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Abstract

A decision maker consults informed senders of information sequentially, e.g. on an

online platform. The senders are either biased or unbiased, and each of their messages

is costly to read. The decision maker chooses in a sequentially rational way whether and

which sender to consult, and takes an action when he stops consultation. The platform

determines the presentation order of the senders in order to maximize the decision maker’s

welfare. We characterize the optimal ordering rule and show that it is stochastic, which

indicates that more reliable senders are not necessarily placed earlier. We also find that

removing senders who are likely to be biased may worsen information transmission.
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1 Introduction

This paper studies sequential cheap talk communication where each of multiple senders ob-

serves a common true state and reports a message, and an uninformed receiver sequentially

reads messages each at a small cost. The receiver chooses an action either after he decides
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to stop reading; or after he has read the messages from all senders. The senders are either

biased or unbiased, but the receiver does not observe his type. Each sender has a probability

that he is unbiased (i.e. his interest coincides with that of the receiver), which we interpret

as the reliability of the sender. Our focus is on the optimal ordering of senders that induces

information revelation to maximize the receiver’s welfare, where the ordering depends on the

levels of reliability.

This setup can be linked to the ordering of customer reviews on an online platform: the

platform may decide which reviewers’ comments should be presented first, given that some

reviewers on some products may be biased and therefore “fake”. The optimal ordering we

derive in this paper indicates that i) it involves randomization; and ii) removing senders who

are likely to be fake may reduce the quality of information the receiver is expected to obtain.

This may explain why an online platform that aims to ensure the customers are well-informed

may nonetheless keep reviewers who are likely to be fake, and why it may not necessarily

present reviews from the most reliable reviewers first.1

In our model, the decision maker/receiver (DM) must choose an action a to match the

underlying unobserved state (product quality) drawn from the unit interval. He faces n

perfectly informed and senders whom he consults sequentially, each at an arbitrarily small cost

c. DM consults in a sequentially rational way: at any point in time he chooses whether and

whom to consult (where senders only differ in terms of their position in the presentation order)

such that his current expected payoff is maximized. Senders have two possible (privately

observed) types: unbiased or biased. Unbiased senders share DM’s objective to match the

state. Biased senders’ objective is to maximize DM’s action (such as sales) Each sender’s

probability of being unbiased (which parametrizes his reliability) is privately observed by

the planner/platform that also determines the ordering rule of the senders according to their

levels of reliability. DM knows the ordering rule and the probability distribution of the levels

of reliability, but does not directly observe each sender’s reliability. Each sender, who also

knows the distribution and the ordering rule but also whether his is biased or unbiased,

simultaneously sends a cheap talk message. The ordering rule can be deterministic, in which

case each sender knows in which position his message will be when he sends it. The ordering

rule can also be random, in which case each sender only knows the probability distribution

of all senders’ positions.

We first show that, under mild conditions, every informative equilibrium in the game is

1In this paper we study the ordering of reviewers according to their characteristics, but not the ordering

of their reviews according to their contents. This is for simplicity and our model can be thought of as a

first step towards the understanding of the optimal ordering of senders and their messages in the context

of strategic communication. Needless to say the presentation algorithm used by a platform can incorporate

reviewer characteristics, contents, and other factors.
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partitional. The state space is partitioned into N intervals corresponding to N messages

t1, .., tN . If sender i is unbiased, he sends tr if the state lies in the r-th interval. If sender i

is biased, he always sends the highest message tN . For each ordering rule, we focus on the

most informative equilibrium, which is the equilibrium with the largest number of intervals.

The planner determines the ordering rule in such as way that DM’s expected utility is

maximized. At a first sight, if the senders are equally reliable, the ordering rule may seem

irrelevant, and if the they have different levels of reliability, presenting more reliable senders

first may appear beneficial. We show that neither of these intuitions holds. Whether or

not senders are equally reliable, using a well chosen stochastic ordering rule improves DM’s

expected utility by improving the informativeness of the messages.

The fundamental driving force behind this result is a preemption motive. Note that a

biased sender can induce DM to stop consultation by sending the second highest message,

since DM believes that it is from an unbiased sender and takes the action accordingly. Thus

preemption of further consultation is detrimental to the information DM obtains. A biased

sender’s incentive to induce such preemption is higher as he is positioned earlier in the

presentation order, because his lie is more likely to be exposed later by a sender who turns

out to be unbiased. In other words, a biased sender’s incentive to preempt decreases as his

position becomes later, but needless to say it is impossible to put every sender in the last

position. On the other hand, given the informativeness of messages, DM prefers to read

messages from more reliable senders earlier. This trade-off gives rise to the optimality of a

random presentation order.

Also, removing senders from a presentation order has two effects. Given the informative-

ness of the messages, then DM is worse off with a smaller number of senders no matter how

(un)reliable they may be. However, removing senders also reduces a biased sender’s incentive

to preempt and thus increases the informativeness of each message, because his lie is less

likely to be exposed later by other senders. The overall effect is thus ambiguous.

Literature review Our setup builds on Morgan and Stocken (2001) who assume uncer-

tainty about the sender’s bias in the Crawford and Sobel (1982) canonical cheap talk model.

Le Quement (2016) extends this problem to the case where DM consults several senders se-

quentially. Le Quement (2016) assumes that the aggregate distribution of levels of reliability

is degenerate and exogenously imposes the fully random ordering rule. As the senders are

assumed to be homogeneous, whether DM has an incentive to follow the presentation order by

definition trivial. This paper instead considers arbitrary distributions of reliability levels and

studies all possible ordering rules, focusing on the untouched question of the optimal ordering

rule, while ensuring that DM has incentive to follow the presentation order in equilibrium.
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Miura (2014) and Kawai (2015) study sequential cheap talk with multidimensional state

variable, where as Ottaviani and Sørensen (2001) asks who should speak first in a context

where several imperfectly informed senders are consulted, the ex ante competence of these

senders being different and these being motivated by reputational concerns. Krishna and

Morgan (2001a) re-examine Gilligan and Krehbiel (1989) and consider both heterogeneous

and homogeneous senders who all observe the state. They find that some (not all) legislative

rules lead to full revelation when combined with heterogeneous preferences.

In Austen-Smith (1993), the receiver faces two senders holding noisy information in a

binary setup. Under some conditions, full revelation is possible with a single sender but not

when two senders are consulted simultaneously. McGee and Yang (2013) study a setup where

a decision maker’s optimal decision is a (multiplicative) function of the uncorrelated types

of two privately informed senders. In Li et al. (2016), a decision maker has to choose be-

tween two potential projects, information about returns being held separately by two senders

who are each biased towards their own project. In both papers presented above, senders’

informativeness levels are strategic complements (in contrast to our setup): informative com-

munication by the other sender makes deviations from the truth more costly.

Alonso et al. (2008) consider information transmission in a multi-division organization,

where each division’s profits depend on how its decision matches its privately known local

conditions and the other division’s decisions. One possible decision protocol is centralization,

whereby division managers report to central headquarters which decide for both divisions.

They find that a stronger incentive to coordinate decisions worsens headquarters’ ability to

retrieve information from divisions. Rantakari (2016) and Moreno de Barreda (2010) assume

the receiver is exogenously or endogenously in possession of some information, and show that

the receiver’s information can crowd out information transmission by the sender.

This paper also relates to the literature on Bayesian reputation building in games of

information transmission (Sobel (1985), Benabou and Laroque (1992), Morris (2001) and Ely

and Välimäki (2003)). Morris (2001) studies a two-period advice game with a binary state

space and uncertainty in sender preferences. An unbiased sender has an incentive to lie in

the early period in order to achieve a good reputation and be influential later. Our paper and

Morris (2001) share the feature that a biased sender’s behavior imposes a negative externality

on the informativeness of a message from an unbiased sender. In Morris (2001), an unbiased

sender does not always truthfully announce a high signal because such an announcement

hurts his reputation. In our paper, an unbiased sender communicates in a noisy way also

when the state is not high, so as to prevent biased senders from deviating downwards to

mimic an unbiased sender.

The paper also connects to the literature on search and pricing on goods markets (see
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for example Baye et al (2006), Stahl (1989), Wolinsky (1986), Diamond (1971), Janssen and

Parakhonyak (2014), Anderson and Renault (1999) and Baye and Morgan (2001)). In these

models, firms have an endogenous preference over the consumer’s search decisions and typi-

cally wish to discourage further search. The recent strand on ordered search is of particular

relevance. See for example Wright et al. (2019), Haan et al. (2018), Derakhshan et al. (2018),

Armstrong (2017), Arbatskaya (2007), Armstrong et al. (2009), Wilson (2010).

Our paper is also related to Glazer et al. (2021), who study fake reviews in a dynamic

setting and consider the platforms’ problem of either sharing reviews or not based on their

content. They find that in terms of welfare the platform cannot do better than to show all

reviews. Our paper studies a static setting where the platform chooses an ordering rule of

the reviewers. Our model indicates that removing some reviewers can under some conditions

improve consumers’ welfare.

The paper proceeds as follows. Section 2 presents the model. Section 3 characterizes the

equilibrium for any given ordering rule. Section 4 studies welfare properties and derives the

optimal ordering rule. Section 5 examines extensions.

2 The Model

The state of the world ω is drawn from the uniform distribution on [0, 1]. In the context

of online customer reviews, the state captures the underlying true product quality. An

uninformed receiver (DM) faces a set of n senders χ = {A,B, ..}, each of whom privately

observes the state and simultaneously sends a cheap talk message mi ∈ M = [0, 1]. In the

first phase of the game, DM can sequentially consult the senders at a cost c per sender, where

c is arbitrarily small but positive. Once he stops consulting, he chooses an action a ∈ ℜ and

his payoff is given by −(ω−a)2−ñc, where ñ is the number of senders consulted. The optimal

action after information collection is simply the conditional expected value of ω, which may

correspond to the quantity of the product purchased. Our assumption on c implies that

DM will carry on consulting as long as he expects that more consultation can generate more

information.

Each sender has a privately observed type (1 or 2). Type 1, the unbiased type, has

payoff function −(ω − a)2. Type 2, the biased type, has payoff function a. Type 1 is thus

benevolent while type 2’s objective is to maximize DM’s belief about ω. For example, as

an online reviewer, a biased sender wants to maximize the sales of the product. Sender

i’s probability of being of type 1 is pi and thus parameterizes his ex ante reliability. Each

sender’s type is independently drawn according to pi. The profile of the levels of reliability

{p1, p2, ..., pi, ..., pn} among all n senders is common knowledge. However, DM does not
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observe the identity and thus the reliability of the sender behind each message. Each sender

knows their own identity (i) and the distribution of pi’s, but does not directly observe any

other sender’s reliability p−i. The planner, which can be considered as an online platform,

observes each sender’s pi. Let η =
n∏
i=1(1− pi), where η is the commonly known probability

that all senders are biased.

The planner presents senders’ messages in a presentation order which is generated by

the commonly known ordering rule Γ. A presentation order dictates which sender’s message

is to be presented in which position in the sequence of the messages. The ordering rule is

deterministic if one presentation order is assigned ex ante probability one. Denote by D(χ)

the set of deterministic orders and denote by d any element of this set. Denote by θΓd the

probability assigned to d under Γ. An ordering rule is given by Γ = {θΓd }d∈D(χ). Denote by

pl the reliability of the sender appearing in position l of the presentation order. Denote by

ml the message of the sender in position l in the order. Denote by pl,d the reliability of the

sender appearing in position l of order d.

A sender strategy pins down how he communicates for each preference type that he might

be assigned and the given known ordering rule. A pure strategy for a sender i ∈ {A,B, ..} is

given by function µri , for r ∈ {1, 2}, where µri : [0, 1] → [0, 1] is such that µri (w) maps the state

of nature ω ∈ [0, 1] and the sender’s type r into a message in M . Note that we are omitting

the ordering rule Γ from the strategy simply for notational convenience. A communication

strategy is monotone if µri (w), for r ∈ {1, 2}, is weakly increasing in ω. A profile of sender

strategies induces monotonic beliefs if profiles of messages that are higher yield higher beliefs

of DM. A precise definition is provided later.

A pure strategy of DM is composed of a consultation rule and an action rule. A consul-

tation rule specifies, for any history of observed messages, whether or not DM continues to

consult and which review he consults among the presented reviews. An action rule specifies

the action a chosen if DM stops consulting, for any history of observed messages.

Our equilibrium concept is Perfect Bayesian Equilibrium (PBE). Under a given ordering

rule Γ, an equilibrium is given by a profile of strategies (one for each sender in χ and one for

DM) as well as a system beliefs. A given profile of strategies and a system of beliefs constitute

a PBE if the players’ strategies are sequentially rational given each player’s belief and the

other players’ strategies, while the beliefs are derived via Bayes’ rule whenever possible. All

the results stated in our analysis, whether positive or normative, are limit results in sense

that there is some c > 0 such that they hold true for any c ∈ (0, c).

Note that given c > 0, there exists no fully revealing equilibrium in which all senders

always report truthfully and send m = ω whatever the state and their preference type. Such
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an equilibrium would be supported by out of equilibrium beliefs such that DM chooses a

punishment action (say a = 0) for the senders whenever messages contradict. However, this

equilibrium breaks down because DM has a strict incentive to stop after one consultation,

given c > 0.

We focus on senders’ pure strategies that are symmetric (strategies do not depend on a

sender’s identity),2 monotonic (i.e. weakly increasing in the state) and inducing monotonic

beliefs (see the proof of Proposition 1 in Appendix B for a precise definition). We call such

equilibria symmetric and monotone.

We show that all informative equilibria within this class must be partitional and thereby

outcome equivalent to an equilibrium featuring the following simple strategy profile, which

we focus on. There are thresholds t0 = 0 < t1 < . . . < tN−1 < tN = 1. An unbiased

sender reports m = tr if ω ∈ (tr−1, tr] ∀r = 1, .., N and t1 if ω = 0. A biased sender always

sends m = tN . DM’s consultation rule is a stopping rule. He stops consulting as soon as he

encounters tr ̸= tN . Indeed, after tr ̸= tN , he acknowledges that he has now learned that

ω ∈ (tr−1, tr] and will not learn any more by consulting another sender. On the other hand,

he continues consultation as long as he has only encountered tN ’s and has not consulted all

senders yet since c is very small. In this case, he might gain new information by consulting

the next sender.

For any out of equilibrium profile of messages m for which beliefs cannot be derived via

Bayes’ rule, denoting by m(m) the lowest message in this set, the induced belief of DM

is assumed to be E[ω |ω ∈ (tr−1, tr] ] if m(m) is located in the rth interval. Furthermore,

DM’s (sequential) consultation follows the order of presentation. For this to be incentive

compatible, it must be true that after consulting the first r senders in the presentation order,

the most informative sender (in expectation) is in position r + 1, for any r ∈ {0, .., n− 1}.3

We call an equilibrium of the above type a simple partitional equilibrium of size N . Finally,

we define an informative equilibrium as one in which DM’s action is influenced by observed

messages with positive probability.

We focus on ordering rules that are optimal from DM’s perspective. For example, it

seems reasonable to assume that an online platform aims at maximizing the informativeness

of reviews, so as to maximize overall sales on the platform while minimizing the volume of

returns. The DM optimal ordering is also weakly or strictly preferred by all sender types.

Unbiased senders share DM’s preferences. We will see that biased senders are indifferent

2However, we allow the senders’ strategies to depend on their type r, the state of nature w, and the ordering

rule Γ (i.e., the sender’s expected position in the consultation order).
3Note that the equilibrium described above still exists under c = 0, as DM has no strict incentive to deviate

from the assumed behaviour. From DM’s perspective, the equilibrium is however trivially dominated by one

in which he always consults all senders and all report truthfully.
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among all ordering rules, as the expected value of DM’s action is constant across all possible

information generating experiments by the law of iterated expectation.

3 Equilibrium

Proposition 1. For any informative, symmetric and monotone equilibrium, there exists an

outcome equivalent simple partitional equilibrium.

Proof: See Appendix B.

The Proposition establishes that under our mild assumptions on the strategies, it is with-

out loss of generality to focus on simple partitional equilibria. In what follows, we characterize

necessary and sufficient conditions for the existence of a simple partitional equilibrium fea-

turing partition {tr}N−1
r=1 under ordering rule Γ. We look at the incentives of the senders and

those of DM separately.

3.1 Senders’ Incentives

Let us pin down the beliefs of DM. Given {tr}N−1
r=1 and ordering rule Γ, the DM’s belief when

he first observes some tr ̸= tN is given by

E[ω |m = tr ] =
tr−1 + tr

2
.

After he has consulted all n senders and received message tN in total n times, his belief is

given by

E[ω
∣∣m1 = .. = mn = tN ]

=
(1− tN−1) (1− η)

(1− tN−1) (1− η) + η

tN−1 + 1

2
+

η

(1− tN−1) (1− η) + η

1

2
.

The expected value above accounts for two possible events. Either at least one of the senders

is unbiased, in which case ω ≥ tN−1, or nothing has been learned about the state as all

senders are biased.

For what follows, given Γ and {tr}N−1
r=1 , it is convenient to define Ψi,Γ as the probability

assigned by sender i to the event that DM will observe m1 = .. = m2 = tN , conditional on

ω = 0 and sender i reporting tN . We have

Ψi,Γ := Pi,Γ(m
1 = .. = mn = tN |ω = 0,mi = tN ).

In other words, Ψi,Γ is the probability that the highest message from sender i (i.e. mi = tN )

is not contradicted when the state is the lowest.
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For any order d ∈ D(χ) and i ∈ χ, denote by respectively χi,−d and χi,+d the set of sebders

who are presented before and after i. Let

Qi,Γ :=
∑

d∈D(χ)

θΓd

[
Π
j∈χi,−

d
(1− pj)

]
.

The above is the ex ante probability that sender i will be consulted given ω = 0, {tr}N−1
r=1

and ordering rule Γ. For every d ∈ D(χ), we have

Pi,Γ(d
∣∣ω = 0,mi = tN ) =

θΓd

[
Π
j∈χi,−

d
(1− pj)

]
Qi,Γ

,

where by convention Π
j∈χi,−

d
(1− pj) = 1 if χi,−d = ∅.

Next, we have

Ψi,Γ =
∑

d∈D(χ)

(
Pi,Γ(d

∣∣ω = 0,mi = tN )
[
Π
j∈χi,+

d
(1− pj)

])
=

Πj ̸=i(1− pj)

Qi,Γ
.

That is, Ψi,Γ equals the probability that all other senders are biased divided by the probability

that i is asked. Note the formula for Ψi,Γ is independent of the assumed equilibrium partition

{tr}N−1
r=1 .

We now provide necessary and sufficient existence conditions for {tr}N−1
r=1 to be sender

incentive compatible.

Lemma 1. Fix Γ. Partition {tr}N−1
r=1 is sender incentive compatible if and only if, ∀r < N−1

and ∀i ∈ χ

tr − E[ω |m = tr ] = E[ω |m = tr+1 ]− tr, (1)

tN−1 − E[ω |m = tN−1 ] = E[ω
∣∣m1 = .. = mn = tN ]− tN−1, (2)

Ψi,ΓE[ω
∣∣m1 = .. = mn = tN ] + (1−Ψi,Γ)E[ω |m = t1 ] ≥

E[ω |m = tN−1 ]. (3)

Proof: See Appendix A.

Conditions (1) and (2) ensure that no unbiased senders have deviation incentives, by re-

quiring that at any threshold ω = tr, for DM∈ {1, .., N − 1} , an unbiased sender is indifferent

between messages tr and tr+1. Condition (1) implies that tr =
r

N−1 tN−1 for r < N −1. Using

this and solving (2) for tN−1 given N and η, we have the unique solution

t∗N−1 =
2N −

√
4Nη(−1 +N) + 1 + 1

2N(1− η)
. (4)
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Therefore (1) and (2) yield a unique admissible partition{
t∗1 =

t∗N−1

N − 1
, .., t∗r =

rt∗N−1

N − 1
, .., t∗N−1

}
(5)

for any N > 1 and η ∈ (0, 1). Note in particular that the partition described above is

independent of the assumed ordering rule as the latter does not affect (1) or (2). This will

turn out to be a very useful property when we study optimal ordering rules. Note also that

(1) and (2) rewrite as

E[ω
∣∣m1 = .. = mn = tN ]

tN−1
=

2(N − 1) + 1

2(N − 1)
. (6)

Condition (3) determines whether the partition pinned down by (1) and (2) is actually

sender incentive compatible. A biased sender i must send mi = tN for any ω. To ensure this,

it is sufficient to ensure no deviation incentive at ω = 0 (if there is no incentive to deviate

at ω = 0 then there is a weakly lower incentive to deviate at any ω ∈ [0, 1]). Now, consider

incentives of a biased sender i at ω = 0. Sending mi = tN is “risky”, as DM will keep on

sampling and with probability (1 − Ψi,Γ) may encounter an unbiased sender and learn that

ω ≤ t1. Sending mi = tN−1 is the best deviation because given the DM’s belief and stopping

rule it preempts any further sampling while it yields the second highest belief E[ω|tN−1].

Note that Ψi,Γ is smaller the earlier i’s expected position in the presentation order and the

higher the expected reliability of the senders consulted after sender i. Using (1), (3) rewrites

as:
E[ω

∣∣m1 = .. = mn = tN ]

tN−1
≥

(1−Ψi,Γ) + 2

2
. (7)

Using (6) to replace the LHS in the above inequality (7), we may conclude that there exists

a sender incentive compatible N -interval partition if and only if

Ψi,Γ ≥ N − 2

N − 1
,∀i ∈ χ. (8)

Furthermore, such a partition is unique if it exists. Note that N−2
N−1 is increasing in N , so

an equilibrium of larger size (larger N) requires higher Ψi,Γ. The intuition is that a larger N

implies larger E[ω |tN−1 ] and lower E[ω |t1 ], so that a larger N makes it more attractive to

deviate to mi = tN−1 given ω = 0. For a given order of consultation Γ, define

Ψmin
Γ := min

i∈χ
Ψi,Γ, (9)

which captures the incentive to send the highest message of the biased sender who has the

largest incentive to deviate to the second highest message. Thus a partition of size N is

incentive compatible as long as this sender (given ω = 0) does not deviate to tN−1.

We summarize the insights so far in the following Proposition:

10



Proposition 2. a) Fix Γ. There exists a sender incentive compatible partition of size N if

and only if Ψmin
Γ ≥ N−2

N−1 . If it exists, it is unique and is given by the partition {t∗r}
N−1
r=1 defined

in (5).

b) Consider two ordering rules Γ and Γ′. If a sender incentive compatible partition of size

N exists under both orders, then they feature the same partition {t∗r}
N−1
r=1 .

Comparing any two ordering rules Γ and Γ′, we see that either the sets of sender incentive

compatible partitions under Γ and Γ′ are identical; or one is a superset of the other and

contains equilibria of larger size, which is determined by the size of Ψmin
Γ and that of Ψmin

Γ′ .

A two-interval equilibrium always exists as 2−2
2−1 = 0, while equilibria of larger size require

Ψmin
Γ ≥ 1

2 .

3.2 DM’s Incentives

We now analyse DM’s incentive to consult following the presentation order. Given that

all senders have identical type-dependent communication strategies, at any point in time the

DM’s optimal choice is to consult the sender (as pinned down by a position in the presentation

order) whose expected reliability is highest. The expected reliability of the first sender in the

presentation order is

E
[
p1
]
=

∑
d∈D(χ)

P (θΓd )p
1,d. (10)

Given {tr}N−1
r=1 and Γ, assuming that DM has followed the presentation order in the first

k rounds of consultation and observed m1 = .. = mk = tN , the expected value of pl for

l > k ≥ 1 is given by

E
[
pl
∣∣∣m1 = .. = mk = tN

]
=

∑
d∈D(χ)

P (θΓd

∣∣∣m1 = .. = mk = tN )pl,d, (11)

where

P (θΓd ,m
1 = .. = mk = tN ) = θΓd

(
tN−1

k∏
i=1

(1− pi,d) + 1− tN−1

)
. (12)

In words, conditional on m1 = .. = mk = tN , DM updates his prior over the set of determin-

istic sequences assigned positive probability under Γ, each of which assigns a specific sender

to position l. He uses this to derive the implied weighted average of pl,d’s and to thus identify

which sender to consult next.

Lemma 2. Fix Γ and {tr}N−1
r=1 . Consulting following the order of presentation is DM incen-
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tive compatible iff :

E
[
p1
]

≥ E
[
pl
]
∀l > 1, (13)

E
[
pk+1

∣∣∣m1 = .. = mk = tN

]
≥ E

[
pl
∣∣∣m1 = .. = mk = tN

]
∀k, l such that k ∈ {1, .., n− 1} and l > k + 1. (14)

The above condition ensures that DM always wants to follow the presentation order. The first

inequality ensures that he wants to consult the first sender in the presentation order when

consulting first. The second condition ensures that for any k ∈ {1, .., n− 1}, after observing
m1 = .. = mk = tN and thus deciding to consult again, the most informative sender is located

in position k + 1 of the presentation order.

4 Optimal Ordering

4.1 Welfare Properties of Equilibria

In a partitional equilibrium featuring {tr}N−1
r=1 , the expected payoff of DM is given by

ΠDM (N, η) (15)

= − (1− η)
N−1∑
i=1

[∫ ti

ti−1

(
ti + ti−1

2
− ω

)2

dω

]

− η

N−1∑
i=1

[∫ ti

ti−1

(E[ω |mA = mB = tN ]− ω)2 dω

]

−
∫ 1

tN−1

(E[ω |mA = mB = tN ]− ω)2 dω.

In the above, the first line of the RHS expression corresponds to the scenario where ω ≤ tN−1

and there is at least one unbiased sender. The second line refers to the scenario where

ω ≤ tN−1 and there is no unbiased sender. The third line is the scenario ω > tN−1 so that

all senders report tN . We ignore sampling costs which are assumed arbitrarily small in the

calculation of the expected payoff. We obtain the following results:

Proposition 3. We have

a) If an equilibrium of size N exists under two ordering rules Γ and Γ′, then DM achieves

the same equilibrium expected payoff ΠDM (N, η) under both ordering rules.

b) ΠDM (N + 1, η) > ΠDM (N, η) for any N ≥ 1 and η ∈ (0, 1) .

c) ∂ΠDM (N,η)
∂η < 0 for any N ≥ 1 and η ∈ (0, 1) .

12



Proof: See Appendix A.

The proof of point a) is as follows. Recall first that by point b) of Proposition 2, if an

equilibrium of size N exists under two ordering rules Γ and Γ′, then it features the same

partition {t∗r}
N−1
r=1 . Next, simply note that for a fixed partition, DM’s expected utility depends

only on one aspect, namely whether or not at least one of the senders is unbiased. If all

senders are biased, DM will end up consulting n times and keep receiving the same message

tN , regardless of the consultation order. If at least one of the senders is unbiased, then

given any state ω̃ he will end up with the same final belief under any consultation order.

Specifically, if ω ≤ tN−1, he will learn the interval in which ω̃ is located, while if instead

ω > tN−1, he will consult all n senders observe the same message tN .

Point b) states that among any two partitional equilibria, the equilibrium with a larger

number of intervals yields a higher expected utility of DM. This reflects the fact that a less

coarse partition allows unbiased senders to communicate more informatively. Point c) cap-

tures the fact that a lower probability of all senders being biased implies a higher probability

of learning ω accurately.

4.2 Optimal Ordering Rules

We now identify an optimal ordering rule, i.e. a rule that maximizes the achievable expected

payoff of DM.4 By Proposition 3, an ordering rule Γ is optimal if it yields the equilibrium

partition of largest size among all ordering rules. By Proposition 2, an ordering rule Γ̂ yields

the largest achievable sender incentive compatible partition if it satisfies:

Γ̂ = argmax
Γ

min
i∈χ

Ψi,Γ. (16)

Denote by Nmax the size of the largest achievable sender incentive compatible partition.

In principle, the incentive compatibility constraint of DM could complicate the search

for an optimal ordering rule as some partitions that are sender incentive compatible under a

given Γ might not be part of an equilibrium as DM’s incentive compatibility conditions are

not satisfied. To account for this potential issue, we take a two-step approach in our search

for an optimal ordering rule.

We first ignore DM’s incentive compatibility and find a necessary and sufficient condition

for an ordering rule to solve (16). As we will show in Proposition 4 shortly, all of these

ordering rules yield the same value of Ψmin
Γ and the same largest sender incentive compatible

partition {t∗r}
Nmax−1
r=1 . Next, we show that among these ordering rules, there exist at least one

4Recall that a rule typically yields a set of simple partitional equilibria, and we focus, for each rule, on the

equilibrium that leads to the maximum number of partitions.
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such that under this largest partition {t∗r}
Nmax−1
r=1 , DM’s incentive compatibility constraint is

also satisfied. This second step is accomplished in two substeps, by first identifying a simple

class of rules that satisfy (16) and then searching within this class.

We next show that optimal rules are random. To understand why the optimal order needs

to be random, imagine an example with just two senders A and B. Consider the incentives

of A when it is biased and when the state is low (w = 0). If A is the last in the consultation

order with probability 1, then his message is only observed if the message sent by B was tN

(as otherwise DM stops consultation after the first message). Thus, A’s best response is to

report tN as it induces the highest possible action of DM with probability 1.

If, however, A is the first in the consultation order, sending tN induces DM to consult

again, which runs the risk of B being unbiased and thus sending message t1, which induces

DM to play the lowest possible equilibrium action. If instead A sends message tN−1 it induces

DM to stop consultation and play the second highest equilibrium action. A thus has a trade-

off between inducing the second highest equilibrium action and risking either the highest or

lowest equilibrium action.

Therefore, the optimal order should put A second in the consultation order. However,

the same reasoning applies to sender B too. This means that that it would be optimal for

both senders to be the second. The way to implement this is to choose an order that assigns

positive probability to both the event where A is the last and the event where B is the last.

The optimal order is random in a way that balances the probability that every determin-

istic order occurs and each sender’s probability of being biased. If in the example above A is

very likely to be biased and B is very less to be biased, the optimal orders assigns a higher

probability to the order where A is the last. This is achieved by equating all senders’ beliefs,

conditional on their message being observed, about the likelihood that DM observes only the

highest message after the sender’s own message, i.e., by equating Ψi,Γ for all senders.

Proposition 4. An order Γ satisfies (16) if and only if

Ψi,Γ = Ψj,Γ =
η

1− η

∑
k

pk
1− pk

for all i, j ∈ χ.

Proof: See Appendix A.

The Lemma has two important features. First, in all rules satisfying (16), we have Ψi,Γ =

Ψj,Γ for any i, j, and therefore the largest sender incentive compatible partition is identical.

To see this, assume there exists exists exactly one sender k such that Ψk,Γ ≤ Ψj,Γ for all j, with

at least one strict inequality say for sender l. Then by continuity of the functions {Ψi,Γ}i,
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which are linear equations on the probabilities of all deterministic orders with coefficients

that are polynomials in {pi}i, it is possible to find an order Γ′ where Ψk,Γ′ > Ψk,Γ and

Ψk,Γ′ < Ψl,Γ′ < Ψl,Γ. This means that mini∈χΨi,Γ′ is larger than mini∈χΨi,Γ, which leads to

a contradiction.

The second insight from Proposition 4 is that if the senders’ beliefs are such that Ψi,Γ =

Ψj,Γ for all i, j, these beliefs pin down a unique admissible set of beliefs for all senders, namely

Ψi,Γ = η
1−η

∑
k

pk
1−pk for all i. This means that given any ordering rule, we can easily check

whether or not it satisfies (16).

While Proposition 4 gives necessary and sufficient conditions for a presentation order to

satisfy (16), one faces an issue of dimensionality when explicitly constructing ordering rules

that satisfy (16). Proposition 4 yields n equations whereas an ordering rule is pinned down

by n! − 1 unknowns, as there are n! possible deterministic orders while the probabilities of

all deterministic orders must add up to 1. We take a constructive approach and identify a

class of ordering rules that satisfy (16). The class builds on the concept of Latin squares,

first studied in the 18th century by Korean and Swiss mathematicians Choi Seok-Jeong and

Leonhard Euler.

Definition a) A Latin square ordering rule is an ordering rule such that exactly n de-

terministic orders {d1, . . . , dn} have strictly positive probability and for every i ∈ χ and

l ∈ {1, .., n}, there is a unique d ∈ {d1, . . . , dn} for which sender i occupies position l. b)

A proportional Latin square ordering rule is a Latin square ordering rule such that for any

d ∈ {d1, .., dn}, θd = pi/(1−pi)∑
j pj/(1−pj)

, where i is the sender who occupies position 1 in d.

For example, for χ = {A,B,C} there are two possible Latin square ordering rules.

One is such that only {θABC , θBCA, θCAB} are positive and the other is such that only

{θACB, θBAC , θCBA} are positive. One can represent each of these as a square, where each

row corresponds to a different deterministic order assigned positive probability. Each of the

obtained squares is a Latin square. The first of these Latin square rules yields the following

proportional Latin square ordering rule:

θABC =
pA/(1− pA)∑
i∈χ pi/(1− pi)

,

θBCA =
pB/(1− pB)∑
i∈χ pi/(1− pi)

,

θCAB =
pC/(1− pC)∑
i∈χ pi/(1− pi)

.

Note that in any proportional Latin square ordering rule, the probability that a sender ap-

pears first in the presentation order is increasing in the sender’s own reliability and decreasing

in the other senders’ reliability.
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Lemma 3. All proportional Latin square ordering rules satisfy (16).

Proof: See Appendix A.

The Lemma above establishes that proportional Latin square rules achieve the maximal

partition size if we ignore DM’s incentive constraint. There is no known way to characterize

all Latin squares of a general order n. Moreover, it is not known how many Latin squares of

a particular order exist, although this number is exponentially increasing in n. Thus, since

proportional Latin squares are a subset of all possible optimal ordering rules, there is no

known way to characterize all optimal rules.

The next question is whether we can find any proportional Latin square ordering rule

that is, furthermore, incentive compatible for DM. The answer is positive.

Lemma 4. Among the set of proportional Latin square rules, there is one such that given

the rule and maximum partition it induces, consulting according to the order of presentation

is incentive compatible for DM.

The proof of the Lemma is as follows. There is a simple (n − 1)-step algorithm for

identifying a proportional Latin square rule Γ∗ such that given Γ∗ and {t∗r}
Nmax−1
r=1 , DM’s

incentive conditions are satisfied. To see this, start with an arbitrary proportional Latin

square ordering rule Γ and assume that the equilibrium partition is {t∗r}
Nmax−1
r=1 . It is easy to

show using the rearrangement inequality that in the first consultation by the DM, the sender

appearing in position 1 of the presentation order is the most reliable one in expectation.

Consider now the second consultation assuming that DM observed message t∗N in the

first consultation. Assess the relative reliability of the senders located in positions 2 to n

of the presentation order. If the sender in position 2 is the most reliable sender, then keep

the ordering rule Γ and proceed to the sender in position 3. If the most reliable sender is

in position r > 2, then construct a new ordering rule Γ′ by permutating senders in position

2 and position r in all of the n sequences that have positive probability of occuring under

Γ. Note that Γ′ is also a proportional Latin square rule and it is such that in the second

round, the sender in position 2 is the most reliable sender. The reason is that in the second

round, the expected reliability of senders in position 2 and r have now been interchanged, as

is immediately clear from (11) and (12).

Repeat the procedure for the third consultation, by checking who is the most reliable

sender after t∗N has been observed in the first and second rounds. We iterate the procedure

until consultation in the n-th round is reached, at which point we have a proportional Latin

square rule Γ∗ such that given Γ∗ and {t∗r}
Nmax−1
r=1 , DM’s incentive compatibility is satisfied.
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5 Extensions

5.1 Optimal Deterministic Ordering Rules

Note first that any deterministic ordering rule is trivially suboptimal. For a deterministic

ordering rule Γ pinned down by d ∈ D(χ), recalling that χi,+d denotes the set of senders who

are consulted after sender i, we have Ψi,d = Π
j∈χi,+

d
(1− pj) and Ψi

d ̸= Ψj
d for any i, j, which

violates a necessary condition for optimality.

Remark 1. Suppose only deterministic orderings are allowed. The only deterministic order-

ing rule that can be part of an equilibrium is such that i appears before j if pi > pj.

The proof is as follows. A sender incentive compatible partition allows for a finer partition

in equilibrium if the other senders are more likely to be biased. Thus the first sender should

be the most reliable one, because that way the probability that all of the rest are biased is

maximized. The same reasoning applies to all senders who follow.

This ordering rule yields the highest mini∈χ{ΨA,d,ΨB,d, ..} and thus the largest equilib-

rium size among all deterministic ordering rules. For any deterministic order pinned down

by d, it is immediate that

min
i∈χ

{ΨA,d,ΨB,d, ..} = Ψi,Γ

if i is the first sender consulted. It follows immediately that the most attractive deterministic

ordering rule, in terms of inducing the equilibrium with the largest number of partitions, is

such that the first sender consulted is the sender with the highest pi. Indeed, for i, i
′ ∈ χ, it

holds true that Πj∈χ−i(1− pj) > Πj∈χ−i′ (1− pj) if and only if pi > pi′ .

5.2 Observable Reliability Levels

Consider the situation where the online platform shares information about reviewers’ relia-

bility with consumers.5 Our model indicates that this is not beneficial to the consumers.

Specifically, suppose that DM now knows the identity i of each sender and thus observes pi

directly. Note that the DM’s equilibrium beliefs are as in the main model. The expected state

when all nmessages are the highest E[ω
∣∣m1 = .. = mn = tN ] is affected by senders’ reliability

only via η, which is independent of how exactly the entries in {p1, .., pN} are allocated among

individual senders.

Clearly, in any partitional equilibrium, DM consults more reliable senders first (as such

DM’s consultation strategy induces the optimal deterministic ordering rule discussed previ-

ously), which means that in equilibrium we must have Ψmin
Γ = Πj∈χ−i(1− pj), where i is the

5For instance, Yelp.com shares information about reviewers with customers and Amazon used to do so.
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most reliable sender. This is strictly less than the value of Ψmin
Γ′ achieved by a proportional

Latin square ordering rule Γ′.

5.3 Varying the Pool of Senders

We here investigate the role of the distribution of the revels of reliability assuming that an

optimal ordering rule is used by the planner (Ψi,Γ = η
1−η

∑
k∈χ

pk
1−pk for all i). We restrict

ourselves to comparing distributions that yield the same value of η, the probability that all

senders are biased. We look for the optimal profile of pi’s conditional on this constraint

and, furthermore, assuming a potential lower bound on the reliability of any individual ε ∈
[0, 1− η

1
n ]. We thus solve

max
{pi}i∈χ

η

1− η

∑
i

pi
1− pi

(17)

s.t.
∏
i

(1− pi) = η, (18)

min
i∈χ

pi ≥ ε, for ε ∈ [0, 1− η1/n). (19)

Let p = {pi}i∈χ and define η(p) as the corresponding value of
∏
i(1− pi). Let Λ(η, n) be

the set of all distributions involving n senders and that yield the same value of η.

Proposition 5. a) The solution to problem (17)-(19) is given by pi = 1− η
(1−ε)n−1 for some

i ∈ {1, . . . , n} and pj = ε for all j ̸= i.

b) Consider two profiles p,p′ ∈ Λ(η, n) such that for some i, j we have p′i > pi and p
′
j < pj

while pk = p′k for all k /∈ {i, j}. If pi > pj, then p′ yields a weakly higher expected payoff of

DM and vice versa if instead pi < pj.

Proof: See Appendix A.

Regarding point a), If ε = 0, then the solution to the problem is trivial. The objective

function can always be made equal to 1 by setting pi = 1 − η for any one i ∈ {1, .., , n} and

pj = 0 for all j ̸= i. In this case
∏
i(1 − pi) = η and η

1−η
∑

i
pi

1−pi = η
1−η

1−η
η = 1. This

is enough to guarantee the existence of an equilibrium of any size (and recall that larger

equilibria yield a higher DM expected payoff). In general, assuming a lower bound ε > 0, the

optimal distribution is one where all probabilities take the lowest possible value but one of

them, which takes the highest. Point b) compares pools of senders in which we shift reliability

levels between two senders by making the more reliable sender even more reliable and the less

reliable sender even less reliable, in a way that keeps η fixed. We see that such an polarizing

shift is beneficial to DM, in a way that echoes point a).
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5.4 Adding or Removing Senders

Form our analysis it is easy to see that removing senders who are likely to be biased is

not necessarily beneficial (as advocated by some online platforms).6 Removing a sender,

regardless of its probability of being biased, has two effects. A direct effect is that the

probability of learning the state 1 − η decreases and this is detrimental for DM. Intuitively,

removing a sender reduces the amount of information available from senders; if the sender

removed is biased there is no change to this pool while if the sender removed is honest then

there is a strict decrease in the information available.

An indirect effect is that, since the optimal number of partitions depends positively on
η

1−η
∑

i
pi

1−pi , removing a sender increases η
1−η but decreases

∑
i

pi
1−pi . Thus, removing a sender

can potentially increase the number of partitions in equilibrium, which in turn increases the

amount of information transmitted in equilibrium to DM. Intuitively, for every sender, having

fewer (potentially) biased senders may reduce the probability that all senders presented later

than him report the highest message. That is, the incentive for a biased sender to deviate to

the second highest message (mi = tN−1) is higher when there are fewer biased senders.

Therefore, removing a sender reduces information available but may increase the infor-

mation transmitted in equilibrium. The net result of these two effects is ambiguous. We can

find numerical examples where the effect of removing those senders who are most likely to be

biased is negative or positive. Similarly, there are also numerical examples where the effect

of adding senders, even if they are likely to be unbiased, is positive or negative.

6 Conclusion

We have presented a model of information transmission between senders, some of whom can

be biased, and a receiver who consults them sequentially. The model maps into the setting of

online product reviews. We have shown that the optimal way to display product reviews is

random in such a way that it equates the beliefs that the consumer will learn the truth about

the product after reading each review, which may explain why the most reliable reviewers

are not necessarily presented first. We have also seen that removing reviews that are likely

to be fake is not necessarily beneficial.

The model can also be applied to the cases of user generated commenting on general issues,

such as Quora or newspaper comment sections. The pool of reviewers providing opinions

is a mixture of honest citizens and agenda driven partisans possibly tied to organizations.

Reviewers are as such largely ex-ante identical from readers’ perspective, but the platform

6See for instance https://www.aboutamazon.com/news/policy-news-views/.
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may have access to data that allows it to estimate the reliability of individuals. The platform

is typically free to decide in which order responses are shown and might condition the order

on these estimates. Google’s search page offers another instance of the ordering problem. For

any given search query, the PageRank algorithm provides an ordered set of results. In this

particular case, however, different sources typically have different levels of reliability in the

eyes of readers.

The main result of this paper is to identify how to optimally order experts in a sequential

consultation problem. We find that that the order should be stochastic, which implies that

less reliable experts might sometimes be asked earlier. Experimental work would be called

upon to qualitatively test our predictions, in order to see whether experts’ behaviour is indeed

driven by the pre-emption motive that drives our findings.
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8 Appendix A

8.1 Proof of Lemma 1

Step 1 From the incentives of unbiased senders, it must be true that

E[ω
∣∣m1 = .. = mn = tN ]− tN−1 = tN−1 −

tN−1 + tN−2

2
(20)

and it must also be true that all thresholds between t0 = 0 and tN−1 are equally spaced,

which means that for any K < N − 1, we have tr =
(
K
N−1

)
tN−1. Using tN−2 =

(
N−2
N−1

)
tN−1,

(20) is equivalent to:

E[ω
∣∣m1 = .. = mn = tN ]

tN−1
=

2(N − 1) + 1

2(N − 1)
.

Inserting the closed form expression for E[ω
∣∣m1 = .. = mn = tN ], we obtain for any given N

and η, the unique solution value of tN−1 which is given by (4).

Step 2 In an equilibrium featuring the partition {tr}N−1
r=1 , let m(ω∗) denote the message

sent by an unbiased sender if the state is ω∗ and ω∗ < tN−1. Denote by E[ω |m(ω∗) ]K’s

expected value of the state if he encounters the equilibrium message m(ω∗). From the incen-

tives of biased senders, we need that for every sender i ∈ χ and for every ω∗ ≤ tN−1, it holds

true that:

Ψi,ΓE[ω
∣∣m1 = .. = mn = tN ] + (1−Ψi,Γ)E[ω |m(ω∗) ] ≥ tN−1 + tN−2

2
. (21)
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This condition ensures that any biased sender is willing to send mN rather than deviate to

mN−1, whatever the realized state. Clearly, E[ω |m(ω∗) ] is increasing in ω∗, so the condition

is most difficult to satisfy for ω∗ = 0. Thus, (21) is satisfied if and only if it is satisfied at

ω∗ = 0. We thus need that for every sender i ∈ χ it holds true that:

Ψi,ΓE[ω
∣∣m1 = .. = mn = tN ] + (1−Ψi,Γ)

t1
2

≥ tN−1 + tN−2

2
. (22)

Recall that the size of every interval to the left of tN−1 is identical and given by:

2
(
E[ω

∣∣m1 = .. = mn = tN ]− tN−1

)
.

We may thus rewrite the constraint (22) as

Ψi,ΓE[ω
∣∣m1 = .. = mn = tN ] + (1−Ψi,Γ)

[
E[ω

∣∣m1 = .. = mn = tN ]− tN−1

]
≥ 2tN−1 − E[ω

∣∣m1 = .. = mn = tN ]

which is equivalent to

E[ω
∣∣m1 = .. = mn = tN ]

tN−1
≥

(1−Ψi,Γ) + 2

2
.

Now, bringing together the two conditions derived from the incentives of biased and unbiased

senders, an equilibrium with N intervals exists if and only if:

2(N − 1) + 1

2(N − 1)
≥

(1−Ψi,Γ) + 2

2
.

8.2 Proof of Proposition 3

The proof analyses the general case of n ≥ 2 senders. We proceed by proving point b), noting

that point a) follows from step 3 in the proof of point b), and finally we prove point c).

8.2.1 Point b): Effect of N

Step 1 Recall that in equilibrium, we have:

tN−1

(
2(N − 1) + 1

2(N − 1)

)
= E[ω

∣∣m1 = .. = mn = tN ].

In what follows, define f(N, η) := t∗N−1, where t
∗
N−1 is given as in (4).

Step 2 ΠDM (N, η) is given by minus the following sum:

(1− η)(f(N, η))
1

12

(
f(N, η)

N − 1

)2

(23)

+ (1− η)

∫ 1

f(N,η)

(
ω − f(N, η)

(
2(N − 1) + 1

2(N − 1)

))2

dω

+ η

∫ 1

0

(
ω − f(N, η)

(
2(N − 1) + 1

2(N − 1)

))2

dω.
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This can be further decomposed into the following elements:

(1− η)(f(N, η))
1

12

(
f(N, η)

N − 1

)2

(24)

+ η

∫ f(N,η)

0

(
ω − f(N, η)

(
2(N − 1) + 1

2(N − 1)

))2

dω

+

∫ f(N,η)

(
2(N − 1) + 1

2(N − 1)

)
f(N,η)

(
ω − f(N, η)

(
2(N − 1) + 1

2(N − 1)

))2

dω

+

∫ 1

f(N,η)

(
2(N − 1) + 1

2(N − 1)

)(
ω − f(N, η)

(
2(N − 1) + 1

2(N − 1)

))2

dω.

Consider the four lines that constitute expression (24) above. The expression in the last line

is decreasing in N , as we shall show in next step. In step 3, we prove that the sum of the

three expressions appearing in the first, second and third line is also decreasing in N , which

proves point a).

Step 3 Consider:∫ 1

f(N,η)(2(N−1)+1
2(N−1) )

(
ω − f(N, η)

(
2(N − 1) + 1

2(N − 1)

))2

dω.

Note first that
∫ 1
t (ω − t)2 dω = −1

3 (t− 1)3 is trivially decreasing in t. Now, we need to show

that f(N, η)
(2(N−1)+1

2(N−1)

)
is increasing in N . Note that:

∂

((
2(N − 1) + 1

2(N − 1)

)
f(N, η)

)
∂N

=
1

4N2 (1− η) (N − 1)2
√
4ηN2 − 4ηN + 1

G0(η,N),

where

G0(N, η) =
√
4ηN2 − 4ηN + 1− 2Nη − 2N

− 2N
√

4ηN2 − 4ηN + 1 + 2N2η + 2N2 + 1.

We simply need to show that G0(N, η) > 0. Simple algebraic manipulation shows that this

is equivalent to proving that −4N2 (η − 1)2 (N − 1)2 < 0, which is always true.

Step 4 Consider the three expressions appearing in the first, second and third line of

(24). The sum of these equals:

T (N, η) =
1

192N3 (η − 1)3
2N − 1

(N − 1)3

(√
4ηN2 − 4ηN + 1− 2N + 1

)3
(
4ηN2 − 4ηN + 1

)
.
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We want to prove that T (N, η) is always decreasing in N . Note that:

∂T (N, η)

∂N
=

1

(η − 1)3
1

192N4 (N − 1)4(√
4ηN2 − 4ηN + 1− 2N + 1

)2
G1(η,N),

where
G1(N, η) =

10N − 10N2
(
4ηN2 − 4ηN + 1

) 3
2 + 8Nη − 3

(
4ηN2 − 4ηN + 1

) 3
2

+10N
(
4ηN2 − 4ηN + 1

) 3
2 − 24N2η + 16N3η − 12N2 + 8N3

+50N2η
√

4ηN2 − 4ηN + 1− 80N3η
√

4ηN2 − 4ηN + 1

+40N4η
√

4ηN2 − 4ηN + 1− 10Nη
√
4ηN2 − 4ηN + 1− 3.

To show that ∂T (N,η)
∂N < 0, we simply need to show that G1(N, η) > 0. Simple algebraic

manipulation shows that this in turn equivalent to proving that:

−4N2 (η − 1)2 (N − 1)2
(
4Nη − 16N − 4N2η + 16N2 + 3

)
< 0,

which is always true.

8.2.2 Point c): Effect of η

Step 1 Consider expression (24). The expression appearing in the last line is trivially in-

creasing in η, as proved now. We have:

∂ (f(N, η))

∂η

= − 1

2N (η − 1)2
√

4ηN2 − 4ηN + 1
G0(η,N),

where G0(N, η) was defined earlier in our analysis of comparative statics with respect to N .

We wish to prove that the above is negative. This is equivalent to showing that G0(N, η) > 0,

which we already proved is true.

Step 2 Consider the three expressions appearing in the first, second and third line of

(24). We now show that the sum of these three expressions (denoted T (N, η)) is increasing

in η. Note that:

∂T (N, η)

∂η
=

1

192N3

2N − 1

(N − 1)3
1

(η − 1)4(√
4ηN2 − 4ηN + 1− 2N + 1

)2
G2(η,N),
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where
G2(N, η) =

10N − 10N2
√
4ηN2 − 4ηN + 1 + 8Nη − 3

(
4ηN2 − 4ηN + 1

) 3
2

+10N
√

4ηN2 − 4ηN + 1− 24N2η + 16N3η − 12N2 + 8N3

+10N2η
√

4ηN2 − 4ηN + 1− 10Nη
√

4ηN2 − 4ηN + 1− 3.

.

To show that ∂T (η,N)
∂η > 0, we simply need to show that G2(η,N) > 0. Simple algebraic

manipulation shows that this in turn equivalent to proving that(
4Nη − 16N − 4N2η + 16N2 + 3

)
> 0,

which is always true.

8.3 Proof of Proposition 4

The proof is decomposed into two lemmas which together yield the result. Recall that we

focus on ordering rules that satisfy:

Γ = argmax
Γ

min
i∈χ

Ψi,Γ. (25)

The first Lemma below shows that any ordering rule Γ that solves (25) is such that Ψi,Γ

is equalized across senders. We then show that equalizing Ψi,Γ for all senders pins down a

unique value for Ψi,Γ for all i, given by η
1−η

∑
j

pj
1−pj . This in turn means that any order

which achieves this value solves (25).

The lemmas below use the fact that for any order Γ it is true that in equilibrium Qi,Γ(1−
pi)Ψi,Γ = η for all i. That is, the probability that sender i is consulted (which in equilibrium

equals the probability that all senders before i are biased), times the probability that i is

biased, times the probability that all senders after i are biased, equals η, i.e. the probability

that all senders are biased. Also note that Qi,Γ(1−pi)Ψi,Γ = η implies that maxΓmini∈χΨi,Γ

is equivalent to minΓmaxi∈χ(1− pi)Qi,Γ.

Lemma 5. If an ordering rule Γ solves (25) then (1− pi)Qi,Γ = (1− pj)Qj,Γ for all i, j and

consequently Ψi,Γ = Ψj,Γ for all i, j.

Proof. Assume the contrary, this means that there is a rule Γ that solves (25) but for which

there exists a non-empty set of senders χ̂ such that (1−pj)Qi,Γ = (1−pk)Qk,Γ for all i, k ∈ χ̂,

and (1 − pi)Qi,Γ > (1 − pj)Qj,Γ for all i ∈ χ̂ and j /∈ χ̂. Note that χ̂ ⊂ χ as if χ̂ = χ the

lemma holds true.

There exists an i ∈ χ̂ and a j /∈ χ̂ such that i acts immediately before j in some determin-

istic order, call it d, that occurs with positive probability, θd > 0. Otherwise, all senders in χ̂
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act consecutively and after all senders not in χ̂ in all deterministic orders that have positive

probability, in which case minj /∈χ(1− pj)Qj,Γ > maxj∈χ(1− pi)Qi,Γ, i.e. the sender not in χ̂

that is least likely to be asked is more likely to be asked than the sender in χ̂ that is most

likely to be asked. This contradicts the definition of the set χ̂.

Create a new ordering rule Γ′ identical to Γ but such that order d has probability θ̂d =

θd − ε for some small ε > 0, and order d′, which is the same as d but where the positions of

i and j are swapped, has probability θ̂d′ = θd′ + ε (note that θd′ cannot be 1 as otherwise j

always acts before i and (1− pj)Qj,Γ > (1− pi)Qi,Γ, a contradiction to i ∈ χ̂).

Notice that Γ and Γ′ are such that Qk,Γ = Qk,Γ′ for all k ̸= i, j and Qi,Γ′ < Qi,Γ and

Qj,Γ′ > Qj,Γ. Since Qk,Γ for all sender k is linear in the probabilities of each deterministic

order, by continuity ε can be chosen such that (1− pi)Qi,Γ > (1− pj)Qj,Γ′ .

We have just proven that there exists an ordering rule Γ′ with associated set χ̂′, defined

similarly to χ̂, such that χ̂′ includes all senders in χ̂ except i, and no other senders.

If χ̂ only has one sender skip this step of the proof and go to the next paragraph. Oth-

erwise, note that given Γ′ and χ̂′, we have that again there exists an i′ ∈ χ̂′ and a j′ /∈ χ̂′

such that i′ acts immediately before j′ in some deterministic order that occurs with positive

probability. Repeat the reasoning in this proof to generate an order Γ′′ with associated set

χ̂′′, defined similarly to χ̂, such that χ̂′′ includes all senders in χ̂′ except i′, and no other

senders.

Iterating on this process, after a finite number of steps equal to the number of senders in

χ̂, we are left with an order Γ̂ such that maxi∈χ(1− pi)Qi,Γ̂ < maxi∈χ(1− pi)Qi,Γ. Therefore,
Γ does not solve minΓmaxi∈χ(1− pi)Qi,Γ, which means it does not solve maxΓmini∈χΨi,Γ, a

contradiction.

Lemma 6. Let Γ be an ordering rule that solves (25). Then Ψi,Γ = Ψj,Γ = η
1−η

∑
j

pj
1−pj for

all i, j.

Proof. Notice first that for any ordering Γ with its respective {Qj,Γ}j we have∑
j

pjQj,Γ = 1− η. (26)

The left hand side is the probability that DM learns the truth; the sum for every sender of

the probability that this sender is asked and tells the truth (notice that when w = 0 it is not

possible for two senders to be asked and both tell the truth, as when one does so consultation

stops). The right hand side is the same but expressed differently; it is the probability that

at least one sender is honest (i.e. not true that all senders are biased).
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Since (25) implies (1 − pi)Qi,Γ = (1 − pj)Qj,Γ for any i, j by lemma 5, we have Qj,Γ =

Qi,Γ
1−pi
1−pj . This leads to ∑

j

Qj,Γ = (1− pi)Qi,Γ
∑
j

1

1− pj
. (27)

On top of that, (25) implies, via lemma 5,
∑

j(1 − pj)Qj,Γ = n(1 − pi)Qi,Γ for any i. If

we combine (26) and (27) with this observation we obtain

(1− pi)Qi,Γ
∑
j

1

1− pj
− (1− η) = n(1− pi)Qi,Γ

(1− pi)Qi,Γ =
1− η∑
j

pj
1− pj

,

for all i. Combined with the fact that Qi,Γ(1− pi)Ψi,Γ = η gives the desired result.

8.4 Proof of Lemma 3

For a given Latin square ordering rule, given sender i and position l, let dl be the unique

deterministic order such that θdl > 0 and sender i occupies position l. Furthermore, let

{1dl , 2dl , . . . , (l − 1)dl} be the senders who occupy positions {1, 2, . . . , l − 1} respectively in

deterministic order dl. Note that ldl = i, as sender i occupies position l in order dl by

definition.

We have

(1− pi)Qi,Γ = (1− pi)

θd1 + θd2(1− p1d2 ) + . . .+ θdn
∏
j ̸=i

(1− pj)

 .

The term in parenthesis in the right-hand side is the probability that sender i is asked first,

θd1, plus the probability that sender i is asked second and whichever sender is asked first is

biased, θd2(1− p1d2), etc.

In a Latin square ordering rules the probabilities of the orders dl are determined only by

whichever sender acts first:

(1− pi)Qi,Γ = (1− pi)

(
pi/(1− pi)∑
j pj/(1− pj)

+
p1d2/(1− p1d2 )∑

j pj/(1− pj)
(1− p1d2 )

+ . . .+
p1dn/(1− p1dn )∑

j pj/(1− pj)

∏
j ̸=i

(1− pj)


=

1∑
j

pj
1−pj

pi + p1d2 (1− pi) + . . .+ p1dn

∏
j ̸=1dn

(1− pj)

 .
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The term in parenthesis in the right-hand side is the probability that sender i is unbiased, pi,

plus the probability that i is biased times the probability that sender 1d2 (the sender that is is

asked first when i is asked second) is unbiased, and so on until the probability that all senders

except 1dn are biased times the probability that 1dn is unbiased. This is the probability that

there is at least one unbiased sender, 1− η. Therefore,

(1− pi)Qi,Γ =
1− η∑
j

pj
1−pj

for all sender i. That is, we have just shown that

(1− pi)Qi,Γ = (1− pj)Qj,Γ =
1− η∑
j

pj
1−pj

for all i, j, which is a necessary and sufficient condition for an optimal random order.

8.5 Proof of Proposition 5

8.5.1 Point a)

Consider the constrained optimization problem defined in (17), (18) and (19). We use Kuhn-

Tucker:

L({pi}, λ, {µi}) =
η

1− η

∑
i

pi
1− pi

+ λ(
∏
i

(1− pi)− η)−
∑
i

µi(pi − ε)

with λ ≥ 0 and µi ≥ 0 for all i. Since the problem is symmetric for {pi} we can assume

without loss of generality that the first k ∈ {1, 2, . . . , n} probabilities are strictly greater

than ε and the last n − k probabilities are equal to ε. In other words, {µi}ki=1 = 0 and

{µi}ni=k+1 > 0 for some k. The problem is then to solve the K-T conditions for any k, and

then choose the k that maximizes the objective function. Note we cannot have k = 0 as this

would mean
∏
i(1− p) = (1− ε)n, which is not in general equal to η. We have for all i

∂L

∂pi
=

η

1− η

1

(1− p)2
− λ

η

1− pi
− µi

= 0

∂2L

∂2pi
=

η

1− η

−2

(1− p)3
− λ

η

(1− pi)2

< 0.

Note that for those i for which µi = 0 we have η
1−η − λη(1 − pi) = 0, which implies

pi = 1− 1
λ(1−η) . That is, at the optimum those pi which are not ε all are equal to some value

p given by p = 1− 1
λ(1−η) .
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Therefore, we have η = (1− p)k(1− ε)n−k. This means

p = 1−
(

η

(1− ε)n−k

) 1
k

.

Thus, at the optimum we have that the first k probabilities are equal to p and the rest are

equal to ε. We are left to calculate what is the optimal k. For given k we have that the

objective function is equal to

ψ =
η

1− η

[
k

((
(1− ε)n−k

η

) 1
k

− 1

)
+ (n− k)

ε

1− ε

]

Let us study the behaviour of this expression as a function of k. Taking the derivative

with respect to k and using the fact that p = 1−
( η
(1−ε)n−k

) 1
k we obtain

∂ψ

∂k
∝ p

1− p
− ε

1− ε
− 1

1− p
log

1− ε

1− p
,

where p depends on k.

Notice that ∂ψ
∂k p=ε

= 0 and that ∂2ψ
∂k∂p = − 1

(1−p)2 log
1−ε
1−p < 0. Hence, we have that ∂ψ

∂k is

decreasing in p and equal to 0 at the lowest possible value for p. Therefore, it is negative.

This means that the k that maximizes Ψ is the minimum possible. That is, k = 1. Therefore,

the optimal solution is pi = 1− η
(1−ε)n−1 for any one i ∈ {1, . . . , n} and pj = ε for all j ̸= i.

8.5.2 Point b)

Assume that for some ε > 0 we have that pi increases to p
′
i = pi + ε and that pj decreases to

p′j = pj − ρ(ε), where ρ(ε) solves

(1− pi − ε)(1− pj + ρ(ε)) = (1− pi)(1− pj).

which is equivalent to

ρ(ε) =

(
(1− pi)

(1− pi − ε)
− 1

)
(1− pj).

It is easy to show that
p′i

1− p′i
+

p′j
1− p′j

>
pi

1− pi
+

pj
1− pj

.

Therefore, Ψ∗′ > Ψ∗.

9 Appendix B - Proof of Proposition 1

9.1 Preliminary definitions

Recall thatml denotes the message appearing in position l of the presentation order. Consider

an observed history h in which DM consulted k senders, first consulting the sender located
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in position l, then the sender in position l′, then the sender in position l′′, etc. We denote

such a history by the k-entries vector h = {ml,ml′ ,ml′′ , ..}. We denote the rth entry of h by

hr. We say that a history has length k if DM consulted k times. We say that two histories h

and h′ are comparable if, across these two histories, DM faced the same presentation order,

followed the same order of consultation, and has consulted the same number of times (so the

histories have the same length). The action rule α pins down the action α(h) taken by DM

if he stops consulting and chooses an action after h.

Definition 1. senders’ strategies induce monotonic beliefs when for any two comparable

histories h and h′of length k ∈ {1, .., n}, if it holds true that there is some i ∈ {1, . . . k} such

that hj = h′j for all j ̸= i and hi > h′i then it holds true that E[ω|h] ≥ E[ω|h′], assuming that

DM’s beliefs are formed via Bayes rule and the senders’ strategy profile.

The following examples illustrate the above definition.

Example 1. Given n = 5, if h = {m,m′,m′′} and h′ = {m, m̃′,m′′} with m′ > m̃′ then if

senders’ strategies induce monotonic beliefs it must be that E[ω|h] ≥ E[ω|h′].

Example 2. Given n = 5, if h = {m,m′,m′′} and h′ = {m,m′,m′′,m′′′} then even if

senders’ strategies induce monotonic beliefs we cannot establish an ordinal relation between

E[ω|h] and E[ω|h′].

Example 3. Given n = 5, if h = {m,m′,m′′} and h′ = {m, m̃′, m̃′′} with m′ > m̃′ and

m′′ > m̃′′ then if senders’ strategies induce monotonic beliefs it must be that E[ω|h] ≥ E[ω|h′].

Example 4. Given n = 5, if h = {m,m′,m′′} and h′ = {m, m̃′, m̃′′} with m′ < m̃′ and

m′′ > m̃′′ then even if senders’ strategies induce monotonic beliefs we cannot establish an

ordinal relation between E[ω|h] and E[ω|h′].

Definition 2. An equilibrium is monotone if sender strategies are monotonic and induce

monotonic beliefs.

Definition 3. An equilibrium is partitional if it satisfies the following description. There is

a sequence of strictly increasing thresholds {t0, t1, . . . , tN} with N > 1, t0 = 0 and tN = 1

such that the following holds true. For any two comparable histories h and h′of length k, if

it holds true that there is some i ∈ {1, . . . k} such that hi = h′i for i ̸= j and hj > h′j where

either hj , h
′
j ∈ [tk, tk+1) for some k ∈ {0, . . . , N − 1} or hj , h

′
j ∈ [tN−1, 1], then we have

α(h) = α(h′).
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9.2 Proof

In what follows, as stated in the main text, we restrict ourselves to symmetric and monotone

equilibria. The proof is decomposed into three Lemmas. The Lemma 7 establishes that

there can never be a subset of the state space for which DM learns the state perfectly if he

meets an unbiased sender. Lemma 8 uses this property to show that any equilibrium must

be partitional. Lemma 9 , building on this, shows that for any informative equilibrium that

satisfies our restrictions there exist an an outcome equivalent simple partitional equilibrium.

Lemma 7. (No Perfect Communication on an Interval) There exists no symmetric and

monotone equilibrium where there is a non-degenerate interval Ã such that if ω ∈ Ã then if

DM consults an unbiased sender he stops consultation and plays α = ω.

Proof. The proof proceed with the following steps, where each steps is detailed on each of the

following paragraphs. Step 1, assume the contrary and define sup Ã as the supremum of the

state for which perfect communication is possible. Step 2, if state is ω = sup Ã then unbiased

sender believes action must be sup Ã. Step 3, define m
Ã
as the message that induces action

arbitrarily close to sup Ã. Step 4, the action played is strictly higher than sup Ã when all

messages are greater or equal to sup Ã. Step 5, if ω = sup Ã all messages are greater or equal

to sup Ã.

Begin by assuming the contrary, then there is a possibly uncountable collection of disjoint

non-degenerate sets {Ãi}i such that if ω ∈ Ãi for some i then DM stops consultation and

playsm. For all i let sup Ãi be the supremum of set Ãi. Create an increasing sequence in [0, 1]

by ordering increasingly the set of all suprema {sup Ãi}i. Since such sequence is bounded by

1, by the monotone convergence theorem it converges to its supremum. Let sup Ã be such

supremum.

If the state is ω = sup Ã then an unbiased sender believes with probability 1 in equilibrium

that the action of DM must be sup Ã once he stops consultation. To see this notice first that

by monotonicity this action is greater or equal than sup Ã− ε for all small enough ε > 0. If

sup Ã = 1 then the action is sup Ã with certainty, and if sup Ã < 1 but the action played is

not sup Ã with some probability then the expected action must by strictly higher than sup Ã.

That is, there exists an ε > 0 such that the action played is sup Ã+ ε with some probability

p, in which case the unbiased sender’s best response is in m ∈ ((1 − p) sup Ã + p(sup Ã −
ε), sup Ã) ⊂ Ã. Thus, there is a deviation incentive of unbiased senders, a contradiction.

For small ε > 0 there exist a message m
Ã
(ε) such that if sent by a sender DM stops con-

sultation and plays sup Ã(ε)− ε. By monotonicity m
Ã
(ε) is increasing in ε and, furthermore,

it is bounded above by 1. Thus, it converges to its supremum. Let m
Ã
be such supremum.
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By monotonicity, if the state is ω = sup Ã then unbiased senders send message m ≥ m
Ã
.

On top of that, for any state by monotonicity biased senders always send message m ≥ m
Ã
.

A biased sender believes that if consulted then for any state the expected action played

by DM in equilibrium, say α, is at least sup Ã, as otherwise he can guarantee any action

arbitrarily close to sup Ã by sending message m
Ã
. In equilibrium, by monotonicity, if the

state is ω ∈ [0, sup Ã) DM only plays an action of at least sup Ã if he consults biased senders

only, and less than sup Ã otherwise, say α̂ < sup Ã at most. Using incentive compatibility

for biased senders we must have δα+ (1− δ)α̂ ≥ sup Ã, which since δ ∈ (0, 1) and α̂ < sup Ã

means α > sup Ã. That is, the equilibrium action of DM must be strictly higher than sup Ã

when all messages he receives are m
Ã
or above regardless of the state of nature.

Assume ω = sup Ã, then DM receives all messages equal to or above sup Ã, which by the

paragraph above means he plays an action strictly greater than supT , but this is incompatible

with unbiased senders’ equilibrium beliefs. As we showed previously if the state is ω = sup Ã

then an unbiased sender believes with probability 1 that the action played by DM is sup Ã.

Lemma 8. All informative, symmetric and monotone equilibria are partitional.

Proof. The proof proceed with the following steps, where each steps is detailed on each of

the following paragraphs. Step 1, by contradiction, there exists two histories with increasing

actions in some interval Ã for some sender j. Step 2, biased senders always send at least

sup Ã. Step 3, define function α̂(hj) as the increasing action in history h−j×hj as a function

of hj ∈ Ã. Step 4, if the image set of α̂, i.e. I, contains an interval, we contradict Lemma 7.

Step 5, if the image set of α̂, i.e.I, does not contain any interval, we still contradict Lemma

7 I must be dense in some subset of I ∩R. Step 5.1, I contains no intervals but for at least

one point in I there is another one in I infinitesimally close by. Step 5.2, for all error ε > 0

and for some states not in I sender can induce an action ε-close to the state. Step 5.3, there

is then an interval with full communication, a contradiction.

Assume there is an equilibrium that is not partitional. This means that there exists a

non-degenerate interval Ã and a pair of comparable equilibrium histories h−j , h
′
−j for all

senders but j with hi = h′i for senders i ̸= j, such that for all hj , h
′
j ∈ Ã we have hj ̸= h′j

implies α(h) ̸= α(h′).

By monotonicity for all hj , h
′
j ∈ Ã with hj > h′j we have α(h) > α(h′). Assume hence-

forth without loss of generality that hj > h′j . Also by monotonicity in equilibrium for any

state biased senders always send message of at least sup Ã. This is because in at least one

equilibrium history (the one given in step one of the proof) it leads to a strictly higher action

than anything below sup Ã, and for any other equilibrium history it leads, by monotonicity,

to an action at least as high as any other message below sup Ã.
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For any history h−j where some sender j is not consulted, define the function α̂ : Ã→ I

as a strictly increasing map between hj and the action played in history h = h−j × hj . We

have that α̂ is increasing and that I ⊆ [α̂(inf Ã), α̂(sup Ã)].

If there exists an x ∈ I̊ and ε̂ > 0 such that for all ε ∈ (0, ε) we have x + ε ∈ I then

I contains intervals. That is, there exists an x ∈ I̊ and an ε > 0 such that for all state

ω ∈ (x, x+ε) there exists a message m ∈ Ã such that α̂(m) = ω. Since biased senders always

send message sup Ã, after observing m DM learns the that sender is unbiased and his strict

best response is to stop consultation and play α̂(m). This contradicts Theorem 1.

Assume instead that for all x ∈ I̊ there exists no ε̂ > 0 such that for all ε ∈ (0, ε) we have

x+ ε ∈ I. That is, I contains no intervals.

Note that for all δ > 0 there exists an x, x′ ∈ I with x < x′ < x + δ. This is because

otherwise there exists a δ > 0 such that for all x ∈ I we have (x, x + δ) ̸⊂ I. This means

that I has at most sup I−inf I
δ elements. This is a contradiction as α̂ is a strictly increasing

mapping from a set with infinitely many elements so its domain I must also have infinitely

many elements.

We have that for all ε > 0 if we take δ ∈ (0, 2ε) and x, x′ ∈ I such that x < x′ < x + δ

then for all x̂ ∈ (x, x′) with x̂ /∈ I either |x− x̂| < δ
2 < ε or |x′ − x̂| < δ

2 < ε.

Notice that since x, x′ ∈ I there exists m,m′ ∈ Ã respectively such that α̂(m) = x and

α̂(m′) = x′. That is, we have found that for any ε > 0 and any state ω in the interval [x, x′]

we can find a message that induces an action at least ε-close to ω. This means that again

we have found an interval where there is full communication of the state, a contradiction to

theorem 1.

Lemma 9. In all informative, symmetric and monotone equilibria, there exists a sequence

of strictly increasing thresholds {t0, t1, . . . , tm−1, tm} with t0 = 0 and tm = 1 such that:

1. Biased senders always send a message in [tN−1, tN ],

2. unbiased senders all send the same message,

3. DM keeps consulting as long as he has received messages in [tN−1, tN ], and stops

consulting either once he has received a message not in [tN−1, tN ], or when he has consulted

all senders,

4. if DM observes a message not in [tN−1, tN ], say it belongs to [tk−1, tk] with k ∈
{1, . . . , N − 1}, he then plays an action α(k) that is strictly increasing in k. If DM only
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observes messages in [tN−1, tN ], he then plays an action α(N) > α(k) for all k ∈ {1, . . . , N −
1}.

Proof. Take any informative partitional equilibria. If for any two comparable equilibrium

histories h and h′ such that there is some sender i where for all i ̸= j and hi, h
′
i ∈ [tk, tk+1)

for some k ∈ {0, . . . , N − 1} (or hi = h′i = tN ) and hj > h′j with hj ∈ [tr, tr+1) and

h′j ∈ [ts, ts+1) for some r < s we have α(h) = α(h′), then we can redefine the partitions

as {t0, . . . , tr, ts, ts+1, tN} without-loss of generality. If for any two comparable equilibrium

histories ĥ and ĥ′ where again all messages but one are in the same interval and the action is

not increasing, we can again redefine the partitions eliminating the cut-offs where the action

of DM is non-increasing.

Continuing in this fashion we get to a partition t0, t1, . . . , tm−1, tm with t0 = 0 and tm = 1

such that there exists two comparable equilibrium histories h and h′ where there is some

sender i if for all i ̸= j we have hi, h
′
i ∈ [tk, tk+1) for some k ∈ {0, . . . , N − 1} and hj > h′j

with hj ∈ [tr, tr+1) and h
′
j ∈ [ts, ts+1) for some r < s we have α(h) > α(h′).

By monotonicity, we have then that biased senders always send message m ∈ [tN−1, tN ]

for a given state. Therefore, in equilibrium, any message that is not in [tN−1, tN ] was sent by

an unbiased sender with probability 1. Moreover, since strategies are symmetric and senders

do not observe other senders’ messages, i.e. the history of observed messages, all unbiased

senders send the same message for given state of the world. This means that in a partitional

equilibrium there are only two messages ever observed by DM, the one sent by biased senders,

and the one sent by unbiased senders.

Therefore, since messages not in [tN−1, tN ] are only ever sent by unbiased senders, once

DM observes a message not in [tN−1, tN ] he does not have incentives to keep consulting

senders, as he has learned as much as he could in equilibrium. Thus, he stops consultation.

Note finally that it is immediate that for any given equilibrium of the form described in the

above Lemma, there exists a unique outcome equivalent simple partitional equilibrium.
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