
II. Diagonalisation of real quadratic forms

Let V be a n-dimensional vector space over R and let v1, . . . , vn be a basis for V .

Definition. A quadratic form q : V → R is a function of the form

q(v) = xtAx

where A is a symmetric matrix and x =







x1

...
xn






where v = x1v1 + · · · + xnvn.

Examples. (1) If

A =

(

a b
b c

)

,

then

q(x, y) = q(xv1 + yv2)

=
(

x y
)

(

a b
b c

)(

x
y

)

= ax2 + 2bxy + cy2.

(2) If

A =





a b c
b d e
c e f



 ,

then

q(x, y, z) = q(xv1 + yv2 + zv3)

=
(

x y z
)





a b c
b d e
c e f









x
y
z





= ax2 + dy2 + fz2 + 2bxy + 2cxz + 2eyz.

Remark. In fact any function q : V → R of the form

q(x1, . . . , xn) =
∑

1≤i≤j≤n

bijxixj

is a quadratic form. The corresponding symmetric matrix is then A = (aij) where aii = bii and
aij = aji = 1

2
bij if i < j.

Example. The function q(x, y, z) = 2x2 − y2 + 3xz + 4yz is the quadratic form corresponding
to the matrix

A =





2 0 3/2
0 −1 2

3/2 2 0



 .

Remark. These crop up frequently in mathematics. For example in Analysis when one is
looking for local extreme points. For f : R

n → R let p be some critical point (i.e. where
∇f = 0). The Hessian

Hf (p) =

(

δ2f

δxi δxj

)

p
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is then a quadratic form.

It is clearly of interest to try to choose the basis v1, . . . , vn so that the quadratic form has
the simplest form. So let us next think of the effect the change of the basis has. If w1, . . . , wn

is another basis for V and P is the base change matrix that takes from w1, . . . , wn to v1, . . . , vn.
Then

v = y1w1 + . . . + ynwn = x1v1 + . . . + xnvn

if x = Py. So
q(v) = (Py)tAPy = yt(P tAP )y.

We say that two matrices A and B are congruent if B = P tAP for some invertible real matrix
P . Notice that this is not the same as being similar (where we need B = P−1AP ). The first
one is an equivalence relation we use when we deal with quadratic forms and the latter we use
when dealing with linear operators.

We are now going to see that for a given symmetric matrix A, we can always find a congruent
matrix B that is diagonal (and in fact has only 1,−1 and 0 on the diagonal).

To see this we apply the Spectral Theorem. Choose a inner product which makes v1, . . . , vn

an orthonormal basis (that is we define the inner product such that 〈vi, vj〉 = δij where δij is
the Kronecker symbol). Let α : V → V be the self-adjoint operator that is represented by the
symmetric matrix A. Then

q(v) = 〈v, α(v)〉.

By the Spectral Theorem, we can choose a new orthonormal basis w1, . . . , wn of eigenvectors of
α so that now

q(v) = xtBx

where x gives us the coordinates of v in the new basis and if P is the base change matrix from
the new basis to the old then

B = P−1AP = P tAP =







λ1

. . .

λn






.

(Notice that B is both congruent and similar to A). Next we rescale the new basis by letting

Q =







q1

. . .

qn







where

qi =

{

1/
√

|λi|, if λi 6= 0
1 if λi = 0

Then C = QtBQ is a diagonal matrix with only −1, 1 and 0 on the diagonal. Reordering the
rescaled basis we obtain.

Theorem 7.9 (Sylvesters law of inertia) Every symmetric real matrix A is congruent to some




I
−I

0



 .
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One can show further that the size r of I and the size s of −I are invariants of the quadratic form.

Terminology. The number r + s is called the rank of q and r − s is called the signature
of q.

One says that q is positive definite if r = n and s = 0 and negative definite if r = 0 and
s = −n.

Remark. For example if Hf (p) is positive definite one has local min at p and if Hf (p) is
negative definite then one has local max at p.
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