Full Name:
Prof Frank Marken
Department:
Dept of Chemistry
Job Title:
Professor
Telephone:
01225 383694
Fax:
01225 396231
07977298205
E-mail Address:
Postal Address:
Go
to the University of Bath Home Page.
Activities:
Bath
Electrochemistry Winterschool and Summerschool
Submit your work to the Special Issue “Multi-phase
Electrochemistry” in Journal of Solid State
Electrochemistry
Illustration of ionic diode
based water pumping in microporous polymers.
Book on Carbon Dioxide Conversion:
Book on New Methods in Electrosynthesis:
Projects:
Graphene
Foam Electroanalysis
Polymers
of Intrinsic Microporosity in Electrochemistry
Water-based
Energy Storage
Solar
Water: Powering Microporous Membranes with Sunlight
Indirect
Fuel Cells and Energy Conversion
Electrochemical
Processes and Triphasic Catalysis within Polymers of Intrinsic Microporosity
Nano-Integration
of Metal-Organic Frameworks and Catalysis for the Uptake and Utilisation of CO2
Applications
of Liquid | Liquid Interfaces and Nanostructures in Solar Energy Harvesting
Junction
Electroanalysis and Sensing in Nanogaps
Ionic
Diodes, Ionic Diode Sensors, and Ionic Circuits
Microwaves
in Electrochemistry and in Electrosynthesis
Green
Electrosynthesis
Research Highlights:
(A) Polymers
of Intrinsic Microporosity (PIMs) and (photo-)catalysis in porous media
“Polymer of intrinsic microporosity
(PIM-1) enhances hydrogen peroxide production at Gii-Sens
graphene foam electrodes”. Beluomini MA, Wang
Y, Wang LA, Carta M, McKeown NB, Wikeley SM, James
TD, Lozano-Sanchez P, Caffio M, Stradiotto
NR, Zanoni MVB, Marken F, Electrochemistry
Communications (2022) 143, 107394.
“Switching ionic diode states with
proton binding into intrinsically microporous polyamine films (PIM-EA-TB)
immersed in ethanol”. Li ZK, Fletcher PJ, Carta M, McKeown NB, Marken F,
Journal of Electroanalytical Chemistry (2022) 922, 116751.
“Hydrogen Peroxide Versus Hydrogen
Generation at Bipolar Pd/Au Nano-catalysts Grown into an Intrinsically
Microporous Polyamine (PIM-EA-TB)”. Wang LN, Carta M, Malpass-Evans
R, McKeown NB, Fletcher PJ, Lednitzky D, Marken F,
Electrocatalysis, 2021, 12, 771-784.
“Catechin or quercetin guests in an
intrinsically microporous polyamine (PIM-EA-TB) host: accumulation, reactivity,
and release”. Wang LN, Malpass-Evans R, Carta
M, McKeown NB, Reeksting SB, Marken F, RSC Adv. 2021,
11, 27432-27442.
“Size-Selective Photoelectrochemical
Reactions in Microporous Environments: Clark Probe Investigation of Pt@g-C3N4
Embedded into Intrinsically Microporous Polymer (PIM-1).” Zhao YZ, Malpass-Evans R, Carta M, McKeown NB, Fletcher PJ, Kociok-Kohn G, Lednitzky D,
Marken F, ChemElectroChem 2021, 8, 3499-3505.
(B)
Ionic diode effects and transport in porous media
“Effective electroosmotic transport of
water in an intrinsically microporous polyamine (PIM-EA-TB).” Li ZK, Malpass-Evans R, McKeown NB, Carta M, Mathwig
K, Lowe JP, Marken F, Electrochem. Commun. 2021, 130, 107110.
“Ionic Diode and Molecular Pump
Phenomena Associated with Caffeic Acid Accumulated into an Intrinsically
Microporous Polyamine (PIM-EA-TB)”
Li ZK, Wang LA, Malpass-Evans R, Carta M, McKeown NB,
Mathwig K, Fletcher PJ, Marken F, ChemElectroChem
8, 2021, 2044-2051.
“Electroanalysis with a single
microbead of phosphate binding resin (FerrIXTM)
mounted in epoxy film”
Thompson AK, Mathwig K, Fletcher PJ, Castaing R, Marken F, J. Solid State Electrochem.
2021, DOI10.1007/s10008-021-04982-2.
“Size-Selective Photoelectrochemical
Reactions in Microporous Environments: Clark Probe Investigation of Pt@g-C3N4
Embedded into Intrinsically Microporous Polymer (PIM-1)”
Zhao YZ, Malpass-Evans R, Carta M, McKeown NB,
Fletcher PJ, Kociok-Kohn G, Lednitzky
D, Marken F, ChemElectroChem 2021,
DOI10.1002/celc.202100732.
“Polymers of intrinsic microporosity in
electrocatalysis: Novel pore rigidity effects and lamella palladium growth”
Xia, FJ; Pan, M; Mu, SC; Malpass-Evans, R; Carta, M;
McKeown, NB; Attard, GA; Brew, A; Morgan, DJ; Marken, F;
ELECTROCHIMICA ACTA 2014, 128, 3-9.
“Ion flow in a zeolitic imidazolate
framework results in ionic diode phenomena”
Madrid, E; Buckingham, MA; Stone, JM; Rogers, AT; Gee, WJ; Burrows, AD; Raithby, PR; Celorrio, V; Fermin,
DJ; Marken, F; CHEMICAL COMMUNICATIONS 2016, 52, 2792-2794.
“A Cationic Diode Based on Asymmetric Nafion Film Deposits”
He, DP; Madrid, E; Aaronson, BDB; Fan, L; Doughty, J; Mathwig,
K; Bond, AM; McKeown, NB; Marken, F; ACS APPLIED MATERIALS & INTERFACES
2017, 9, 11272-11278.
“Free-Standing Phytantriol
Q(224) Cubic-Phase Films: Resistivity Monitoring and Switching”
Brown, R; Madrid, E; Castaing, R; Stone, JM; Squires,
AM; Edler, KJ; Takashina,
K; Marken, F; CHEMELECTROCHEM, 2017, 4, 1172-1180.
“Cellulose ionics:
switching ionic diode responses by surface charge in reconstituted cellulose
films”
Aaronson, BDB; Wigmore, D; Johns, MA; Scott, JL; Polikarpov, I; Marken, F; ANALYST
2017, 142, 3707-3714.
“Ionic Diode Characteristics at a
Polymer of Intrinsic Microporosity (PIM) | Nafion
Heterojunction Deposit on a Microhole
Poly(ethylene-terephthalate) Substrate”
Putra, BR; Aaronson, BDB; Madrid, E; Mathwig, K;
Carta, M; Malpass-Evans, R; McKeown, NB; Marken, F;
ELECTROANALYSIS 2017, 29, 2217-2223.
“Potassium cation induced ionic diode
blocking for a polymer of intrinsic microporosity vertical bar Nafion heterojunction on a microhole
substrate”
Putra, BR; Carta, M; Malpass-Evans, R; McKeown, NB;
Marken, F; ELECTROCHIMICA ACTA 2017, 258, 807-813.
“Switching Anionic and Cationic Semipermeability in Partially Hydrolyzed Polyacrylonitrile:
A pH-Tunable Ionic Rectifier”
Tshwenya, L; Marken, F; Mathwig,
K; Arotiba, OA; ACS Appl. Mater. Interfaces 2020, 12,
3214-3224.
“An AC-driven desalination/salination
system based on a Nafion cationic rectifier”
Putra, BR; Madrid, E; Tshwenya, L; Arotiba, OA; Marken, F; DESALINATION 2020, 480, 114351.
(C)
Nano-carbon particles with covalently attached functional groups for sensors
“Functionalized Carbon Nanoparticles,
Blacks and Soots as Electron- Transfer Building
Blocks and Conduits”
Lawrence, K; Baker, CL; James, TD; Bull, SD; Lawrence, R; Mitchels,
JM; Opallo, M; Arotiba, OA;
Ozoemena, KI;
Marken, F; CHEMISTRY-AN ASIAN JOURNAL 2014, 9, 1226
"Hydrothermal wrapping" with
poly(4-vinylpyridine) introduces functionality: pH-sensitive core-shell carbon
nanomaterials
Lawrence, K.; Nelson, G.W.; Foord, J.S.;
Felipe-Sotelo, M.; Evans, N.D.M.; Mitchels, J.M.;
James, T.D.; Xia, F.J.; Marken, F.:
JOURNAL OF MATERIALS CHEMISTRY A 2013, 1, 4559.
Surface-dopylated
carbon nanoparticles sense gas-induced pH changes
Bin Ibrahim, N; Lawrence, K; James, TD; Xia, FJ; Pan, M; Mu, SC; Mitchels, JM; Marken, F: SENSORS AND
ACTUATORS B-CHEMICAL 2012, 161, 184.
Carbon Nanoparticle Surface Electrochemistry:
High-Density Covalent Immobilisation and
Pore-Reactivity of 9,10-Anthraquinone
Watkins, JD; Lawrence, K; Taylor, JE; James, TD; Bull, SD; Marken, F:
ELECTROANALYSIS 2011, 23, 1320.
Carbon nanoparticle surface functionalisation: converting negatively charged sulfonate
to positively charged sulfonamide
Watkins, JD; Lawrence, R; Taylor, JE; Bull, SD; Nelson, GW; Foord,
JS; Wolverson, D; Rassaei,
L; Evans, NDM; Gascon, SA; Marken,
F: PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2010, 12, 4872.
Electrochemically Active Mercury Nanodroplets
Trapped in a Carbon Nanoparticle - Chitosan Matrix
Rassaei, L; Sillanpaa, M; Edler,
KJ; Marken, F: ELECTROANALYSIS 2009, 21, 261.
“Carbon-based quantum particles: an
electroanalytical and biomedical perspective” Nekoueian,
K; Amiri, M; Sillanpaa, M; Marken, F; Boukherroub, R;
Szunerits, S; Chem. Soc. Rev. 2019, 48, 4281-4316.
(D)
Carbon nanofiber membrane processes in electrosynthesis
Mechanistic aspects of aldehyde and imine electro-reduction in a
liquid-liquid carbon nanofiber membrane microreactor
Watkins, JD; Taylor, JE; Bull, SD; Marken, F: TETRAHEDRON LETTERS 2012, 53,
3357.
Voltammetric
probing of pH at carbon nanofiber-Nafion (TM)-carbon
nanofiber membrane electrode assemblies
Webster, RA; Xia, FJ; Pan, M; Mu, SC; Dale, SEC; Tsang, SC; Hammett, FW; Bowen,
CR; Marken, F:
ELECTROCHIMICA ACTA 2012, 62, 97.
Liquid-liquid electro-organo-synthetic
processes in a carbon nanofibre membrane
microreactor: Triple phase boundary effects
in the absence of intentionally added electrolyte
Watkins, JD; Ahn, SD; Taylor, JE; Bull, SD; Bulman-Page, PC; Marken, F:
ELECTROCHIMICA ACTA 2011, 56, 6764.
(E)
Junction electroanalysis and electrosynthesis
“Recent Advances in Paired
Electrosynthesis” Marken F, Cresswell AJ, Bull SD, Chem. Record 2021,
DOI10.1002/tcr.202100047.
“Cysteine-Cystine Redox Cycling in a Gold-Gold Dual-Plate
Generator-Collector Microtrench Sensor”
Hammond, JL; Gross, AJ; Estrela, P; Iniesta, J; Green, SJ; Winlove,
CP; Winyard, PG; Benjamin, N; Marken, F;
ANALYTICAL CHEMISTRY 2014, 86, 6748.
“Nano-Litre
Proton/Hydrogen Titration in a Dual-Plate Platinum-Platinum Generator-Collector
Electrode Micro-Trench”
Dale, SEC; Vuorema, A; Sillanpaa, M; Weber, J; Wain,
AJ; Barnes, EO; Compton, RG; Marken, F;
ELECTROCHIMICA ACTA 2014, 125, 94-100.
Generator-collector electroanalysis at
tin-doped indium oxide-epoxy-tin-doped indium oxide junction electrodes
Dale, S.E.C.; Hotchen, C.E.; Marken, F:
ELECTROCHIMICA ACTA 2013, 101, 196.
Gold-Gold Junction Electrodes: The
Disconnection Method
Dale, SEC; Vuorema, A; Ashmore, EMY; Kasprzyk-Horden, B; Sillanpaa, M; Denuault,
G; Marken, F: CHEMICAL RECORD 2012, 12, 143.
Pulse-Voltammetric
Glucose Detection at Gold Junction Electrodes
Rassaei, L; Marken, F: ANALYTICAL CHEMISTRY 2010, 82,
7063.
Paired gold junction electrodes with submicrometer gap
French, RW; Gordeev, SN; Raithby, PR; Marken, F:
JOURNAL OF ELECTROANALYTICAL CHEMISTRY 2009, 632, 206.
(F)
Nanoparticulate structures at electrodes and sensing
Polymer indicator displacement assay:
electrochemical glucose monitoring based on boronic acid receptors and graphene
foam competitively binding with poly-nordihydroguaiaretic acid
Wikeley, SM; Przybylowski,
J; Lozano-Sanchez, P; Caffio, M; James, TD; Bull, SD;
Fletcher, PJ; Marken, F: Analyst 2022, 147, 661-670.
New Insights into Water Splitting at Mesoporous alpha-Fe2O3 Films: A Study
by Modulated Transmittance and
Impedance Spectroscopies
Cummings, CY; Marken, F; Peter, LM; Wijayantha, KGU;
Tahir, AA: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2012, 134, 1228.
Cummings, CY;
Enhanced TiO2 surface electrochemistry with carbonised layer-by-layer cellulose-PDDA composite films
Vuorema, A; Shariki, S;
Sillanpaa, M; Thielemans, W; Nelson, GW; Foord, JS;
Dale, SEC; Bending, S; Marken, F:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 2011, 13, 9857
Inter-particle charge transfer in TiO2-phytate
films: Generator-collector gold-gold junction transients
Rassaei, L; Herrmann, M; Gordeev, SN; Marken, F: JOURNAL
OF ELECTROANALYTICAL CHEMISTRY 2012, 686, 32.
(G)
Liquid – liquid electrochemical processes
“Liquid | Liquid Interfacial Photoelectrochemistry of
Chromoionophore I Immobilised in 4-( 3-Phenylpropyl)Pyridine
Microdroplets”
Bartlett, TR; Ahmed, S; Tuna, F; Collison, D; Blanchard, GJ; Marken, F;
CHEMELECTROCHEM 2014, 1, 400-406.
Spectroelectrochemical Investigation of
TPPMn(III/II)-Driven Liquid | Liquid | Electrode Triple Phase Boundary
Anion Transfer into 4-(3-Phenylpropyl)-Pyridine: ClO4-, CO3H-, Cl-, and F-
Collins, AM; Blanchard, GJ; Marken, F: ELECTROANALYSIS 2012, 24, 246.
Liquid | Liquid | Electrode Triple-Phase
Boundary Photovoltammetry of Pentoxyresorufin in 4-(3-Phenylpropyl)pyridine
Collins, AM; Blanchard, GJ; Hawkett, J; Collison, D; Marken, F: LANGMUIR 2011,
27, 6471.
Ion Transport Across Liquid vertical bar
Liquid Interfacial Boundaries Monitored at Generator-Collector Electrodes
Vuorema, A; Meadows, H; Bin Ibrahim, N; Del Campo, J; Cortina-Puig, M; Vagin,
MY; Karyakin, AA; Sillanpaa, M; Marken, F:
ELECTROANALYSIS 2010, 22, 2889.
“Multiphase Methods in Organic
Electrosynthesis” Marken, F; Wadhawan, JD; Acc. Chem. Res. 2019, 52, 3325-3338.
(H)
Microwaves, ultrasound, and photoactivation in electrochemistry
“Semiconductor photoelectroanalysis
and photobioelectroanalysis: A perspective.” Blaskievicz SF, Mascaro LH,
Zhao YZ, Marken F, TRAC-Trends Anal. Chem. 2021, 135, 116154.
Photoelectrochemical Transients for
Chlorine/Hypochlorite Formation at "Roll-On" Nano-WO3 Film
Electrodes
Ahmed, S.; Hassan, I.A.I.; Roy, H.; Marken, F.: JOURNAL OF PHYSICAL CHEMISTRY C
2013, 117, 7005.
Microwave-electrochemical formation of
colloidal zinc oxide at fluorine doped tin oxide electrodes
Rassaei, L; Jaber, R; Flower, SE; Edler, KJ; Compton, RG; James, TD; Marken, F:
ELECTROCHIMICA ACTA 2010, 55, 7909.
Microwave Activation of Electrochemical
Processes in Ionic Liquid Impregnated Ionomer Spheres
Dale, SEC; Compton, RG; Marken, F: ELECTROANALYSIS 2012, 24, 997.
(I)
Biological nanostructures and porous materials in electrochemical processes
Ferrocene-Decorated Nanocrystalline Cellulose with Charge Carrier
Mobility
Eyley, S.; Shariki, S.;
Dale, S.E.C.; Bending, S.; Marken, F.; Thielemans, W.: LANGMUIR 2012, 28,
6514.
Conformal transformation of [Co(bdc)(DMF)] (Co-MOF-71, bdc=1,
4-benzenedicarboxylate, DMF = N,N-dimethylformamide)
into porous electrochemically active cobalt hydroxide
Miles, D.O.; Jiang, D.M.; Burrows, A.D.; Halls, J.E.; Marken, F.:
ELECTROCHEMISTRY COMMUNICATIONS 2013, 27, 9.
Electroanalysis at Salt - Cotton - Electrode Interfaces: Preconcentration Effects Lead to
Nano-Molar Hg2+ Sensitivity
Shariki, S; Dale, SEC; Marken, F: ELECTROANALYSIS
2011, 23, 2149.
(J)
3D-printing methods in electrochemistry
”Residual
Porosity of 3D-LAM-Printed Stainless-Steel Electrodes Allows Galvanic Exchange Platinisation”
Weber, J; Wain, AJ; Piili, H; Matilainen,
VP; Vuorema, A; Attard, GA; Marken, F; ChemElectroChem 2016, 3, 1020-1025.
“All-Polystyrene
3D-Printed Electrochemical Device with Embedded Carbon
Nanofiber-Graphite-Polystyrene Composite Conductor”
Rymansaib, Z; Iravani, P; Emslie, E; Medvidovic-Kosanovic, M; Sak-Bosnar, M;
Verdejo, R; Marken, F; ELECTROANALYSIS 2016, 28, 1517-1523.
“Galvanic exchange
platinization reveals laser-inscribed pattern in 3D-LAM-printed steel”
Litherland, AGM; Spurway, LM; Gordeev, SN; Aaronson, BDB; Wain, AJ; O'Connell,
MA; Piili, H; Hovilehto, M; Matilainen, VP;
Vuorema, A; Marken, F; J. Solid State Electrochem. 2018, 22, 1755-1762.
“Vacuum-annealing
induces sub-surface redox-states in surfactant-structured alpha-Fe2O3
photoanodes prepared by ink-jet printing”
Bondarchuk, AN; Peter, LM; Kissling, GP; Madrid, E; Aguilar-Martinez, JA;
Rymansaib, Z; Iravani, P; Gromboni, M;
Mascaro, LH; Walsh, A; Marken, F; Appl. Catal. B Environm. 2017, 211, 289-295.