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Abstract: A growing literature constructs SDG interlinkage networks in order to understand the
interplay between goals, co-benefits, and trade-offs present in Agenda 2030. Networks are constructed
from a variety of sources including historical correlations, expert analysis, and literature surveys.
However, beyond simply constructing such interlinkage matrices, it is important to explore their
implications and to compute quantities that describe the system-level response of the network so
that we can shed light on the overall network structure and its implications for policy decisions. In
this paper, I review fundamental ideas of centrality and hierarchy that may prove useful in these
system-level analyses, and I illustrate the ideas on two specific SDG interlinkage networks. Missing
data is particularly problematic in such analyses, pointing to the ongoing need to improve data
collection on the SDGs. In terms of the results for the specific SDG interlinkage networks that I
consider, the network analyses reveal an asymmetry between the support for SDGs 1, 2, and 3 that
the remaining goals provide, and a lack of influence in the other direction from SDGs 1, 2, and 3 to the
other goals. These are much harder to observe in the absence of such system-level methodologies. In
particular, the analyses highlight the possible lack of integration of SDGs 14 and 15, which may point
to the need for additional policy interventions to support progress on these two goals in particular.

Keywords: complex network; centrality; hierarchy; mathematical modelling; policy coherence;
synergy; trade-off

1. Introduction

Systems thinking provides a flexible bridge between quantitative and qualitative
insights into complex phenomena. On the quantitative side, the last two decades have
seen rapid growth in the analysis of complex networks and the development of new tools
and methods that reach across scales to show how system-level outcomes result from
local interactions.

Interlinkage networks for the Sustainable Development Goals [1] reflect the premise
that progress on one SDG should influence (positively or negatively) progress on other
goals [2]. For example, the seven-point scale proposed by Nilsson, Griggs and Visbeck [3]
describes influences between goals in terms that include ‘reinforcing’ and ‘enabling’ for
positive linkages, and ‘constraining’ or ‘counteracting’ for negative interlinkages. Behind
this sits, implicitly or explicitly, a sense of the scope of likely, or perhaps merely possible,
policy actions and the effects that a policy action aimed at one SDG might have on others,
either for better (a ‘co-benefit’) or worse (a ‘trade-off’).

In network science terms, these indirect effects of policy actions form a network
that is directed and weighted (allowing different interactions have different strengths).
Moreover, unlike, for example, disease transmission networks, linkages can be negatively
weighted, corresponding to trade-offs between goals rather than the co-benefits described
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by positive links. Such networks are typically constructed either from expert analysis,
literature surveys, or by analysing correlations in timeseries for SDG indicators.

In this short paper, I explain and apply two sets of ideas from network science to
interlinkage networks derived from goal-level interactions. The first, which I discuss in
Section 2, is the idea of eigencentrality [4–6] which formally does not apply to complex
networks with both positive and negative links, but, as has been shown previously, has
an alternative and extremely useful interpretation, making it an important system-level
statistic [7].

Section 3 discusses the second idea: the notion of hierarchy among the SDGs. Mea-
sures of overall hierarchy and directionality in complex networks have their roots in the
computation and analysis of ecosystems, for example, food webs, but lend themselves also
to the systemic analysis and quantification of prioritisation between the SDGs. Prioritisa-
tion of SDGs that lie further ‘upstream’ of others should enable those goals to be met while
at the same time allowing benefits to flow through the network and, thus, allowing the
whole system to benefit. In contrast, prioritisation of SDGs that lie far ‘downstream’ and,
hence, have much lower levels of influence on other goals would not allow all SDGs to be
met. I develop and discuss measures of hierarchy that help to identify points of leverage
and maximum ‘downstream benefit’ to other goals in the network.

Section 4 presents results that test these ideas on a range of interlinkage networks using
data from reports including the 2015 report published jointly by the ICSU and ISSC [8] and
the Global Sustainable Development Report 2019 [9,10]. I present conclusions in Section 5.

2. Centrality Measures

Throughout the paper, we consider a network containing n nodes (and, in the case of
the SDGs, usually n = 17) and a set of directed edges with either positive, negative, or zero
weights given by the n-by-n adjacency matrix A. In the mathematical notation that follows
our convention is that matrices are denoted by capital letters, not in bold, while vectors
are denoted by lowercase bold letters. Elements of matrices and vectors are indicated by
subscripts. The entry Aij is defined to be the weight of the edge from node j to node i, i.e.,
the influence of node j on node i. A common observation in network science is that some
nodes appear to be more important or more ‘central’ to the network than others. The most
fundamental notion of centrality is just to count the number of other nodes to which a node
is connected. This gives rise to the centrality measures,

kin
i ∑n

j=1

∣∣Aij
∣∣ and kout

i ∑n
j=1

∣∣Aji
∣∣,

which are the (weighted) in-degree and out-degree of node i, respectively. The absolute
value is required in order to avoid cancellation if a node has both positively and negatively
weighted edges connected to it. Pham-Truffert et al. [11] referred to nodes that have
a large in-degree as ‘buffers’ since they serve to combine the effects of many different
nodes together, and to nodes that have a large out-degree as ‘multipliers’ as they serve to
propagate the influence of a node to many other parts of the network. The total degree
ki = kin

i + kout
i is a natural measure of the relative importance of node i in the network: this

is the degree centrality of the node.
While simple, the concept of degree centrality can be criticised for its purely local

nature; it counts the numbers of direct neighbours of a node but does not make any
allowance for how connected those nodes themselves might be. A more robust measure
of importance could, therefore, be obtained differently, through a slightly self-referential
definition: the importance of a node is given by the weighted sum of the importance of the
nodes to which it is connected. Mathematically, this implies that the importance vi of node
i is given by

vi =
1
λ

n

∑
j=1

Aijvj, (1)
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where λ is a weighting parameter. This definition appears to be slightly circular since it
demands knowing the importances vj of the nodes j to which node i is connected. One can
imagine an iterative scheme, starting with estimated values for the vi and then recalculating
them according to the formula until they converge. Such an approach works and gives
the same answer in fact as the more mathematical approach which is to multiply up
by the factor of λ and to consider the equation Av = λv, which is well known as the
equation defining the eigenvectors v and eigenvalues λ of the matrix A. Generically, A
has n distinct eigenvalues λ1 . . . λn each with a corresponding eigenvector v1 . . . vn. The
eigenvalues are labelled in order, so that Re(λ1 ) ≥ Re(λ2) ≥ . . . ≥ Re(λn), where Re
denotes the operation of ‘taking the real part of’ for a possibly complex eigenvalue λi. For
a matrix A that has non-negative entries, the largest eigenvalue λ1 is guaranteed to be
real and non-negative, and its corresponding eigenvector v1 can be chosen so that it is
non-negative as well; this is the Perron–Frobenius theorem. When the weighting parameter
λ is fixed to be larger than λ1 the iterations of Equation (1) converge to zero, which gives
no information about centrality; reducing λ so that iterations of Equation (1) converge
to a nonzero solution results in convergence to the (leading) eigenvector v1 and, hence,
to a meaningful answer. The elements of this ‘leading’ eigenvector are then a centrality
measure which describes the relative importance of each of the nodes; this is known
as eigenvector centrality, abbreviated sometimes to ‘eigencentrality’. For the SDGs, the
meaning of eigencentrality can be intuitively related to the rate at which progress on other
SDGs reinforces and drives progress on each SDG itself, as I now discuss in a slightly more
general setting that copes with a larger class of interaction matrices that contain negative as
well as positive interlinkages.

While the above is mathematically well defined only for non-negative matrices, it is
often the case that a network with only a relatively small number of negative links will also
have a leading eigenvector that has all entries non-negative; in such a case, it is tempting
to continue to interpret the leading eigenvector as a centrality measure. But there is an
additional context for interpreting the leading eigenvector: it is the dominant ‘response’ of
the network when considered as a dynamic problem, evolving the state of the nodes over
time. In the simplest possible case, consider the evolution equation

dxi
dt

=
n

∑
j=1

Aijxj, (2)

where the rate of change of the state variable xi associated with node i depends linearly
on the state variables at the nodes connected to i, mediated by the strength, direction, and
sign of the interaction between the two nodes as captured by the interlinkage Aij. The
solution to Equation (2) is dominated, apart perhaps over a short initial transient phase, by
the form of the leading eigenvector since it corresponds to the mode of maximum growth
rate; the eigenvalues λ1 . . . λn are the growth rates of these different modes of response,
but v1 dominates since (by definition) λ1 is larger than all the others. In the interest of
simplicity, I ignore the case where the two largest eigenvalues are real and equal, because
this is generically unlikely to happen; moreover, it is observed not to be relevant to cases
in practice such as the examples below, where the leading eigenvalue is clearly separated
from the remaining n − 1 eigenvalues.

Hence, the leading eigenvector can be interpreted as the intrinsic mode of self-
reinforcing growth of the state variables x1 . . . xn caused solely by their interactions. In
the context of this work, and conscious of many caveats around the simplistic nature of
Equation (2) and the coarse-grained representation this implies, x1 . . . xn can be viewed
as the relative levels of progress made on each of the SDGs, interpreting the interlinkages
as these reinforcing or balancing effects due to policy actions. This is aligned with the
analysis of cross-impact matrices by several authors including notably Weitz et al. [2], who
described their cross-impact matrix as attempting to address the question: “If progress is
made on target x, how does this influence progress on target y?” In summary, large positive
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values of eigencentrality for an SDG indicate that progress on this SDG is well supported
by progress on others, whereas smaller or negative values show that progress on this
SDG is not an inevitable outcome of progress elsewhere and, hence, may deserve specific
policy interventions.

3. Hierarchy in Directed Networks

Building interlinkage matrices with directed edges between nodes, rather than undi-
rected ones (which would be interpreted as either mutually beneficial or mutually antago-
nistic relationships only), immediately leads to questions at the system level as to whether
the network taken as a whole has a sense of directionality to it. The answer may be that
it does not, for example, as would be the case of a network consisting of a cyclic ring of
directed edges: all nodes have the same ‘level’ in the network. Contrastingly, a chain of
positive directed edges all pointing in the same direction confers a clear hierarchy since, in
our SDG context, progress on SDGs corresponding to nodes earlier in the chain results in
co-benefits shared with SDGs further along the chain, but the reverse is not true.

In the context of the SDGs, it is clear that, while progress on goals related to societal
change such as SDG 5 (gender equality) and SDG 10 (reduced inequalities) are highly likely
to lead to progress on ‘human development’ goals such as SDG 1 (no poverty) and SDG 3
(good health and wellbeing), it is not so clear that all policy actions taken to reduce poverty
or to improve healthcare would necessarily have co-benefits that included progress on
SDG 5 or SDG 10; the progress on SDG 1 or SDG 3 could be a result of policy that failed to
address persistent inequalities in gender or other population characteristics. So, how could
we decide whether a given interlinkage network implies the existence of a hierarchy, and,
if it does, how can we find which of the SDGs comes further up and which is lower down
in the hierarchy that the directed network implicitly generates?

Following MacKay, Johnson, and Sansom [12], we can attempt to understand the
extent to which a network has a hierarchy by assigning a level hi to each node i, and looking
to minimise a function F of the levels that measures the overall amount of directionality
in the network. MacKay, Johnson, and Sansom referred to this quantity as the ‘trophic
confusion’ in the network, motivated by food webs where the structure of the trophic
network is a key quantity of interest in order to understand an ecosystem. A generalisation
of their initial idea is to include a collection of prespecified quantities gij, not necessarily
related to the adjacency matrix entries, which provide a set of target spacings between the
levels hi. The values of the levels hi that minimise F can be determined by minimising
the function

F(h) =
∑ij

∣∣Aij
∣∣(hi − hj − gij

)2

∑ij
∣∣Aij

∣∣ . (3)

The form of F(h) in Equation (3) guarantees that it is non-negative and has minimum
value zero when the spacings between levels satisfy exactly the requirements given by the
gij. The denominator provides a normalisation of the values of F, enabling comparisons
between different networks if the distribution of edge weights is the same; otherwise, it
does not affect the values of h that minimise F. Equivalently, the levels hi that minimise F
are given by solving the equation

Λh = vecdiag
(

AGT − ATG
)

, (4)

where the matrix Λ := diag(k)− AT − A , the operation vecdiag() extracts just the elements
of the main diagonal of the matrix and forms these into a column vector, k is the vector
of total degrees as defined previously above, G is the matrix whose entries are the target
spacings gij, and the notation diag() forms a square matrix with the elements of the vector
as the main diagonal of the matrix, with zeros elsewhere. In the case gij = 1 for all i and j,
the right-hand side vecdiag

(
AGT − ATG

)
reduces to the difference between the (weighted)

in-degree and out-degree.
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Despite this rather detailed set of definitions, minimising the ‘trophic confusion’
quantity F is straightforward to implement computationally and provides a representation
of a network that as far as possible provides an overall sense of directionality. This enables
a visualisation of which nodes are furthest ‘upstream’ in the network and so influence most
others, and which are furthest downstream and hence benefit most from co-benefits due to
other SDGs.

4. Examples

To illustrate the concepts in the previous two sections, I analyse two interlinkage
matrices for the SDGs at the goal level. The first of these was generated from an expert
analysis [8] conducted by the International Science Council in 2015, when it was still
the International Council for Science (ICSU), in partnership with the International Social
Science Council (ISSC); I therefore refer to it as the ICSU Report. Although it is based on
a qualitative analysis of policy interlinkages rather than historic data, this is one of the
few reports to treat all the SDGs (except SDG 17 on partnerships for the goals) identically.
Dawes (2020) [7] described in detail the methodology through which the expert opinions
were turned into a quantitative cross-impact matrix. Essentially this involved interpretation
of the direction of interlinkages from the report’s text, combined with an indication of
the strength of an interlinkage given by the number of targets in the SDG that was being
influenced that were mentioned as being impacted by progress on the influencing SDG.

The second interlinkage matrix considered is the one produced as part of the Global
Sustainable Development Report (GSDR) 2019 [9–11]. This report carried out a literature
survey of 177 global scientific assessments, UN flagship reports, and scientific articles on
SDG interlinkages, wherever possible looking at the level of targets; here, their results
are considered after aggregation to the goal level. A hand-coding of statements in these
articles resulted in a set of 4976 separate positive and 782 negative interactions. Although
there is considerable value in preserving the distinction between the positive and negative
interactions separately, as discussed in more detail elsewhere [13], in this paper, for rea-
sons of brevity, I discuss only the ‘net interlinkage’ matrix, adding positive and negative
interlinkages together.

Figure 1 shows the interlinkage matrices derived from the ICSU and GSDR reports.
Interlinkages are scaled to lie in the range [−1, 1], and those close to zero are replaced by
whitespace to improve the readability of the figures. Diagonal entries are removed from
the GSDR matrix to make this more directly comparable with the ICSU matrix; removing
these entries turns out to have only a very minor effect [13]. In both cases, we observe that
almost every SDG influences SDGs 1–3, as shown by the densely populated top three rows
of each plot. But there are fewer influences from SDGs 1 to 3 on the remaining goals, as
is shown by the relatively sparsely coloured first three columns on the left-hand side of
each plot. This highlights a fundamental asymmetry in Agenda 2030: the first three SDGs
are those on which most attention is focused, with SDGs 4 to 17 in some sense playing a
subordinate role, supporting the fundamental development agenda and continuation from
the Millennium Development Goals that SDGs 1–3 represent.

It is numerically straightforward to compute the eigenvalues and leading eigenvectors
for the interlinkage matrices shown in Figure 1; the results are given in Figure 2. Figure 2a
plots the eigenvalues in the complex plane. In both cases, there is a leading eigenvalue
that appears far to the right of the remaining ones, leaving a significant gap between
the leading eigenvalue and the next largest, for both the ICSU eigenvalues (red squares)
and GSDR eigenvalues (black dots). This indicates that the domination of the behaviour
of the networks by their leading eigenvectors is robust to perturbations of individual
interlinkages. Detailed sensitivity analysis was carried out elsewhere [13]. The form of
the leading eigenvectors themselves is shown in Figure 2b, again with GSDR eigenvectors
in black and the ICSU ones in red. The lines joining the dots are just a guide to the eye;
the data points show the components of the eigenvectors for each of the SDGs. The ICSU
eigenvector has only 16 components since the ICSU analysis omitted SDG 17 completely.
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interlinkages in each case.
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Figure 2. Eigenvalues and eigenvectors for the ICSU and GSDR interlinkage matrices. (a) Eigenvalues
of the adjacency matrices A in the two cases. The leading eigenvalues are located at approximately
λ1 = 1.47 for the ICSU matrix and λ1 = 1.10 for the GSDR matrix (both given to two decimal places).
In both cases, there are significant gaps between this leading eigenvalue and the next-largest. (b) The
leading eigenvectors v1 for the ICSU and GSDR adjacency matrices, with the components for each
SDG plotted against the SDG number on the horizontal axis. The vertical scale is somewhat arbitrary
since eigenvectors are defined only up to a scale factor. Here, as is customary and convenient, they
are normalised so that the sums of the squares of the components add up to one.

The asymmetry noticed above is reflected in the high values of the eigenvector com-
ponents for SDGs 1–3; these three SDGs are positively supported by many of the others,
which would lead to greater progress on those goals, in the dynamical sense, and for them
to be identified as among the most important in a centrality sense. The GSDR matrix has a
particularly high component also for SDG 8 (decent work and economic growth), which is
expected due to the relatively full row of interactions supporting SDG 8 in the interaction



Environ. Sci. Proc. 2022, 15, 33 7 of 9

matrix in Figure 1b. The corresponding row for the ICSU matrix in Figure 1a also strongly
supports SDG 8; however, in this case, the support is stronger for other SDGs and so SDG 8
does not emerge relatively better off.

Most concerning is the negative component of the leading eigenvector for SDG 14 (life
below water) for the ICSU matrix. This suggests that the internal dynamics of the ICSU
network would result in negative progress on SDG 14 when progress is made elsewhere.
In terms of the interlinkage matrix, there are two strongly negative links, from SDG 2,
and from SDG 11 to SDG 14; these are coloured dark blue in Figure 1a and point to
significant trade-offs between the goals on zero hunger, sustainable cities, and progress on
life below water.

Finally, Figure 3 shows the results of minimising the trophic confusion measure F
defined in Equation (3) for the two networks. In both parts of the figure, the relative
levels of the SDGs are determined so that as many of the directed edges point upwards
as possible. Hence, the influence between the SDGs generally runs from the bottom of
each figure to the top. It can be seen that SDGs 1–3 consistently appear close to the top of
the figures and SDG 12 appears low down. SDG 17 does not appear in Figure 3a since it
was not included in the ICSU analysis. The relative horizontal positions of different SDGs
have no meaning in terms of interlinkages; they are purely to make the figures as easy to
interpret as possible. One surprise in Figure 3b is the relatively high position of SDG 5
(gender equality). This illustrates that the construction of these hierarchies depends on the
robustness of the underlying data; as noted above, SDG 5 is rather sparsely represented in
the literature review that the GSDR matrix was built from. One useful direction for future
research would clearly be to develop measures of the robustness or sensitivity of these
hierarchy calculations to missing or biased data.
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hi, constructed so as to minimise the function F defined in Equation (3), and placing the node at the
lowest level at zero. The horizontal positions of nodes are chosen just so that as many links as possible
in the network are straight lines. (a) Hierarchy of nodes in the ICSU matrix: SDG 12 (sustainable
consumption and production) has most influence on other SDGs, whereas SDGs 1–3 are the most
influenced by others; (b) hierarchy of nodes in the GSDR matrix: SDG 17 (partnerships for the goals)
is the most influencing, and SDGs 1, 3, and 8 are the most heavily influenced by the others.
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5. Conclusions

The aim of this article is to introduce fundamental concepts in network science and
show that they are able to contribute to the understanding of the study of SDG interlinkages,
and in particular to the challenge of drawing system-level inferences from a set of individual
pairwise interactions between the 17 SDGs, or indeed at the level of the 169 individual
targets. After brief discussions of centrality in Section 1 and hierarchy in Section 2, two
example networks were presented in order to illustrate the mathematical tools. The results
illustrate the kind of overall conclusion that could be drawn about the structure of the
interlinkage networks that was less obvious and certainly less quantifiable without the
mathematical analysis available. The central conclusion is that progress on SDGs 1, 2, and
3 appears to be much more likely than progress on others, and that notably SDGs 14 and
15 are less well reinforced by the remainder of the goals, perhaps pointing to the need for
additional policy interventions.

Of the many directions for future research, I touch on a couple of the most obvious
and pressing. First, the degree to which the results are sensitive to biases, missing input
data, and the details of the construction of any interlinkage network is obviously extremely
important if the results are to have any validity. In part, detailed knowledge of the lim-
itations, or indeed the rationale behind any one interlinkage network should be known
and understood at the time of construction or data collection. The results for that network
must then be interpreted in that light; without that context and background understanding,
interpretation of the results is likely always to be misleading. In the context of the SDGs,
the data gaps are well known but significant [13]. This report highlights both the gaps in
coverage, noting for example that, for five of the SDGs, fewer than half of the 193 countries
or areas have internationally comparable data, and also, more subtly, that the most recent
data available in many cases is 5 or 6 years old. This lack of timeliness of data is noted as
being particularly a concern for SDGs 1, 4, 5, and 13.

Given that the analysis of interlinkages through historic data depends on data being
available for pairs of SDGs, so that their mutual dependency can be explored, the case for
the involvement of expert analysis in the identification of interlinkages is perhaps made
stronger, despite its more qualitative appearance and well-understood inherent subjectivity.

Recent work has explored mathematical measures of the sensitivity of the leading
eigenvector and eigenvalue to perturbations in the network [14], and it is likely that similar
approaches can be used to understand the robustness of the hierarchy calculations as well.
The hierarchy calculations can also be formulated in many different ways, for example,
making different choices for the target spacings gij in Equation (3). There are indeed a
number of different ‘natural’ choices for gij, and, more generally gij allows the formulation
of some kind of ‘prior structure’ that one might wish to impose on the answer, for example,
pairs of SDGs whose levels should be more or less closely aligned than other pairs of SDGs
due to some structural influence or geographical restriction. These issues deserve to be the
subject of future investigations.

Other centrality measures, building on eigencentrality, might also be useful in order
to explore more fully the connected nature of the network. There is related literature that
allows the inclusion of three-way interactions between nodes in a directed network [15]
(and references therein); this may be another helpful direction for these SDG networks
in particular.

To conclude, while the construction of interlinkage networks is in itself a demanding
and complex task, it appears to be gaining momentum as a way to visualise structure
within the set of SDGs; it follows that appropriate network tools should be used to extract
the system-level metrics and conclusions that follow from the interlinkage network. This
second step, while of course inheriting biases present in the network data, is crucial
in understanding in policy terms the emergent features that the interlinkage network
represents and how best they should be addressed.
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