using the estimate V 2.49 10 msM

8 1= × − − given by (11), we find
0.385 rad 22cMα ≈ ≈ °. To summarise, the empirical observation that there exists a critical angle at which a block starts

sliding on an inclined plane corresponds directly to the existence of a local maximum in the steady-state form of a rate-and-
state friction law. In this formalism the interpretation is that for angles smaller than the angle of internal friction cMα , the
block creeps down so slowly that an impatient human eye does not notice it. For a block sliding steadily at about

V10 10 ms2 8 1≡−
⁎

− − , around 1.2 days would be necessary for the block to slip by a distance of 1 mm; to slip by 1 mm at a
velocity of V10 10 m s3 9 1≡−

⁎
− − would take around 12 days.

Further, the local minimum V( )ss mμ and maximum V( )ss Mμ for the spinodal law define a range of angles

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦V Vtan ( ) tan ( ) , (16)cm ss m ss M cM
1 1α μ α μ α≡ ≤ ≤ ≡− −

bounded by the saddle-node bifurcations that occur at V( , )cm mα and V( , )cM Mα according to the elementary stability analysis
3 Note that if the friction coefficient were a function of the slip rate only, the growth rates of the perturbation would be g Vcos ( )ssαμ− ′ which leads to the
same conclusion.

4 The remaining generic possibility, that of a stable focus, cannot in fact occur in (13).
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above. Between the saddle-node bifurcations lies a domain of bistability where two linearly stable steady-state slidings
coexist, along with a third (unstable) steady-state sliding solution.

This is illustrated in Fig. 3 which shows the branch of the steady-state solution of (13) as the parameter α varies.
We computed the location of the critical angles cmα and cMα as the residual strength parameter c varies, using the

continuation software AUTO (Doedel et al., 1991). Fig. 4 shows that the region of bistability closes as c increases so that the
system is not bistable for c sufficiently large, and it expands as c decreases. The residual strength of the frictional interface is
thus an essential ingredient of the problem. Fig. 4 indicates clearly that, for the range of ‘dangerous’ slope angles

cm cMα α α≤ ≤ , the upper limit cMα is almost independent of c – it corresponds to the position of the local maximum in V( )ssμ
at low velocities V VM≈ . The lower limit cmα varies strongly with c, in fact it varies almost linearly with cln until it saturates
at very small c; cmα depends on the location of the local minimum Vm at which the high velocity regime turns from velocity-
weakening to velocity-strengthening at higher velocities.

Although Fig. 3 is computed using the particular friction law (10) its geometrical shape is generic for any steady-state
spinodal law. Interestingly, the presence of the saddle point in the bistability domain makes both stable solutions unstable
to sufficiently large finite amplitude perturbations in either velocity V or interfacial state ϕ. An approximation to the order of
magnitude of such perturbations that would be required to kick the system into the other steady state is given (geome-
trically) by the form of the friction law as shown in Fig. 1(a) or by the curves in Fig. 3. Quantitatively, within the velocity-
Fig. 3. Bifurcation diagram showing steady sliding solutions of the sliding block system (13) using the spinodal law. For slope angles α such that
cm cMα α α≤ ≤ , three steady-state sliding velocities are possible. Solid and dashed lines represent stable and unstable solutions, respectively. The critical

angles cmα and cMα are determined by the local extrema of the steady-state friction coefficient, see (16).

Fig. 4. Region of bistability in the c( , )α plane for the sliding block system (13) using the spinodal law (9)–(10). Within the region marked ‘metastable
domain’ there are two stable sliding solutions.
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weakening regime, the spinodal law (10) is extremely close to the Dieterich law (2)–(3)1 so that the friction coefficient can
be well approximated by (2): to be precise, in steady state we have V a b v V( ) ( ) ln ( / )ssμ μ μ≡ = + − ˜⁎ ⁎ so setting tanμ α= and
rearranging we see that the required amplitude of velocity perturbations would be of the order of⎡⎣ ⎤⎦V b aexp ( tan )/( )μ α− −⁎ ⁎ , for angles α in the range cm cMα α α≤ ≤ . The size of this perturbation varies strongly with α near
Vn: this variation is connected to the fast variation of the exponential term which in turn is due to the difference between
the two parameters a and b being relatively small: b a O (10 )2− = − .

To go further it is necessary to examine the details of the phase portrait of the dynamical system (13) and to investigate
the topological changes in the phase portrait that are implied by the bifurcation diagram in Fig. 3. Fig. 5 presents a typical
phase portrait for the spinodal law (10) for a slope angle 0.34 rad 19.5α = ≈ ° inside the interval of bistability. As shown in
the figure, the two stable nodes and the saddle point are located at the three intersections of the ṽ and ϕ̃ nullclines. The
ϕ̃-nullcline ( 0ϕ̃ ̇ = ) is fixed in the v( , )ϕ˜ ˜ phase plane and coincides with the equilibrium interfacial state V( )ssϕ ϕ= : it is
therefore purely a property of the interface. In contrast, the location of the ṽ-nullcline (v 0˜ ̇ = ) depends on the slope angle α.
As α is increased quasi-statically the ṽ-nullcline is displaced towards larger values of ṽ. As a result, we can see geometrically
that when cmα α< , the ṽ-nullcline intersects the ϕ̃-nullcline only at low velocity and high interfacial state, and when cMα α>
the ṽ-nullcline intersects the ϕ̃-nullcline only at high velocity and low interfacial state. These intersections between null-
clines are the stable branches of steady states shown in Fig. 3.

For cm cMα α α≤ ≤ the presence of the saddle point divides the phase plane in two basins of attraction separated by the
stable manifold of the saddle point. If initial conditions are chosen in the upper left corner of the phase plane, above the
stable manifold, then the block will creep down the slope at a very slow rate, essentially stopping. This corresponds to
interfaces that are rough, and slowly moving. In the other basin of attraction, the block will accelerate until reaching the
high-velocity steady state associated with a smooth interface.

3.2. Sliding dynamics with the Dieterich law

In this section we make brief remarks to compare the description of the dynamics when the Dieterich law (which has a
monotonically decreasing steady-state friction coefficient V( )ssμ ) is used to that resulting from the spinodal law. The defi-
ciencies that we identify in the Dieterich law are remedied by the spinodal law; this discussion serves to clarify and justify
the preceding section and the use of the spinodal law.

Fig. 6(a) presents the phase portrait of the sliding block system (13) using the Dieterich law (3)1. There is exactly one
equilibrium point (a saddle point) for all slope angles α due to the monotonic character of (3)1. The stable manifold of the
saddle point divides the phase plane into two regions, similar to its role in the spinodal law (10) for angles in the bistable
regime.

For the Dieterich law, starting at an initial condition in the region above the stable manifold in Fig. 6(a) leads to the block
slowing down indefinitely; for initial conditions in the region below the stable manifold, the block accelerates without
bound. As a result, the definition of a static coefficient of friction that we motivated for the non-monotonic friction law in
the subsection above cannot be used here.

The only possible mechanism that allows for a sudden transition to rapid slip as the angle α increases is to say that, since
the saddle point is displaced towards low velocities and higher interfacial state values as the slope angle is increased, there
must be a point at which the interfacial state and the instantaneous (low) velocity of the block crosses through the stable
manifold of the saddle point, since the stable manifold of the saddle moves when the saddle point itself moves. Such a
Fig. 5. Phase portrait in the v( , )ϕ˜ ˜ plane for the system (13) that describes a block sliding on a slope of angle α. (a) 0.28α = ; (b) 0.34 rad 19.5α = ≈ °; (c)
0.4α = . In each plot the nullclines v 0̇ = and 0ϕ ̇ = of (13) are indicated by the thick dashed and solid lines, respectively. The solid line is the locus of steady-

state sliding v( )ssϕ ϕ= ; the stable nodes are indicated by solid dots � and the saddle point is indicated by the white dot ○. Thin lines with arrows are
trajectories of (13). Thick lines indicate the stable manifold of the saddle point: note that these curves divide the phase plane into two separate basins of
attraction. Initial conditions in the upper (resp. lower) region lead to “stopping” (resp. “sliding”) motion of the block: (a) 0.28α = ; (b) 0.34α = ; (c) 0.40α =



Fig. 6. Phase portraits of the sliding block system under different rate-and-state friction laws, using the ‘first order kinetics’ approximation, linearising the
state evolution law near the steady-state response v( )ssψ . The slope angle α is fixed at 0.34α = . (a) Dieterich law (3); (b) spinodal law (8); (c) Ruina law (6).
On each plot, the v-nullcline and the ϕ-nullcline correspond respectively to the thick dashed line and the thick solid line. On the v-nullcline, the in-
stantaneous friction coefficient satisfies v( , ) tanμ ϕ α= . The stable manifold of the saddle point is given by the solid (blue) line that extends from lower left
to top right on each plot. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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sudden transition can be achieved if the slope angle is varying fast enough. However, since any critical angle defined
according to the above argument depends on the interfacial state of the block, we might expect that such a criterion would
inevitably lead to scatter in experimentally recorded measurements of the value of the static friction coefficient.

Taking a global view, the facts that the saddle point and its unstable manifold persist over the full range of α from 0° to
90° and that the low-velocity branch of the stable manifold of the saddle point appears not to extend to small values of ϕ̃,
implies that unbounded accelerations of the block are always possible if the interface is sufficiently smooth. This unphysical
feature of the dynamics is removed by modifying the friction law to contain a velocity-strengthening branch at high ve-
locities. As remarked on in the previous section, modifying the Dieterich law in this way allows the definition of a static
friction coefficient, associated with the local minimum of the steady-state friction coefficient. Conversely, the persistence of
the saddle point and its stable manifold implies also that, if the interface is sufficiently rough, the block will remain at rest
(i.e. move imperceptibly slowly) for any slope angle, even very large ones. This observation suggests that it is necessary also
to include a velocity-strengthening branch at very low velocities, in order to force the disappearance of the saddle point, and
with it the basin of attraction of the rest state, above a critical angle cMα .

3.3. Phase portraits for different friction laws

In this subsection we briefly present phase portraits for the dynamics of the sliding block problem when each of the
different rate-and-state friction laws is used. The results are summarised in Figs. 6 and 7. Fig. 6 presents three phase
Fig. 7. Phase portraits of the sliding block system under different rate-and-state friction laws, using the fully nonlinear state evolution laws. The slope
angle α is fixed at 0.34α = . (a) Generalised Dieterich law (5); (b) generalized spinodal law (10); (c) Perrin law (7). On each plot, the v-nullcline and the ϕ-
nullcline correspond respectively to the thick dashed line and the thick solid line. On the v-nullcline, the instantaneous friction coefficient satisfies

v( , ) tanμ ϕ α= . The stable manifold of the saddle point is given by the solid (blue) line that extends from lower left to top right on each plot. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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portraits for the Dieterich (3), spinodal (8), and Ruina (6) laws: in every case the state law is linearised around the steady-
state friction law. Fig. 7 presents the corresponding phase portraits for the three cases when the fully nonlinear state
evolution laws are used instead of their linearisations. The phase portraits summarise clearly the similarities and important
differences between the six cases.

The stable manifold of the saddle point (indicated on each figure by a solid (blue) line) divides the phase portrait into two
regions. For initial conditions v( , )0 0ϕ above the stable manifold, the block ultimately slows down and in most cases is
attracted to the v-nullcline (dashed line) on which v( , ) tan( )μ ϕ α= . For initial conditions below the stable manifold, in the
cases of the Dieterich and the Ruina laws with first-order kinetics (Fig. 6(a) and 6(c)) the block continues to accelerate since
trajectories are attracted to the ϕ-nullcline on which v( ) tan( )ssμ μ α= < . For the spinodal laws in Figs. 6(b) and 7(b), tra-
jectories starting below the stable manifold of the saddle are eventually attracted to a stable node corresponding to high-
velocity sliding.

As the slope angle is increased, the saddle node moves leftwards and the size of the region of the phase plane in which the
block eventually stops is reduced. For cases in which the friction law is monotonically velocity-weakening (i.e. Figs. 6(a,c)
and 7(a,c)), the concepts of static friction coefficient and critical angle of stability can then be interpreted as the stable manifold
crossing the initial condition of the block. As we have already remarked, the laws illustrated in Fig. 6 are unphysical in that,
even for small slope angles, acceleration is admitted for very smooth interfaces ( 1ϕ⪡ ). This possibility motivates the need to
allow frictional velocity-strengthening at high speed.

We turn now to the fully nonlinear ‘generalised’ forms of the friction laws. The inclusion of the full nonlinear form of the
state evolution law in the Dieterich and spinodal models, see Figs. 7(a) and 6(b), has the effect of bending the stable
manifold of the saddle towards lower values of ϕ at low v. This creates a region at low speed that is always ‘above’ the stable
manifold of the saddle in the sense that the interface strengthens without the velocity increasing. This behaviour mimics
the behaviour of ‘Coulomb friction’ at zero velocity. In Fig. 7(a) trajectories above and to the left of the stable manifold of the
saddle are attracted first to the v-nullcline near the saddle, before being attracted to the ϕ-nullcline further away. The phase
portrait, Fig. 7(c), for the Perrin law (7) closely resembles that obtained for the (linearised) Dieterich law, see Fig. 6(a).

To summarise, in this section we have highlighted the existence of two distinct regions in the phase plane, and the role
played by the stable manifold of the saddle point as the boundary between them. In the next section we use this inter-
pretation of the dynamics to shed light on the behaviour found experimentally by Rabinowicz (1951) and quantitatively to
connect informal ideas of ‘static’ and ‘dynamic’ friction coefficients with the rate-and-state formalism.
4. Rabinowicz's impact experiments

In this section we discuss the experiments reported by Rabinowicz (1951) and show that his results can be interpreted as
an experimental exploration of the phase portrait of the sliding block. This implies that experimental measurements of the
dynamical behaviour can be used to produce a quantitative estimate of the memory length L. To begin with, in Section 4.1
we summarise the experimental setup and reasoning given by Rabinowicz before interpreting it within the rate-and-state
framework. The behaviour in Rabinowicz's experiment is described in terms of two separate phases. The first of these
provides a surprisingly clear link between the persistence length that he introduced, and which we define below, and the
parameters of the rate-and-state laws. This is described in Section 4.2. A third, final, phase exists for choices of the friction
law that contain an attracting stable equilibrium point (for example the spinodal law). In Section 4.4, we discuss the dif-
ferent phases of the dynamical behaviour in terms of trajectories in the phase portrait.

Starting from the dimensional equations of motion (13), we nondimensionalise lengths and times using the memory
length L and the asperity dynamic rejuvenation time t L V/=⁎ ⁎. We use the generalised spinodal law (9)–(10) and so derive
the dimensionless dynamical

⎪

⎪⎧⎨
⎩

v v

v v

sin cos ( , ),

sinh[ ( )]/ ( ), (17)ss ss

2 α α μ ψ
η ψ ψ ψ ψ
ϵ ̇ = −

̇ = − −

where the dots represent differentiation with respect to the dimensionless time t and the friction coefficient v( , )μ ψ is given
by (9) (recall we set ψ ϕ= ˜). ϵ and η are dimensionless parameters defined as follows:

L g L V R R/ /( / ), and /(1 ). (18)ηϵ≔ ≔ +⁎

With L as the reference length, ϵ indicates the relative magnitude of the free fall time L g/ compared to the interfacial
dynamic rejuvenation time L V/ ⁎. For typical values of the memory length L 10 6∼ − m and the reference velocity
V 10 ms6 1∼⁎

− − , ϵ is around 10�4. Recall that R t t/= ⁎⁎ ⁎ is the ratio of the interfacial relaxation time (in quasi-stationary
contact) t⁎⁎ to the time tn derived from the memory length L. We expect R 1⪢ and therefore η is expected to be close to unity.
As before, for the generalised spinodal law we have v R Rv( ) (1 )/(1 )ssψ = + + .
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4.1. The experimental setup

Rabinowicz's experiments study how far a block of mass m, which is initially at rest, slides on a planar slope after the
block is impacted by a rolling spherical ball of mass m mb⪡ . The impulse is generated by allowing the rolling spherical ball to
travel a distance l, also starting from rest, before the impact with the block. The impact of the ball on the block then
accelerates the block down the slope. The principal parameters varied in the experiments are therefore the slope angle α
and the distance l between the point of release of the ball and the initially stationary block.

Rabinowicz began from the classic idea that there are two constant friction coefficients: the static value μs required to
initiate the motion of the block, and the kinetic value k sμ μ< that retards the motion while the block slips. Rabinowicz fixed
α so that tank sμ α μ< < and performed experiments in which the release distance l is varied. He observed that there exists
a critical length lk below which the block creeps down only a small distance (of the order of 10�4 cm) until it comes to rest,
and above which the block is set into ‘large-amplitude’ motion down the slope.

In order to explain these results, the simplest model, as proposed by Rabinowicz, is to assume a slip-dependent pie-
cewise constant friction coefficient s( )μ , i.e. that s( ) sμ μ= for s s0 k≤ < and s( ) kμ μ= for s sk> . He referred to the distance sk
at which this fast drop in the friction coefficient occurs as the ‘persistence length’. If the kinetic energy transferred to the
block from the ball is not sufficient to make the block slide a distance sk then the block will stop; if the kinetic energy
supplied to the block is sufficient to allow longer slip then the block would continue sliding for a distance greater than sk.

The relation between the persistence length sk and the corresponding critical release distance lk of the ball is given by
elementary mechanics, as follows. Conservation of energy implies that the distance s over which the block slips before
coming to rest is given by

g s v( cos sin ) /2, (19)s 0
2μ α α− =

where v0 denotes the initial block velocity just after the impact of the rolling ball. Assuming that the transfer of momentum
during impact can be characterised by a coefficient of restitution e that relates the velocity vb of the ball to v0 we have the
relation

mv e m v(1 ) . (20)b b0 = +

The velocity vb of the ball at impact is similarly determined energetically, assuming that it rolls without slipping over the
distance l from the initial point of release. Recalling the moment of inertia of a sphere about its contact point with a tangent
plane we have the relation

v gl(10/7) sin . (21)b
2 α=

Combining (19), (20) and (21) gives the slip distance s for the block (in the regime where it is at most sk) in terms of the
release distance of the ball, l:

s Kl( tan ) tan , (22)sμ α α− =

where, for notational simplicity, we have defined the constant K e m m(5/7)(1 ) ( / )b
2 2= + . Experimental determinations of the

critical release distance lk then lead directly to estimates for the persistence length sk: s Kl( tan ) tans k kμ α α− = .
In reality, the variation of the friction coefficient with distance from rest will not be piecewise constant as in Fig. 8(a). In

order to deduce experimentally the true form of the μ–s curve, Rabinowicz modifies the above argument slightly, as follows.
For a friction coefficient μ that varies with distance s, we have the straightforward generalisation of (22):

s ds s Kl( ) tan tan , (23)
s

0
∫ μ α α′ ′ − =

between the release height l and the slip distance s. Since the left-hand side is equal to s ds( ) tan
s

0
∫ μ α′ − ′ we must have

that the slip distance sk at which the block stops is given by the constraint that s( ) tankμ α= , since s( ) tanμ α> for s s0 k≤ <
in order to place the block in motion initially. So in general we have

s ds Kl( ) tan tan , (24)
s

k
0

k∫ μ α α′ − ′ =

Moreover, since the block is monotonically decelerating over the whole time it is in motion, the friction force is mono-
tonically decreasing. This implies that we can re-express the integral on the left-hand side of (24), using also the fact that

(0) sμ μ= , as

s ds s d( ) tan ( ) .
s

0 tan

k s∫ ∫μ α μ μ′ − ′ ≡ ′ ′
α

μ

Substituting this into (23) gives

Kl s dtan ( ) .k
tan

s∫α μ μ= ′ ′
α

μ



Fig. 8. Figures reproduced from Rabinowicz (1951). (a) Illustrative sketch of the piecewise-constant friction coefficient μ as a function of the persistence
length s. The friction coefficient is proposed to take the static value μs over slip distances x s0 k≤ ≤ and the lower (kinetic) value μk for x sk> .
(b) Experimental data (points) and smoothed average (solid curve) of tan α (vertical axis) as a function of l tan α (horizontal axis). Data were obtained for a
copper upper surface sliding down a steel slope. (c) Friction coefficient s( )μ inferred from the plot in (b); μ is proportional to the negative of the reciprocal
of the derivative of the curve in (b).
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Despite the slightly convoluted manipulations, this relation is just a different representation of the energy balance as the
block moves. Differentiating with respect to tan α, we obtain the relation

K
d l
d

s s
( tan )
(tan )

(tan ) .
(25)

k
k

α
α

α− = ≕

This indicates that the plot of the friction coefficient s( )kμ as a function of the critical slip distance sk can be obtained by
plotting tan α (since tan α μ= exactly when s sk= ) as a function of K d l d( tan )/ (tan )k α α− , as this expression is equal to sk.
We illustrate this in Figs. 8(b) and (c) with images from Rabinowicz's original paper (Rabinowicz, 1951). We refer the
interested reader to this paper for details of the experimental setup. Fig. 8(b) shows experimental data for tan α (on the y-
axis) against l tank α (on the x-axis). The reciprocal of the negative of the gradient of the solid curve is therefore sk and the
corresponding estimated plot of s( )kμ against sk is shown in Fig. 8(c).

In the next two subsections we discuss, using the generalised Dieterich ageing law (5) to be specific, how we can
interpret this behaviour in terms of the smooth rate-and-state description of friction. The idea of the persistence length sk is
very attractive since it is a straightforward macroscopic quantity than can be measured in the laboratory. We consider the
evolution starting from different initial conditions: a rough interface with a block moving at high velocity, then a smooth
interface with a block moving slowly. We note that our conclusions from the block experiment should apply also to frictional
interfaces dividing continua when spatial variations are ignored, or assumed to arise only on long wavelengths. Finally, in
this section, we discuss the long-time evolution close to equilibriumwhen a spinodal law is used to regularise the behaviour
at low velocities by providing a velocity-strengthening branch to the friction law that prevents the interface becoming
infinitely rough.

4.2. Analysis starting from a rough, high velocity initial condition

Starting from a (dimensionless) initial condition ( v,0 0ψ ) in which the interface is rough and for which a large initial
impulse is applied to the block, so that ψ0 and v0 are both large, it is straightforward to estimate the total distance x that the
block slips before coming to rest. As we remarked before, the stable manifold of the saddle point divides the phase portrait
into cases in which the block ultimately stops and cases in which it accelerates unboundedly, if no high-velocity residual
frictional strength is introduced. To estimate the rate-and-state persistence length, we consider initial conditions that are
very close to the stable manifold, in the upper right-hand corner of the phase portraits shown in Figs. 6 and 7.

When v( )ss0 0ψ ψ⪢ (recall that v( )ssψ denotes the steady-state value of v( )ψ at constant velocity v), we may approximate the
state evolution law (17)2 by

vsinh( )/(1/ ),η ψ ψ̇ = −

since v R Rv v( ) (1 )/(1 ) 1/ssψ = + + ≈ . This can be integrated with respect to time immediately to give

⎡
⎣⎢

⎤
⎦⎥x t v t dt t( ) ( ) ln tanh( /2)/tanh( ( )/2) .

(26)

t

0
0∫ η ψ ψ= ′ ′ =

This shows that, to leading order, the slip distance x(t) is determined by the state variable during the fast initial phase of
deceleration. Interestingly, for the Dieterich law, (26) would read x t( ) ln( / )0ψ ψ= − , which suggests an interpretation of the
ln ψ term in the friction law (2) as the slip distance over which the instantaneous friction coefficient is reduced to its kinetic
value, as set by tan α.

Multiplying (17)1 by v and time-integrating up to the point at which the block comes to rest, we obtain
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v v dt v dt
2

sin cos (27)
t t2

0
2

0 0

rest rest∫ ∫α α μ− ϵ = ′ − ′

Comparison with Rabinowicz's expression (19) results in the following relation, which provides a definition of the static
friction coefficient μs as a weighted average of the rate-and-state friction coefficient over the block motion:

t v t dt v t dt( ) ( ) ( ) . (28)s

t t

0 0

rest rest∫ ∫μ μ≔ ′ ′ ′ ′ ′

We consider integrating over the first phase of the motion, during which the trajectory from v( , )0 0ψ stays close to the stable
manifold and approaches the saddle point which we denote by v( , )sp spψ . Explicitly looking for an equilibrium point of (17)
we find

v b a v vexp[( tan )/( )], ( ) 1/ . (29)sp sp ss sp spμ α ψ ψ= − − ≔ =⁎

The critical case, in which the block covers the largest finite distance before stopping, is given by starting from an initial
condition v( , )0 0ψ on the stable manifold. For initial interfacial states that are rough, we have tanh( /2) 10ψ ≈ , so that the
ψ0-dependence can essentially be ignored. The (dimensional) persistence length, after which the block stops sliding can
therefore be estimated to be

⎡⎣ ⎤⎦x L b aln tanh( /2) where exp[ ( tan )/( )]. (30)k sp spη ψ ψ μ α= − = − − −⁎

In most cases, we can assume that 1spψ ⪡ and so approximate tanh sp spψ ψ≈ to obtain

⎛
⎝⎜

⎞
⎠⎟x L

b a
L

V

b a
ln 2

tan ( /2) tan
.

(31)
k

ssη
μ α

η
μ α

≈ +
−

−
=

−
−

⁎ ⁎

Perhaps surprisingly, this expression indicates that xk has a finite, and non-zero, limit as 0α → :

x x L b a L
V

b a
lim [ ln 2 /( )]

( /2)
,k k

ss0

0
η μ η

μ
≔ = + − =

−α→
⁎

⁎

where v b a v V( ) ( ) ln ( / )ssμ μ˜ = − − ˜⁎ ⁎ refers to the steady-state friction coefficient, assuming that the interfacial state ψ has
relaxed to its equilibrium value v1/ssψ = . The existence of the limiting value xk

0
suggests that we can use measurements of

the persistence length, extrapolated to the limit 0α → , together with estimates of the slope of the curve x ( )k α for small α, as
we expect this to be linear in tan α, in order to determine, jointly, the memory length L, the reference friction coefficient μ⁎,
and the reference velocity Vn.

It is clearly necessary that Vtan ( /2)ssα μ< ⁎ in order for the linear tan α-dependence of xk, as implied by (31), to make
sense. However, we note that approximation (31) provides a lower bound estimate for the angle of friction

V b atan [ ( /2)] tan [ ( ) ln(2)]f ss
1 1α μ μ≈ = + −−

⁎
−

⁎ from which the block becomes unable to stay still on the slope. For para-
meters of Table 2, we have 0.362fα ≈ . Fig. 9 shows the numerically determined dependence of the persistence length (31)
on the slope angle α.

Continuing our comparison with Rabinowicz's argument, we interpret (22) as the dimensionless critical block fracture
energy (Palmer and Rice, 1973; Ohnaka and Yamashita, 1989)

x L K l L( tan )( / ) ( / ) tan , (32)s k kμ α α≔ − =

that is required to set the block sliding unboundedly. Together with (31), (32) implies the relation

l
L V

K b a
tan

( tan )( ( /2) tan )

( )
.

(33)
k

s ssα
η μ α μ α

=
− −

−
⁎

Experimental measurements of the critical release distance lk over a range of slope angles α should therefore give a parabola
when l tank α is plotted as a function of tan α. This derivation of the functional form of the relation between tan α and l tank α
allows straightforward determination of the effective static friction coefficient μs since it is clearly a zero of the curve.
Table 2
Material parameter values for the generalised spinodal friction law (2) and (10) used to fit the experimental data obtained for the frictional properties of
Bristol paper board (Heslot et al., 1994).

μ⁎ a b b a/ b a− L (m) Vn (ms�1) c R t V L/= ⁎⁎ ⁎

0.369 0.0349 0.0489 1.4011 0.014 0.9 10 6× − 10�6 10�3 100



Fig. 9. Persistence length xk as a function of slope angle α showing the linear dependence at small slope angles and rapid drop near the critical slope angle
0.38α ≈ . (a) Linear axes, to emphasise the behaviour at small α; (b) logarithmic plot to show the existence of the critical slope angle 0.38α ≈ .
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4.3. Analytic estimates for the stable manifold

The position of the stable manifold of the saddle point (assuming that it exists) is a key part of all our discussions since it
separates initial conditions into two sets: those that lead eventually to the block stopping (or at least, moving extremely
slowly), and those that lead to unbounded (or at least extremely rapid) motion. In this section we present two approximate
schemes for estimating the location of the stable manifold of the saddle point v( , )sp spψ : this is an intrinsically highly
nonlinear problem.

Standard methods for computing an approximate form for the stable manifold as a function, say S v( )ψ = , involve Taylor
series expansions of the vector field close to the saddle point v( , )sp spψ . We carried out this analytic computation but found
that the resulting power series expansions (up to 14th order in v vsp− !) were accurate only within a small neighbourhood
of v( , )sp spψ . In particular, the Taylor series argument fails accurately to capture the sharp ‘knees’ that the stable manifold
contains, as illustrated, for example, in Fig. 7. This figure shows that the stable manifold is almost flat near the saddle point
but becomes almost vertical further away, both above and below vsp. The location of these vertical sections contains es-
sential information concerning the size of velocity perturbations required to move trajectories from one set of initial
conditions to the other.

A straightforward analytic estimate of these critical values of v can be obtained as follows. If we assume that the stable
manifold is exactly horizontal near v( , )sp spψ and then vertical after passing through each sharp ‘knee’ then the location of the
knees may be estimated by setting spψ ψ= and examining where d d v( ln )/ (ln ) 1ψ = , i.e. the gradient of the stable manifold
(in log coordinates) passes through unity. This results in the condition

v
d
d v

v v

v v
( )

( ln )
(ln )

sinh[ ( )]

( )[ ( , ) cos sin ]
1,

(34)sp

sp ss

ss sp

2

sp

χ ψ
ψ

ψ ψ

ηψ μ ψ α α
≔ =

ϵ −

−
=

ψ ψ=

where b aexp[ ( tan )/( )]spψ μ α= − − −⁎ , v v( ) 1/ssψ = , and v a v b( , ) ln lnsp spμ ψ μ ψ= + +⁎ . This last expression follows from
(9), setting ψ ϕ= ˜ and c¼0 since from Figs. 7(a) and 7(b) it is clear that the generalised Dieterich (ageing) law and the
generalised spinodal law are almost identical near the saddle point and its stable manifold. Then we use the approximation

x xsinh ( ) ln (2 )1 ≈− to simplify (9) to obtain v( , )μ ψ in the form given.
Fig.10 plots v( )χ as a function of v for four values of the slope angle α.
We observe that for this range of slope angles there are exactly two critical values v± (using the convention v v vsp< <− +)

at which v( ) 1χ =± . v− provides an upper bound on the location of the part of the stable manifold that lies in spψ ψ< while v+

provides a lower bound on the location of the stable manifold in spψ ψ> . For 0.34α = (the solid line in Fig. 10), the corre-
sponding values are v 0.0503≈− and v 1312.6≈+ . These are in reasonable agreement with the location of the lower-left and
upper-right positions of the stable manifold, as shown in Fig. 7(a).

A refinement of this idea that gives more accurate results is as follows. First impose the change of variables x v vln( / )sp=
and y ln( / )spψ ψ= , moving the saddle point to the origin x y 0= = , to obtain



Fig. 10. Plot of v( )χ , defined in (34), as a function of v for slope angles {0.2, 0.28, 0.34, 0.38}α ∈ . Points where v( ) 1χ = indicate the approximate location of
the vertical sections of the stable manifold of v( , )sp spψ at small and large v.
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⎪
⎪⎧⎨
⎩

x Ax By f x y

y g x y

( )e ( , ),

e sinh{ [e e ]}/ ( , ), (35)

x

x y
sp

x y
sp
2ψ ψ

̇ = − + ≕
̇ = − ≕

−

− −

where A a vcos( )/( )sp
2α= ϵ and B b vcos( )/( )sp

2α= ϵ . The values in Table 2 imply that typically A B O, (10 ) 15∼ ⪢ . We compute
the Jacobian matrix J at x y 0= = and the corresponding matrix P of eigenvectors:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

A B B B
A A

J , and P ,
sp sp

1 1ψ ψ λ λ=
− −

− − = − − − −− −
− +

where 0λ λ< <− + are the eigenvalues (tr J )/2λ Δ= ±± of J whose discriminant (tr J) 4 det J 02Δ = − > .5 The change of
variables x y X Y( , ) P( , )T T= , i.e.

x B X Y y A X A Y( ) and ( ) ( ) , (36)λ λ= + = − + − +− +

leads to the system

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )
( )

X A f x y Bg x y B

Y A f x y Bg x y B

( ) ( , ) ( , ) / ,

( ) ( , ) ( , ) / , (37)

λ Δ

λ Δ

̇ = + +

̇ = − + +

+

−

where f x y( , ) and g x y( , ), defined in (35), can be expressed as functions of (X,Y) through (36).
Fig. 11(a) (which is a linear–linear plot) indicates that in the (X,Y) coordinates, far from the origin, the stable manifold

resembles lines of constant slope 1− , i.e. Y S X X C( )= ∼ − + ± for some constants C±. The constants C± relate to v± respectively,
since the part of the stable manifold in X 0> and Y 0< corresponds to v vsp> .

This suggests that X C= ± can be estimated as the points where trajectories on the line Y¼0 in the (X,Y) plane achieve
gradients close to 1− , i.e. we solve the equation

dY
dX

Y
X

,
(38)C C( ,0) ( ,0)

ξ≡
̇
̇ = −

± ±

where the coefficient ξ takes a fixed value close to unity. We find numerically that 0.9ξ = gives a very good approximation,
see Fig. 11(b). Working back through the changes of coordinates we see that the critical velocities v± are estimated by

v v BXexp( ). (39)sp=± ±

Fig. 11(b) compares the numerical estimates for v± derived above (indicated by the solid lines) with the exact values deduced
directly from computing the sable manifold (+ symbols). At small and large slope angles v± converge to vsp: at intermediate
5 Note that for the parameter values in Table 2 Aλ ≈ −− and b a v( / 1) spλ ≈ −+ .



Fig. 11. Asymptotic approximation of the saddle point stable manifold, Rabinowicz's critical velocities and the corresponding estimation of the static
friction coefficient. (a) Phase portrait of (37) and the generalised Dieterich law (5) within the phase space (X,Y), cf. Section 4.3 ( 0.34α = ); (b) Rabinowicz's
critical velocities as a function of α giving the location of the stable manifold of the saddle node at small (blue) and large (red) v. Numerical approximation
from (38) and (39) for {0.9, 0.99, 0.999}ξ = (thick solid lines correspond to 0.9ξ = ). Symbols + represent the ‘exact’ critical velocities v± calculated from the
direct numerical integration of the stable manifold equation. The dashed line designates the equilibrium slip rate of the saddle node v ( )sp α . (For inter-
pretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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angles α, v+ and v− separate, indicating the quantitative dependence of the critical velocity for sustained slip on the initial
smoothness of the interface.

We now use the value of the larger critical velocity v+ to provide a theoretical estimate the value of the static friction
coefficient that would be obtained in an experiment of the kind that Rabinowicz proposed, as summarised in Section 4.1.
Assuming that the friction coefficient takes the constant value μs, combining the expression for the slip distance (26) with
the energy conservation equation obtained by multiplying (17)1 by v, and time-integrating from an initial state v( , )0 0ψ to a
final state v( , )ψ we obtain the energy balance equation

⎡⎣ ⎤⎦v v( )/2 cos ( tan ) ln tanh( /2)/tanh( /2) . (40)s
2 2

0
2

0η α μ α ψ ψϵ − = −

Starting from the critical velocity for a rough interface, i.e. setting v v0 = + and taking 10ψ ⪢ we expect to end up at the saddle
point, i.e. v v( , ) ( , )sp spψ ψ= . Rearranging (27) in this case leads to an estimate for the static friction coefficient:

v vtan ( )/{2 cos ln[tanh( /2)]}. (41)s sp sp
2 2 2μ α η α ψ≈ + ϵ − +

Fig. 12(a) compares the estimates of μs calculated with (41) from the values of v+ both computed approximately as
explained above for different values of ξ ( 0.85ξ = allowing a good fit of the stable manifold) and numerically from the direct
numerical integration of the non-autonomous differential equation dS dX Y X/ /= ̇ ̇ that the stable manifold equation Y S X( )≔
must satisfy. We see that the numerical μs (red solid line) slightly fluctuates and linearly increases before diverging fast from
a slope angle 0.39α ≈ . This effect is caused by the persistence length to vanish above a critical slope that can be evaluated
from the asymptotic expansion x xtanh( ) 1 2 exp( 2 )∼ − − for large x. Used in the definition of the persistence length (30),
we obtain

{ }b atan ( ) ln[ln(2 / )] , (42)f
1α μ η ε≡ + −−

⁎

where ε measures how small we wish x L/k to be. For 10 16ε ∼ − about machine precision, 0.397fα ≈ . In addition to this, we
emphasise that the dimensionless critical fracture energy (32) also drops to zero as α approaches αf as shown in Fig. 11(d).

To conclude, we propose to identify αf as the block friction angle (or angle of repose) from which the block starts sliding
as is observed in the variable slope angle high school block experiment. Such phenomenon is then physically explained by
the evanescence of the persistence length at fα α= . In this interpretation, the static friction coefficient (28) becomes un-
defined at the friction angle. Nevertheless, following the empirical definition of the static coefficient would lead to

tan ( ) 0.378, (43)s
f

f
1μ α≔ ≈−



Fig. 12. Effect of slope angle α on: (a) the static friction coefficient μs estimates given (41) for both the numerical and approximate computations of v+, and
(b) the block ‘fracture energy’ defined by (32). Notice the divergence of μs and the rapid drop of caused by annihilation of the persistence length as α
tends to the friction angle αf (42).
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which is noticeably lower from the estimation of μs from (28) for sub-critical slope angle fα α< . The use of static friction
coefficient might then be misleading, predicting a smaller frictional resistance.

Alternatively, the values of μs that we calculate from the stable manifold asymptotic location, in particular the divergence
of μs as fα α→ , may explain both the observed dispersion within stiction experimental measurements and the high values of
the static friction coefficient experimentally measured (e.g. Rabinowicz, 1951; Byerlee, 1978), provided the corresponding
measurements result from initial energy inputs à la Rabinowicz. Applying the method to (41), we find numerically that

0.621sμ ≈ , v 10 2.81 103.45 3≈ ≈ ×+ , x L/ 1.775k ≈ and 0.475≈ for 0.34α = and 0.85ξ = .

4.4. Phases of sliding behaviour

The overall behaviour of solutions to (17) is summarised in Fig. 13 which shows phase portraits for the generalised
Dieterich law and the spinodal law. In the preceding Sections 4.2 and 4.3 we discussed the initial phase of the motion
starting from a high velocity, rough interface state. After the initial phase, for both friction laws, we see that trajectories
evolve in a second phase to lie very close to the v 0̇ = nullcline, shown by the dashed lines in Fig. 13. In this phase, when
neither v nor ψ is particularly small, the constraint on the dynamics is provided by the small value of the parameter ϵwhich
ensures that the motion evolves subject to v 0̇ = . For the parameters in Table 2, 10 4ϵ ∼ − . This phase describes the slowing
and roughening of the interface at longer times.

What is perhaps more surprising is that, as ψ increases and v decreases further, there is a transition to another, third,
phase. The third phase arises when v decreases below the critical velocity v−. In this third phase the trajectory leaves the
vicinity of the nullcline v 0̇ = and moves across towards the nullcline 0ψ ̇ = . Although this is a low-speed part of the dy-
namics, this behaviour is observed only when the full form of the state equation (4)2 is used, and not the linearised version.
The key to this observation is that at low velocities the relevant values of ψ are large, and so the nonlinear form of the

vsinh[ ( )]ssψ ψ− function becomes important.
For the generalised Dieterich law, Fig. 13(a), this third phase continues indefinitely: trajectories remain close to the

0ψ ̇ = -nullcline and the interface continues to slow down, and roughens without bound, at long times.
Fig. 14 illustrates the dynamics within each of these three phases. Fig. 14(a) plots μ, v and ψ as functions of distance x.

Fig. 14(b) shows the evolution of v and ψ as functions of time t. Fig. 14(c) shows the friction coefficient μ and the position of
the block x as functions of t. In the first phase, the three plots in Fig. 14(a) show that μ, v and ψ all decrease, over

x0 0.325≤ < approximately.
In the second phase, approximately the region x0.325 0.494< < , μ is constant (as must be the case, since (17)1 shows

that μ is very close to tan α when v 0̇ = ), while v decreases and v1/ψ ∼ increases. In the third phase, x 0.494> , μ and ψ
increase rapidly while v becomes extremely small, so the block effectively stops moving.

Turning now to the spinodal law, Fig. 13(b) shows, as we expect, that the first two phases of the motion closely resemble the
Dieterich case. The third phase differs since the existence of the stable equilibrium point at small v and large ψ means that
trajectories stay closer to the v-nullcline and are ultimately attracted to the equilibrium, so that ψ remains bounded at long times.
Since ψ remains bounded, the friction coefficient μ also remains bounded: compare the upper plots in Figs. 15(a) and (c) with those



Fig. 13. Phase portraits for (a) the generalised Dieterich law; and (b) the spinodal law. The spinodal law has a stable equilibrium point at low velocity (due
to the existence of a local maximum in v( )ssμ ) in addition to the saddle point whose stable manifold, in both plots, is shown as the solid blue line. The other
solid (red) line is the trajectory starting from the rough, high velocity initial condition v( , ) (10 , 100)0 0

3.1ψ = above the stable manifold. Slope angle 0.34α = .
Dashed and solid lines indicate the v-nullcline v( , ) tanμ ψ α= and ψ-nullcline v( )ssψ ψ= , respectively. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this article.)

Fig. 14. Slip dynamics for the generalised Dieterich law. Initial condition v( , ) (10 , 100)0 0
3.1ψ = , slope angle 0.34α = .
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in Figs. 14(a) and (c). This boundedness of μ is important on physical grounds since, although the interface roughens over time, this
healing process in (quasi-)stationary contact should not continue indefinitely.

In terms of interpreting Rabinowicz's experimental results, however, the difference between use of the generalised
Dieterich or spinodal laws is not likely to be significant. Nevertheless, the use of the full nonlinear kinetics given by (4)2 is
important since using the full kinetics changes the vector field significantly in two regions of the v( , )ϕ phase plane: when
both v and ϕ are very large, and when both v and ϕ are very small, i.e. the top right and bottom left corners of the phase
plane plots. In both regions the trajectories for the full nonlinear kinetics (the ‘generalised’ versions of the friction laws),
shown in Fig. 7, are much closer to vertical than in the case of the linearised ‘first order kinetics’ version illustrated in Fig. 6.
This is because in both these regions we are far from the nullcline 0ψ ̇ = , i.e. we have v( ) 1ssψ ψ| − |⪢ and hence the form
trajectories take is influenced substantially by the nonlinearity of the sinh function.
5. Conclusions

In this paper we provide detailed analysis that links rate-and-state friction with Coulomb's proposition of two distinct,
constant, coefficients describing static and dynamic friction forces, and denoted μs and μk, respectively.



Fig. 15. Slip dynamics for the spinodal law. Initial condition v( , ) (10 , 100)0 0
3.1ψ = , slope angle 0.34α = .
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We firstly review a number of different formulations for rate-and-state friction and we show in Section 2 that they can be
put into a common framework given by (4). This illustrates their strong similarities, clarifies the points of difference be-
tween them, and allows the development of further rate-and-state formulations. One of these extensions, the spinodal law
(9)–(10), remedies some unphysical features of the Dieterich/Ruina expressions. We have discussed this is in detail pre-
viously elsewhere (Putelat et al., 2007, 2008, 2010, 2011).

In essence, friction laws derived from the framework (4) are phenomenologically distinguished through the choices of
the functions ψ, ( )θ ψ , v( )ssψ and t v( )⋆ . We expect these functions in general to depend also on normal stress, temperature
and wear parameters. This framework enables us to capture the historical dichotomy between the Dieterich (ageing) and
Ruina (slip) laws, by stating their generalisations as follows. For the choices ( ) ln( )θ ψ ψ≔ and t v t v( ) ( )ssψ≔⋆ ⁎⁎ , we define the
generalised ageing law

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦{ }a v b a

v t v

sinh ( /2) exp ( ln( ))/ ,

sinh( ( ))/( ( )), (44)ss ss

1μ μ ψ

ψ ψ ψ ψ

= +

̇ = − −

−
⁎

⁎⁎

while the choices ( )θ ψ ψ≔ and t v t( ) exp( )ssψ≔⋆ ⁎⁎ , enable us to define the generalised slip law

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦{ }
( ) ( )

a v b a

v t v

sinh ( /2) exp ( )/ ,

sinh ( ) / exp( ( )) . (45)ss ss

1μ μ ψ

ψ ψ ψ ψ

= +

̇ = − −

−
⁎

⁎⁎

In both cases this description requires a statement of the equilibrium state v( )ssψ in order to be complete: the determination
of v( )ssψ can be made using experimental data, as we described in previous work (Putelat et al., 2010, 2011).

We note also that in Putelat et al., 2011 we considered a commonly used alternative expression to (4)1 based on the
“Bowden–Tabor product decomposition” of the interfacial shear stress motivated by some interfacial asperity deformation,
i.e.

A v( ) ( ), (46)r cτ ψ τ˜ ≡ ˜ ˜ ˜

where Ar
˜ is the real interfacial contact area and cτ̃ is a measure of asperity yield or creep stress whose slip rate dependence is

also justified by some thermally activated rate process. Within this alternative framework, depending on the asperity de-
formation mechanism that is assumed, we also showed that the state dependence of the real contact area Ar can introduce
non-monotonic variations for the steady-state friction coefficient v v v( ) [ , ( )]ss ssμ μ ψ˜ ≔ ˜ ˜ . However there are dynamical differ-
ences, for example in Putelat et al. (2010) we reported that for a driven spring-block system such friction models, based on
(46), predict a subcritical instability of steady sliding (a Hopf bifurcation leading to stick-slip dynamics) at low driving
velocity which is in disagreement with the experimental characterisation of the stick-slip boundary described as a
supercritical Hopf bifurcation in Baumberger et al. (1994) and Heslot et al. (1994).

In additional work, not reported here, we have compared the phase portraits presented above with those obtained using
two friction coefficients that are motivated by the Bowden–Tabor product decomposition and discussed in detail in section
5 of Putelat et al. (2010). These friction coefficients are minor modifications of those proposed by Heslot et al. (1994),
Baumberger et al. (1999), Berthoud et al. (1999), Persson (2000) and Brechet and Estrin (1994), Estrin and Brechet (1996).
We find that the geometrical features of the phase portrait for the sliding block are qualitatively similar to those presented
above using (4). We conclude that the key similarity is the non-monotonicity of the steady state friction curve v( )ssμ ˜ , and
hence in the present paper we chose to focus the discussion on the framework given by (4).

The first context in which we link Coulomb friction with the rate-and-state formalism is in considering the stability of
the steady-state motion of a block sliding on an inclined plane, in Section 3. When the interface is sliding at constant
velocity we interpret the static friction coefficient as the local maximum of the steady-state friction coefficient, present at
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small slip rates. Comparison between predictions from the classical monotonic rate-and-state laws suggests that non-
monotonic laws with a section over which friction strengthens with increasing velocity, at low velocities, are better physical
models for sliding. Monotonic steady-state friction laws do not allow the saddle point equilibrium (corresponding to un-
stable steady sliding) to disappear for small slope angles; monotonic friction laws therefore always allow high-velocity
sliding to develop, unphysically, if the interface is initially very smooth. For spinodal rate-and-state friction laws, we
demonstrate the existence of a region of bistability (two stable equilibria representing steady sliding at different velocities)
that opens up as the parameter c describing the residual strength of the interface at high velocities increases, as shown
in Fig. 4.

In Section 4 we turn to a different dynamical setting in which a stationary block of material placed on a slope of constant
angle α to the horizontal is impulsively set into motion by an impact. This section is motivated by the experimental results
and theoretical arguments put forward by Rabinowicz (1951) concerning the ‘persistence length’ over which the coefficient
of friction could be said to remain at its static value μs before dropping to the kinetic value μk. This idea of a distance sk that
is a ‘limit of the persistence of the static coefficient of friction’ (Rabinowicz, 1951, p. 1374) is an attempt to extend Coulomb's
idea of friction. Clearly, the rate-and-state formalism is also an attempt to extend Coulomb friction but it is much more
closely based on physical intuition. Our results show that the idea of a persistence length sk can be related quantitatively to
the rate-and-state formalism. Moreover, sk, and indeed the value of the static friction coefficient μs, can be estimated
analytically from parameters in the rate-and-state description by realising that sk corresponds to the block slip distance
along the stable manifold of the system saddle equilibrium point which exists for moderate slope angles. We deduce an
expression (28) that yields μs as a velocity-weighted average of the rate-and-state friction coefficient over the motion of the
block. Analytic estimates of the stable manifold which follow energy conservation then furnish us with an approximate
approach (41) that estimates effectively the value of μs, defined by (28). Similarly, denoting the persistence length that
would be deduced from the rate-and-state formalism by xk, we derive the relation (30) that expresses xk in terms of
parameters in the rate-and-state model, in particular the memory length L, see Fig. 9. We conclude that it does make sense
to view the persistence length sk as the macroscopic manisfestation of the microscopic memory length L.

Finally, in Section 4.4 we describe in detail the qualitative motion that the rate-and-state formalism produces, and we
comment on the relation between the phases of the motion and the features of the rate-and-state model used. The evo-
lution of sliding under rate-and-state friction is of course governed by the detailed geometry of the phase space which
results from the specific model. From a dynamical systems perspective, the phase space is divided into two regimes (block
arrest and block acceleration) by the stable manifold of the saddle point. We show that the shape of this stable manifold and
the qualitative features of the vector field control the transient response of the interface to a sudden impulse, see Fig. 13. In
particular, numerical time integration of the rate-and-state block equations of motion gives rise to the slip-controlled drop
of the instantaneous friction coefficient as depicted by Rabinowicz, see Figs. 14 and 15. Rate-and-state friction also sheds
light on the fact that Rabinowicz's persistence length corresponds to the upper bound of the actual macroscopic slip dis-
tance required for the block arrest and whose determination is set by the system initial conditions. We emphasise that the
two key tribological features responsible for the regimes of block arrest and sustained sliding are the existence within the
state evolution law of the nonlinear sinh-type kinetics, and the velocity-dependent dynamic interfacial rejuvenation.

In geophysical terms, our results have several implications. The main consequence of the existence of a bistable region in
the spinodal friction law concerns landslide and slope stability. This bistability introduces a sensitivity to finite amplitude
perturbations below the classical critical Coulomb angle tan ( )c s

1α μ= − . The critical angle αcm which we introduce, and which
is associated with the high-velocity sliding branch, would appear to be a better safety criterion than the safety factor
estimated from the limit equilibrium analysis (Chowdhury et al., 2009). Our bistable model is in contrast to previous such
models (e.g. Henley, 1976; Qin et al., 2001) due to its pure tribological origin; it has also the advantage of relying on only a
single friction law. We note that the monotonic Ruina rate-and-state model has been used in the past for studying slope
stability (Chau, 1995, 1999; Helmstetter et al., 2004). Regarding the mechanics of faults and thrusts, we suspect them to be
more sensitive to finite amplitude perturbations as we expect the residual strength to reduce with increasing the normal
stress, the bistability domain widening as a result, and the local minimum of friction being displaced towards larger slip
rates as reported in Kilgore et al. (1993). We note also that the hysteretic behaviour favoured by spinodal friction may also
explain the pulses of avalanches observed in gravity current of granular matter (Takagi et al., 2011). Another appealing
application of spinodal friction is to model basal sliding involved in the flow of glaciers and ice sheets, see Fowler (1987),
Fowler (1989), Sayag and Tziperman (2009), Sayag and Tziperman (2009). Note that rate-and-state friction has recently
been proposed for taking into account experimental sliding memory effects reported for sea ice (Lishman et al., 2011, 2013).

Turning to earthquake mechanics, we suppose that the initial earthquake nucleation phase could be considered as an
initial sudden input of kinetic energy comparable to the impact of the rolling ball on the block in Rabinowicz's experiments.
Then the concept of persistence length (30) could be viewed as a slip nucleation length, assuming that the rate-and-state
description of a geophysical fault is qualitatively similar to that for a sliding block. Of course, the equation of motion of the
block (17)1 is much simpler than the full equations for the elastodynamics of a fault. Nevertheless, we believe that the
formula (30) derived for the persistence length may provide relevant physical insight into fault dynamics. This is because
essentially (30) comes from integrating the state evolution law by itself, and this is valid during the fast initial phase of
interfacial smoothing. As the persistence length xk may be several orders of magnitude larger than the memory length L, we
finally remark that expression (30) may explain why estimates of the nucleation length of fault from field data are much
larger than the nucleation lengths observed at the scales of laboratory experiments (Scholz, 1998).
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