5.3 Numerical Example of Evolution on a Centre Manifold

Consider the two-dimensional system

T = ,u—i—xz—i-xy—i-yg
j = 2u—y+a+ay

See notes for the algebraic details of the bifurcation at x =y = p = 0.

For ;1 = 0 trajectories decay exponentially fast towards a centre manifold y = 22 4+ O(3) on which
the dynamics is given by & = 22 + O(3). The fixed point at x = 0 is nonhyperbolic.
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For |u| < 1 trajectories decay exponentially fast towards the extended centre manifold y =
24 + 22 + O(3) on which the dynamics is given by @ = p + 22 + 2ux + 4u? + O(3).
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So there is a saddle-node bifurcation which creates new fixed points in p < 0. For p < 0 there
is a saddle at * = \/—p + O(p) and a node at x = —/—p + O(p); for p > 0 there are no fixed

points near z = 0.



