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Abstract. We investigate the occurrence of elements of order p
in the upper central series of a finite p-group.

1. Introduction

In his Mathematics Stack Exchange post [Sik], Igor Sikora asked the
following question, which originates with Cihan Okay.

Question 1.1. Let p > 2 be a prime. Is there a finite p-group G with
the following properties?

(1) G is generated by elements of order p,
(2) G is non-abelian, and
(3) for every pair of non-commuting elements x, y ∈ G of order p,

their product xy has order greater than p.

A dihedral group of order 2n ≥ 8 provides an example of a group
which satisfies (1)–(3) for p = 2, hence the requirement for the prime
p to be odd.

In an answer [Car] to the above post, the first author showed that
there is no group satisfying the properties of Question 1.1, building on
the following

Lemma 1.2. Let p be an odd prime. Let G be a finite, non-abelian
p-group, which is generated by elements of order p.

Then there is an element of order p in Z2(G) \ Z(G).

A negative answer to Question 1.1 is then obtained as follows. Let
t ∈ Z2(G) \ Z(G) have order p. Since t /∈ Z(G), and G is generated by
elements of order p, there is an element x ∈ G of order p which does
not commute with t. Since t ∈ Z2(G), we have that 1 6= [t, x] ∈ Z(G),
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so that the group 〈 x, t 〉 has class two, and thus

(xt)p = xptp[t, x](
p
2) = [t(

p
2), x] = 1,

as p > 2. Igor Sikora kindly asked to include the answer in the pa-
per [COS24]; it appears there as Lemma 4.8 and its proof.

This note originated from our desire to reconcile Lemma 1.2 with
some well-known examples. On the one hand there are finite p-groups of
arbitrary nilpotence class where all elements of order p lie in the centre.
And then certain finite p-groups of maximal class provide examples of
groups G of arbitrary nilpotence class c ≥ p−1 where there are elements
of order p in the subsets Zi(G) \ Zi−1(G), for 1 ≤ i ≤ p − 1, and then
only in Zc(G) \ Zc−1(G). (These examples will be described in detail
in Subsection 2.2.)

Theorem 1.4 below extends Lemma 1.2, and shows that the examples
of maximal class are in some sense typical.

Definition 1.3.
(1) Let G be a finite p-group of nilpotence class c.

(a) For 1 ≤ i ≤ c, the i-th layer of the upper central series is
the set

Zi(G) \ Zi−1(G).
(b) The p-spectrum of G is the set

{1 ≤ i ≤ c : there is an element of order p in Zi(G) \ Zi−1(G)}
(2) Let G be a group, and σ ∈ G, A left-normed commutator of

length l ≥ 1 starting with σ is defined recursively as σ, for
l = 1, and for l > 1 as [g, y], for some y in G, where g is a
left-normed commutator of length l − 1 starting with σ. We
will be writing such commutators as

[[σ, y1], y2] = [σ, y1, y2],
[[[σ, y1], y2], y3] = [σ, y1, y2, y3],
etc.

Theorem 1.4. Let p be a prime.
(1) Let G be a finite p-group.

Assume there is an element σ of order p in the k-th layer
Zk(G) \ Zk−1(G)

of the upper central series, for some k ≥ 2.
(a) Then the p-spectrum of G contains the set

{1, 2, . . . , min {k, p − 1}} .

(b) Among the elements of order p in the layers
1, 2, . . . , min {k, p − 1}

there are left-normed commutators starting with σ.
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(2) (a) Given any 1 ≤ k ≤ p−1 and c ≥ k, there is a finite p-group
G of class c whose p-spectrum is

{1, . . . , k} .

(b) Given any n ≥ 1, and any sequence

p ≤ c1 < c2 < · · · < cn ≤ c

of integers, there is a finite p-group G of class c whose
p-spectrum is

{1, . . . , p − 1, c1, c2, . . . , cn} .

Remark 1.5.
(1) Part (2) of Theorem 1.4 shows that part (1) provides the only

restriction on the occurrence of elements of order p in the layers
of the upper central series of a finite p-group.

(2) Not every central series will do in part (1) of Theorem 1.4; this
is discussed in Subsection 2.5.

We are grateful to Cihan Okay and Igor Sikora for sharing on Math-
ematics Stack Exchange the nice Question 1.1, which led to this note.

We are grateful to the referee for their suggestions, which contributed
in particular to making the paper more readable.

2. Proof of Theorem 1.4

2.1. Proof of part (1). Let σ ∈ Zk(G) \ Zk−1(G) have order p. For
i ≤ min(k, p − 1) the set

{j : j ≥ i, and in Zj(G) \ Zj−1(G) there is a left-normed
commutator which starts with σ and has order p }

is non-empty, as by assumption it contains k. Let m be its minimum.
Suppose by way of contradiction that m > i. Let x ∈ Zm(G) \

Zm−1(G) be a left-normed commutator starting with σ having order
p. Since x ∈ Zm(G), we have that for all y ∈ G the element [x, y] lies
in Zm−1(G). Since x /∈ Zm−1(G), there are elements y ∈ G such that
[x, y] ∈ Zm−1(G)\Zm−2(G) (see also Subsection 2.5). Since Zm−2(G) ≥
Zi−1(G), for such a y we have also [x, y] /∈ Zi−1(G); in particular [x, y] 6=
1.

Consider an arbitrary central series of G written in descending order
as G = G1 ≥ G2 ≥ . . . Let s be the greatest integer for which there is
an element y in Gs such that [x, y] ∈ Zm−1(G)\Zi−1(G). Since for such
a y the element [x, y] lies in Gs+1, we have that [x, [x, y]] lies in Zi−1(G),
and thus in Zp−2(G), as i ≤ p − 1. Thus, setting H = 〈 x, [x, y] 〉, we
obtain that

〈 x, [x, y] 〉 Zp−2(G)
Zp−2(G)
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is abelian. We have also

Zp−2(HZp−2(G)) =
= {g ∈ HZp−2(G) : [g, x1, . . . , xp−2] = 1, for all xi ∈ HZp−2(G)} ≥

≥ {g ∈ HZp−2(G) : [g, x1, . . . , xp−2] = 1, for all xi ∈ G} ≥
≥ Zp−2(G),

so that the group HZp−2(G), and its subgroup H, have nilpotence
class at most p − 1. Therefore H is regular in the sense of Philip Hall
([Hup67, III.10.1]). Clearly xy = y−1xy = x[x, y] is an element of order
p in H, so that by regularity ([Hup67, III.10.5])

[x, y]p = (x−1xy)p = 1.

Thus [x, y] ∈ Zm−1(G) \ Zi−1(G) is a left-normed commutator start-
ing with σ having order p in Zj(G) \ Zj−1(G), for some m > j ≥ i,
contradicting the definition of m.

2.2. Proof of part (2). We begin by recalling the construction of the
unique infinite pro-p group of maximal class, as lifted from [CDC22,
Section 5]. For the theory of p-groups of maximal class, see [Bla58],
[Hup67, III.14], and [LGM02].

Let p be a prime, and Zp be the ring of p-adic integers. Let ω be a
primitive p-th root of unity. ω has minimal polynomial

xp−1 + xp−2 + · · · + x + 1 ∈ Zp[x]
over Zp, so that the ring Zp[ω], when regarded as a Zp-module, is free
of rank p − 1.

The ring Zp[ω] is a discrete valuation ring, with maximal ideal I =
(ω − 1). Consider the automorphism α of the group E = (Zp[ω], +)
given by multiplication by ω. Clearly α has order p in Aut(E).

The infinite pro-p-group of maximal class is the semidirect product
M = 〈 α 〉 n E.

For p = 2 this is the infinite pro-2-dihedral group, in which all elements
outside E have order 2. In general, the following lemma, which appears
in [CDC22], is well known.

Lemma 2.1. All elements of M \ E have order p. In particular, M is
generated as a pro-p-group by elements of order p.

Proof. If g ∈ E and 0 < i < p, we have

(αig)p = αipgαi(p−1)+αi(p−2)+···+αi+1

= gαi(p−1)+αi(p−2)+···+αi+1

= (ωi(p−1) + ωi(p−2) + · · · + ωi + 1)g
= 0,
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since ωi is a conjugate of ω, for 0 < i < p, so that it has the same
minimal polynomial. □

Since E is an additive group, for v ∈ E the commutator [v, α] repre-
sents the element −v +vα = (−1+ω)v of E. Therefore if we denote by
s1 ∈ E the multiplicative unit of Zp[ω], and let sn = [sn−1, α], for n > 1,
we will have sn = (ω − 1)sn−1 = (ω − 1)n−1s1. Then we have that for
k ≥ 2 the k-th term γk(M) of the lower central series of M is the closed
subgroup spanned by {si : i ≥ k}. Moreover, since (ω − 1)p−1 = pζ, for
some unit ζ in Zp[ω], we have, for k ≥ 1,

sk+p−1 = [sk, α, . . . , α︸ ︷︷ ︸
p−1

] = pζsk, (2.1)

where the repeated commutator is left normed.
For c ≥ 2 the group Mc = M/γc+1(M) is thus a finite p-group of

order pc+1 and maximal class c, with

Zc−1(Mc) = 〈 s2, . . . , sc 〉 γc+1(M)/γc+1(M).

Lemma 2.1 shows that Mc \ Zc−1(Mc) contains elements of order p,
and it is immediately seen from (2.1) that the set of elements of order
dividing p in Zc−1(Mc) is

Zt(Mc) =
〈

sc−(t−1), . . . , sc

〉
γc+1(M)/γc+1(M),

where t = min {c − 1, p − 1}.
Consider also the following split metacyclic groups, for c ≥ 2:

Dc =


〈

x, y : xpc
, ypc

, [x, y] = xp
〉

, for p > 2;〈
x, y : x2c

, y2c−1
, [x, y] = x2

〉
, for p = 2.

(2.2)

Since Dc is generated by x, y, its commutator subgroup is the smallest
normal subgroup containing the commutator [x, y] = xp, and thus the
commutator subgroup of Dc is 〈 xp 〉. Since x commutes with [x, y] = xp,
we have [xpi

, y] = [x, y]pi = xpi+1 for i ≥ 0, so that Dc is a group of
nilpotence class c. Moreover Ω1(Dc) = {g ∈ Dc : gp = 1} has order p2

and coincides with Z(Dc), where Ω1(Dc) =
〈

xpc−1
, ypc−1

〉
for p odd,

and Ω1(Dc) =
〈

x2c−1
, y2c−2

〉
for p = 2.

In the following, we will make use of a couple of elementary facts.

Lemma 2.2. Let G1 and G2 be non-trivial finite p-groups with nilpo-
tence classes c1, c2 and p-spectra S1, S2.

Let G1 × G2 be their direct product.
Then
(1) G1 × G2 has class max {c1, c2} and
(2) G1 × G2 has p-spectrum S1 ∪ S2.
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Proof. For the terms of the upper central series we have

Zi(G1 × G2) = Zi(G1) × Zi(G2), (2.3)

hence (1).
As to (2), if g is an element of order p in Zi(G1)\Zi−1(G1), say, then

(g, 1) is an element of order p in Zi(G1 ×G2)\Zi−1(G1 ×G2), according
to (2.3).

Conversely if (g, h) ∈ Zi(G1 × G2) = Zi(G1) × Zi(G2) has order p,
then g ∈ Zi(G1), h ∈ Zi(G2), and gp = 1 = hp. If (g, h) /∈ Zi−1(G1 ×
G2) = Zi−1(G1) × Zi−1(G2), then either g /∈ Zi−1(G1), so that g is an
element of order p in Zi(G1) \ Zi−1(G1), or h /∈ Zi−1(G2), so that h is
an element of order p in Zi(G2) \ Zi−1(G2). □

We need some further preliminary work in order to produce some
indecomposable examples later. Given two non-trivial finite p-groups
G1, G2, take elements z1, z2 of order p in Z(G1), Z(G2) and consider
the group Q = (G1 ×G2)/〈z1z2〉, where we treat G1 ×G2 as an internal
direct product. As the images G1, G2 of G1, G2 in Q are isomorphic to
G1, G2 it follows that the class of Q is the same as that of G1 × G2.

Lemma 2.3. Let xi ∈ Gi. The following are equivalent
(1) x1x2 ∈ Zn(Q), and
(2) x1 ∈ Zn(G1) and x2 ∈ Zn(G2).

Proof. It is immediate that (2) implies (1)
Now assume (1) In particular

[x1x2, g1, · · · , gn] = [x1, g1, · · · , gn] ∈ 〈 z1z2 〉 ∩ G1 = 1

for all g1, . . . , gn ∈ G1 and therefore x1 ∈ Zn(G1). Similarly we see that
x2 ∈ Zn(G2). □

Note in particular that x1x2 6∈ Zn(Q) iff either x1 6∈ Zn(G1) or
x2 6∈ Zn(G2). It follows that x1x2 ∈ Zn(Q) \ Zn−1(Q) iff either x1 ∈
Zn(G1)\Zn−1(G1) or x2 ∈ Zn(G2)\Zn−1(G2). Now assume furthermore
that z1z2 is not a pth power in G. Then (x1x2)

p = 1 if and only if
(x1x2)p ∈ 〈z1z2〉 iff (x1x2)p = 1 iff xp

1 = 1 and xp
2 = 1. From this we see

that

Proposition 2.4. Suppose z1z2 is not a pth power. Then Q and G
have the same nilpotence class and the same p-spectrum.

We cannot drop the requirement that z1z2 is not a pth power as the
following example shows.

Example 2.5. Consider the group H = D2 × 〈 d 〉 where d is of order
p2. Notice that the p-spectrum of H is {1}. Now let K = H/ 〈 xpdp 〉.
Then xd is of order p in K and xd ∈ Z2(K) \ Z(K) and thus the
p-spectrum of K is {1, 2}.
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2.3. Proof of part (2a). For k = 1 an example is provided by Dc, the
group defined in (2.2).

For k ≥ 2 a decomposable example is provided by Mk×Dc, according
to Lemma 2.2.

We now provide two different indecomposable examples.

2.3.1. First example. Consider first the case when c = ke is a multiple
of k. Let

A = 〈 a1 〉 × · · · × 〈 ak 〉
be a homocyclic group of exponent pe, for some e ≥ 1. The assignment

a1 7→ a1a2, a2 7→ a2a3, . . . , ak−1 7→ ak−1ak, ak 7→ akap
1

defines an endomorphism β of A, which is actually an automorphism of
order a power of p, as it is such an automorphism modulo the Frattini
subgroup of A. Let pt be the order of β.

Consider the group G which is the semidirect product of A by a cyclic
group 〈 b 〉 of order pt+1, with b acting on A via β, so that bpt ∈ Z(G).
(G coincides with De for k = 1.)

If ha ∈ G is an element of order dividing p (that is, it is either the
identity or has order p), for some h ∈ 〈 b 〉 and a ∈ A, then its projection
h on 〈 b 〉 has also order dividing p, and thus h ∈

〈
bpt

〉
≤ Z(G), so

that a ∈ Ω1(A). It follows that the elements of G of order dividing p

form the set
〈

Ω1(A), bpt
〉

=
〈

ape−1

1 , . . . , ape−1

k , bpt
〉
. Now the element

ape−1

k−i+1 of order p lies in Zi(G) \ Zi−1(G), for 1 ≤ i ≤ k.
For the general case when c is not a multiple of k, if c = ke − s for

some e ≥ 1 and 1 ≤ s < k, it suffices to take the subgroup of the G we
just constructed given by

〈 ap
1, . . . , ap

s, as+1, . . . , ak, b 〉 .

2.3.2. Second example. Let 2 ≤ k ≤ p−1 and c ≥ k. As an application
of Proposition 2.4, we produce an example of an indecomposable finite
p-group G(k,c) that has class c and p-spectrum {1, · · · , k}.

Let G1 = Dc and G2 = 〈s, t〉 be the largest 2-generator group of
exponent p and class k. Then G = G1×G2 has the class and p-spectrum
we want. We want a group that is furthermore indecomposable. Pick
a non-trivial d ∈ γk(G2) and consider the group Q = G/

〈
xpc−1

d
〉
. By

Proposition 2.4 we know that Q has the same class and p-spectrum
as G. It remains to show that Q is indecomposable. We argue by
contradiction and suppose that

Q = A × B,

where A and B are non-trivial. The group Q is of rank 4. Pick
some generators for A and some for B. Suppose these are g1, g2, g3, g4.
Consider first the case when k ≥ 3. Here xpc−1 ∈ [G1, G1]Gp

1 and
d ∈ γ3(G2). There must be two elements among g1, g2, g3, g4, that are
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linearly independent modulo G2[G1, G1]Gp
1. Without loss of general-

ity we can assume that these are g1 and g2 and replacing these with
suitable products of their powers, we can assume that

g1 ∈ xG2[G1, G1]Gp
1

and
g2 ∈ yG2[G1, G1]Gp

1.

As [x, y] 6∈ [G1, G1]pγ3(G1), we have that [g1, g2] 6= 1 and g1, g2 must
belong to the same component, say A. Again as [x, y] 6∈ [G1, G1]pγ3(G1)
all the generators in B must be in G2[G1, G1]Gp

1. Without loss of
generality, we can assume that g3 ∈ B and that g3 = se with e ∈
[G1, G1]Gp

1. If g4 ∈ B we can assume w.l.o.g. that g4 = tf with
f ∈ [G1, G1]Gp

1. If g4 ∈ A, then replacing it by a suitable g4g
α
1 gβ

2 we
can again assume that g4 is on the same form g4 = tf . As [s, t] 6∈ γ3(G2)
we however see that [g3, g4] 6= 1 and therefore g3, g4 ∈ B.

Using the fact that A and B are normal in Q, we see that

A ≥ [A, G1, . . . , G1︸ ︷︷ ︸
k−1

] = γk(G1)

and
B ≥ [B, G2, . . . , G2︸ ︷︷ ︸

c−1

] = γc(G2).

But then A contains xpc−1 and B contains d−1. As these elements are
the same we get the contradiction that A ∩ B 6= 1.

We need some extra care when treating the case k = 2. We deal
separately with two subcases. Suppose first that c ≥ 3. The same
argument as above works as before in that we get two generators for
A, g1 ∈ xG2[G1, G1]Gp

1 and g2 ∈ yG2[G1, G1]Gp
1. The same argument

as in the k ≥ 3 case, also shows that all the generators of B must
be in G2[G1, G1]Gp

1 and w.l.o.g. we can assume that g3 = se with
e ∈ [G1, G1]Gp

1. Here we specifically choose d = [s, t]. We have

A ≥ [A, G1, . . . , G1︸ ︷︷ ︸
k−1

] = γk(G1)

and
B ≥ [B, G2] = γ2(G2)

as γ2(G2) = 〈[s, t]〉. As before we get the contradiction that A∩B 6= 1.

Finally we deal with the remaining case c = k = 2. Here the Frattini
subgroup, F (Q), of Q is contained in Z(Q). Again we let d = [s, t].
As [Q, Q] is of rank 1, generated by d

−1 = xp, we must have that one
of A, B is abelian. In particular there is some generator of the form
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g = xαyβsγtδe, where not all α, β, γ, δ are divisible by p and ē ∈ Z(Q),
where g ∈ Z(Q). However

1 = [g, ȳ] = [x, y]α = d̄−α

1 = [x̄, g] = [x, y]β = d̄−β

1 = [g, t̄] = [s, t]γ = d̄γ

1 = [s̄, g] = [s, t]δ = d̄δ.

that gives the contradiction that p divides all of α, β, γ and δ.

2.4. Proof of part (2b). Note that the assumptions imply c ≥ p. In
the case when n = 1 and c1 = c = p, an indecomposable example is
given by Mp. So from now on we may assume c > p ≥ 2.

2.4.1. A decomposable example. By Lemma 2.2, such an example is
given by

H = Mc1 × Mc2 × · · · × Mcn × Dc, (2.4)
where the factor Dc is redundant when c = cn.

This example also shows that the layers of the upper central series
that contain elements of order p may well contain also elements of order
greater than p.

2.4.2. An indecomposable example. We will construct an indecompos-
able example as a subgroup G of the decomposable one H of (2.4).

Denote by ai, ti,1, . . . , ti,ci
the images in Mci

of α, s1, . . . , sci
.

For each i, consider the element xi = ait1,i of order p of Mci
, which

together with ai generates Mci
. Consider for each i the non-abelian

maximal subgroup
Xi = 〈 xi, γ2(Mci

) 〉
of Mi, and the maximal subgroup

E = 〈 x, yp 〉
of Dc = 〈 x, y 〉. Write

X̂i = {1} × · · · × Xi︸︷︷︸
i−th place

× . . . {1}

and
Ê = {1} × · · · × {1} × E.

For z ∈ Mci
, write

ẑ = (1, . . . , 1, z︸︷︷︸
i−th place

, 1, . . . , 1) ∈ X̂i,

and for z ∈ E write
ẑ = (1, . . . , 1, z) ∈ Ê.

Let also
a = (a1, . . . , an, y) ∈ H.
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Our example will be the subgroup of H given by

G =
〈

a, X̂1, . . . , X̂n, Ê
〉

.

For z ∈ Xi one has

[ẑ, a] = [̂z, ai] ∈ X̂i,

and for z ∈ E one has

[ẑ, a] = [̂z, y] ∈ Ê.

It follows that 〈
a, X̂i

〉 ∼= Mci
,

〈
a, Ê

〉 ∼= Dc.

and for each k ≥ 2 we have the equality
γk(Mc1) × · · · × γk(Mcn) × γk(Dc) = γk(G). (2.5)

The centre of H is

Z(H) =
〈

t̂1,c1 , . . . , t̂n,cn , x̂pc−1 , ŷpc−1 .
〉

for p odd, and

Z(H) =
〈

t̂1,c1 , . . . , t̂n,cn , x̂2c−1 , ŷ2c−2 .
〉

for p = 2. We have Z(H) ≤ G, and
Z(H) = CH(a) ∩ CH(x̂),

so that Z(G) = Z(H).
Moreover Z(G) is contained in the Frattini subgroup Frat(G) of G,

as
t̂i,ci

∈ ̂γci
(Mci

), x̂pc−1 ∈
〈

x̂p
〉

and
ap = ŷp (2.6)

(recall c ≥ 3). Therefore G has no non-trivial abelian direct factor.
Now H/Z(H) and G/Z(G) have the same structure as H and G, for

parameters
c1 − 1, . . . , cn − 1, c − 1

(dropping c1 − 1 if it equals p − 1). Therefore Zc(G) = G, and for all
j < c the j-th of the upper central series of G coincides with

(X1 ∩ Zj(Mc1)) × · · · × (Xn ∩ Zj(Mcn)) × (E ∩ Zj(Dc)),
so that the class and the p-spectrum of G are as required.

Suppose now, by way of contradiction, that G admits a non-trivial
decomposition G = G1 ×G2. Since U =

〈
X̂1, . . . , X̂n, Ê

〉
is a maximal

subgroup of G, there will be an element of G1, say, of the form au, for
some u ∈ U . Consider a fixed set L of minimal generators of G2; these
will be part of a set of minimal generators of G.
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Assume there is an element v ∈ L which is contained in U . Then
1 = [au, v] = [a, v]u[u, v].

Since [u, v] ∈ γ2(U) ≤ γ3(G), we obtain [a, v] ∈ γ3(G). Write
v = (v1, . . . , vn, d),

so that
[a, v] = ([a1, v1], . . . , [an, vn], [y, d]).

Since the groups Mci
are of maximal class, and [ai, vi] ∈ γ3(Mci

), we ob-
tain vi ∈ γ2(Mci

). Also, [y, d] ∈ γ3(Dc) =
〈

xp2
〉

implies d ∈ 〈 xp, yp 〉.
From (2.5) and (2.6) it follows that v ∈ Frat(G), contradicting the

fact that v is in a minimal set of generators of G.
Therefore all elements of L can be assumed, taking suitable powers,

to be of the form aw, for some w ∈ U . Since the product of such an
element by the inverse of another of the same form is in U , we obtain
that L has only one element, so that G2 is a non-trivial cyclic direct
factor of G, a contradiction.

2.5. Not every central series will do. In a group G = Dc, for p > 2
and c ≥ 2, we have γ2(G) = 〈 xp 〉, and ypc−1 is an element of order p in
the first layer G \ γ2(G) of the lower central series. But then the only
other layer of the lower central series of G that contains elements of
order p is the last non-empty one γc(G) \ {1} =

〈
xpc−1

〉
\ {1}.

In fact, in the proof of Subsection 2.1 we have used the implication
(2) =⇒ (1) from the following characterisation of the upper central
series, which is presumably well-known.

Lemma 2.6. Let G be a group, let c ≥ 1, and let
{1} = G0 < G1 < · · · < Gc = G (2.7)

be a central series. The following are equivalent:
(1) for every 2 ≤ m ≤ c and every x ∈ Gm \ Gm−1, there is y ∈ G

such that [x, y] ∈ Gm−1 \ Gm−2;
(2) the series (2.7) coincides with the upper central series, that is,

Gi = Zi(G) for all 1 ≤ i ≤ c.

Proof. When c = 1 (1) is vacuously true, and (2) holds true as G = G1
is abelian, that is, G1 = Z(G). So from now on we are assuming c ≥ 2.
The upper central series Gi = Zi(G) clearly satisfies (1). In fact, if
x ∈ Zm(G), for some m ≥ 2, is such that [x, y] ∈ Zm−2(G) for all
y ∈ G, then x ∈ Zm−1(G), as Zm−1(G)/Zm−2(G) = Z(G/Zm−2(G)).

Conversely, assume the series (2.7) satisfies (1), and proceed by in-
duction on c ≥ 2. We have G1 ≤ Z(G). If by way of contradiction
G1 < Z(G), pick z ∈ Z(G) \ G1. There will be an m ≥ 2 such that
z ∈ Gm \Gm−1 but [z, y] = 1 ∈ Gm−2 for all y ∈ G, defeating (1). Thus
G1 = Z(G) = Z1(G).
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Now if xG1 ∈ (Gm/G1) \ (Gm−1/G1), for some m ≥ 3, we have
x ∈ Gm \ Gm−1. By (1) there is y ∈ G for which [x, y] ∈ Gm−1 \ Gm−2,
so that [xG1, yG1] ∈ (Gm−1/G1) \ (Gm−2/G1). We can thus apply the
inductive hypothesis to G/G1 to obtain (2). □
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