I. Inner product spaces

We start by recalling what you have already seen in the course Algebra 1.

Definition. An inner product space is a vector space \(V \) over \(\mathbb{F} \) (\(\mathbb{R} \) or \(\mathbb{C} \)) with an inner product \(\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F} \) satisfying:

1. (linearity) \(\langle u, \lambda_1 v_1 + \lambda_2 v_2 \rangle = \lambda_1 \langle u, v_1 \rangle + \lambda_2 \langle u, v_2 \rangle \).
2. \(\langle u, v \rangle = \overline{\langle v, u \rangle} \).
3. (positive definite) \(\|v\|^2 = \langle v, v \rangle > 0 \) for \(v \neq 0 \).

Remark. Notice that \(\langle \lambda u, v \rangle = \overline{\langle v, \lambda u \rangle} = \overline{\lambda \langle v, u \rangle} = \lambda \langle v, u \rangle \).

Matrix version. Consider a fixed basis \(v_1, \ldots, v_n \) for \(V \). If \(u = \sum_i x_i v_i \) and \(v = \sum_i y_i v_i \) then

\[
\langle u, v \rangle = \langle x_1 v_1 + \cdots + x_n v_n, y_1 v_1 + \cdots + y_n v_n \rangle = \sum_{i,j} \bar{x}_i y_j \langle v_i, v_j \rangle.
\]

Or in other words

\[
\langle u, v \rangle = \bar{x}^t B y
\]

where

\[
x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix},
\]

and \(B = (b_{ij}) \) where \(b_{ij} = \langle v_i, v_j \rangle \). The matrix \(B \) has the following properties:

1. \(B^t = B \) (as \(\langle v_j, v_i \rangle = \langle v_i, v_j \rangle \)).
2. \(B \) is positive definitive (that is \(\bar{x}^t B x > 0 \) if \(x \neq 0 \)).

For the given basis \(v_1, \ldots, v_n \) there is a 1-1 correspondence between inner products on \(V \) and matrices \(B \) satisfying (I) and (II). A matrix satisfying (I) is said to be symmetric if we are working over \(\mathbb{R} \) and hermitian if we are working over \(\mathbb{C} \).

Recall that by Gram-Schmidt, every finite dimensional inner product space has an orthonormal basis \(v_1, v_2, \ldots, v_n \), that is a basis satisfying

\[
\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}
\]

Or equivalently the representing matrix \(A \) is the identity matrix \(I \). Then we get the familiar simple formula for the inner product

\[
\langle u, v \rangle = \bar{X}^t Y.
\]

II. The adjoint

Definition. An adjoint of a linear map \(\alpha : W \to V \) is a linear map \(\alpha^* : V \to W \) such that

\[
\langle v, \alpha(w) \rangle = \langle \alpha^*(v), w \rangle.
\]
Let \(v_1, \ldots, v_n \) and \(w_1, \ldots, w_m \) be fixed orthonormal bases for \(V \) and \(W \) respectively.

Lemma 7.1 Supposing that \(\alpha^* \) exists. If \(A = (a_{ij}) \) is the matrix representing \(\alpha \) with respect to the bases above. Then \(A^t \) is the matrix representing \(\alpha^* \).

Proof Suppose that \(B = (b_{ij}) \) is the matrix representing \(\alpha^* \). Then

\[
\alpha^*(v_j) = b_{1j}w_1 + \cdots + b_{ij}w_i + \cdots + b_{nj}w_n.
\]

It follows that

\[
b_{ij} = \langle w_i, \alpha(v_j) \rangle = \langle \alpha^*(w_i), v_j \rangle = \langle v_j, \alpha^*(w_i) \rangle = a_{ji}.
\]

This finishes the proof. \(\square \).

Lemma 7.2 \(\alpha^* \) always exists and is unique.

Proof (Uniqueness). If \(\alpha^* \) exists then it is unique. This is because if \(\langle \alpha^* v, w \rangle = \langle v, \alpha w \rangle = \langle \alpha' v, w \rangle \) for all \(w \in V \) then \(\langle \alpha^* v - \alpha' v, w \rangle = 0 \) for all \(w \in V \) and therefore in particular \(\| \alpha^* v - \alpha' v \|^2 = \langle \alpha^* v - \alpha' v, \alpha^* v - \alpha' v \rangle = 0 \Rightarrow \alpha^* v = \alpha' v \).

(Existence). Suppose \(V, W \) are finite dimensional with orthonormal bases \(v_1, \ldots, v_n \) and \(w_1, \ldots, w_m \) respectively. Suppose that \(A \) is the matrix representing \(\alpha \) with respect to these bases. Let \(\alpha^*: V \rightarrow W \) be the linear map defined by the matrix \(A^t \). Let us see that \(\alpha^* \) is the adjoint of \(\alpha \). Suppose that

\[
v = \sum_i x_i v_i, \quad w = \sum_i y_i w_i,
\]

then (for \(x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \) and \(y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \))

\[
\langle \alpha^* v, w \rangle = \langle A^t x, y \rangle = \langle x, Ay \rangle = \langle v, \alpha w \rangle.
\]

III. Self-adjoint operators

Definition. An operator \(\alpha : V \rightarrow V \) on an inner product space is **self-adjoint** if \(\alpha^* = \alpha \). In other words if

\[
\langle \alpha(v), w \rangle = \langle v, \alpha(w) \rangle
\]

for all \(v, w \in V \).

Remark. If we choose orthonormal basis for \(V \) then we have seen that if \(A \) is the matrix for \(\alpha \) with respect to this basis then \(A^t \) is the matrix for \(\alpha^* \). So the assumption that \(\alpha \) is self-adjoint implies that \(A^t = A \). So \(A \) is symmetric if we are working over \(\mathbb{R} \) and \(A \) is hermitian if we are working over \(\mathbb{C} \).