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Abstract

We study contests with a jury, i.e. a set of agents each of whom selects a

player, and the winner of the contest is the player selected by the most jurors.

Contrary to contests with multiple battlefields, where the problem involves re-

source allocation, we find that the presence of a jury creates a novel pivotality

effect, marginal effort is only positive in scenarios where the jury is split among

candidates, i.e. there is a pivotal juror. Increasing jury size decreases the

probability that there is a pivotal juror and therefore decreases effort. How-

ever, there is also an uncertainty effect: increasing jury size may increase the

probability that the player who exerted the most effort wins, which can lead

to players exerting more effort. We explore optimal jury size and how a jury

affects contests.
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1 Introduction

In competitive environments, whether in political contests, sports events, funding

competitions, or procurement contracts, the structure of the process plays a crucial

role in determining the effort exerted by participants. Central to this structure is

the process by which a winner is chosen, typically through a panel of jurors, such as

voters, academic referees, or government officials. Previous research on contests has

primarily focused on single-juror decision-making through a contest success function

(see the seminal work of Tullock (1980) and, more recently, Corchón and Serena

(2018) and references therein). This paper aims to address this gap by examining

how the presence of a jury affects participants’ behaviour in terms of effort provision

and the overall characteristics of contest outcomes.

A jury is a set of agents that, based on players’ effort levels, each select a player.

The winner of the contest is then the player who is selected by the majority of

jurors. There are several features that arise when the winner of a contest is decided

by jury instead of a single juror, and which are also absent in contests with multiple

battlefields. Most notably, it is the fact that a jury gives rise to a novel pivotality effect

that cannot be replicated by a traditional contest success function. To understand

this effect, consider a contest between two players. Competition happens through

effort choice, and once both players have chosen their effort levels, a jury of three

jurors chooses the winner by simple majority, where each juror is represented by

an independent contest success function. When choosing optimal effort levels, each

player considers the marginal gain of increasing (or decreasing) effort. Consider the

four possible states of the world depending on the various vote splits that may happen:

(v1, v2) with v1 + v2 = 3 and v1, v2 ≥ 0, where vi represents the votes received by

player i ∈ {1, 2}.

Conditional on a state such that v1 ≥ 2, player 1 does not increase their profit

by increasing their effort marginally as they have already won the contest. If v1 = 0,

then marginal increases in effort have negligible effects on the probability of winning,

as the marginal increase in effort has to “convince” two jurors to change their vote.
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It is only in the state where v1 = 1 where a marginal increase in effort is useful for

player 1. The same logic applies from player 2’s point of view. The result of this is

that marginal effort is only useful in situations where one juror is voting for player 1,

one juror is voting for player 2, and the third juror “swings”, i.e. there is a pivotal

juror.

The presence of a jury induces another effect, which we call the uncertainty effect.

Increasing the jury size has the result that, ceteris paribus, it is more likely that the

player who exerted the most effort wins. This is the Condorcet Jury Theorem at play.

Assume that there is a pool of voters choosing between two options, one of which gives

a better payoff to all, but there is uncertainty about which of the two options is the

better one, where each voter is more likely to vote for the correct option than to the

other one. The Condorcet Jury Theorem states that the higher the number of voters,

the more likely it is that simple majority selects the right alternative. In our setting,

increasing the jury size thus reduces uncertainty about the contest, which, in contests

where there is not too much player heterogeneity, increases returns to effort.

Thus, a jury creates two effects that can go in opposite directions. The uncer-

tainty effect can be replicated in the traditional contest by a single contest success

function. However, the pivotality effect cannot be replicated, as with only one juror,

this juror is always pivotal. On top of that, in simultaneous or sequential contests

with multiple battlefields (discussed in more depth later on), the problem involves

resource allocation: how much effort to allocate to each battlefield. In our paper, as

the number of jurors increases, the probability that there is a pivotal juror decreases,

and thus the incentives for players to exert effort change. That is, jury size has a

crucial effect on equilibrium efforts. The pivotality effect and how it affects contests

are our main contribution to the literature.

In our results, we find that there is an effort-maximising jury size. The effort-

maximising jury size balances the pivotality effect with the uncertainty effect. We

find that in most cases the relationship between jury size and the sum of efforts of

players is concave, meaning that for small juries, increasing jury size increases the
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sum of efforts while for larger jury sizes, increases in the jury size decrease the sum

of efforts.

Furthermore, we explore how the presence of a jury affects discrimination. Con-

sider a two-player contest where all jurors discriminate against the player who happens

to be better, in that they have a lower cost of effort than the other player. We find

that increasing the jury size, even if the new jurors also discriminate in the same way

as existing jurors, can dampen and even eliminate discrimination. The mechanism is

as follows: increasing the jury size can lead to an increase in equilibrium efforts, and

since the player facing discrimination has a lower cost of effort, they increase their

effort more than the other player. The overall effect is then ambiguous, and there are

situations where the extra increase in effort not only offsets the fact that there are

now more jurors discriminating against this player, but it can also turn the contest

around in favour of the player being discriminated against.

On top of this, we also find that the presence of a jury may crowd out players from

the contest, even those players who have a lower cost of effort. Consider a situation

with three players, one of whom has a lower cost function than the other two. In

this case, there can be equilibria where the two higher-cost players exert positive

effort and the low-cost player does not exert any effort. Due to the pivotality effect,

marginal increases in effort starting from zero effort provide no benefit, because the

chances that the marginal effort leads enough jurors to change their vote are negligible.

This does not happen in traditional contests. Moreover, even when considering non-

negligible increases in effort, the cost of effort needed to have a significant probability

of winning given the effort level of the two other contestants may be too high, even

for the low-cost player. Thus, the low-cost player finds it optimal to not participate

in the contest, i.e., to exert zero effort.

The rest of the paper is organized as follows. In the remainder of this section, we

present a literature review. In Section 2, we present the main model. In Section 3, we

present our results. In Section 4, we test the robustness of our model by introducing

alternative assumptions and extensions. Finally, Section 5 concludes.
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1.1 Literature

Contest theory can be traced back to the work of Tullock (1980), which introduced

the concept of rent-seeking contests and the idea that individuals expend resources

to secure a valuable prize (see also the early work by Hirshleifer (1989), Skaperdas

(1996), Clark and Riis (1998), and more recently Moldovanu and Sela (2001) and

Konrad (2009)).

Most closely related to our paper are simultaneous contests with multiple bat-

tlefields, or multibattle contests. These are contests that are won if a majority of

battlefields (i.e., single contests) are won. Snyder (1989), from a political economy

angle, compares two-player multibattle contests under two different objective func-

tions: win the most battles versus win the majority of battles. The setting we consider

corresponds to the one where the objective is to win a majority of the battles. How-

ever, our work is different from Snyder (1989), and also expands on it. The fact that

rational contestants should consider the probability with which half the battlers are

awarded to either candidate was noted in Snyder (1989) (right after comment 4.2 on

page 648) but its implications were overlooked and not explored neither by Snyder

nor in any of the subsequent literature. We, on the contrary, put this issue in focus

and explore its consequences for effort choice and contest design. On top of this, we

expand on Snyder (1989) by considering non-concave payoff functions. This, as we

show in the paper, has a qualitative impact on equilibrium efforts. We also expand

on Snyder (1989) by providing tight conditions for the existence of equilibria in pure

strategies.

Other papers that study multibattle contests include Szentes and Rosenthal (2003a

and 2003b), who study situations where players aim to win a majority of objects in

simultaneous all-pay auctions. However, their papers consider a limit case of our

model, where the probability of winning an auction is deterministic. This equates to

a situation where jurors’ behaviour is deterministic. We instead assume that jurors’

behaviour is smooth based on players’ effort levels. Their assumption translates

into different incentives and a lack of the pivotality effect, as in their work there
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is a degenerate probability of any juror being pivotal. Klumpp and Polborn (2006)

compare simultaneous multicontest battles to US primaries, but focus on symmetric

candidates and symmetric equilibria, whereas we allow for asymmetric players, jurors,

and equilibria. As we shall discuss in more depth in Section 3.3, the particular

symmetric case considered in Klumpp and Polborn (2006) is the only case where the

pivotality effect is not present. Moreover, considering asymmetric situations allows us

to study issues such as discrimination and crowding out of more efficient players. Feng

et al. (2024) study team multibattle contests where two teams face off in a number of

pairwise battles. A different strand of literature that is related to multibattle contests

includes Rai and Sarin (2009) and Arbatskaya and Mialon (2010), who study contest

where effort is multidimensional and aggregated into a single variable that determines

the chances of winning the contest.

In terms of sequential multi-battle contests, where participants compete in a se-

quential series of interrelated battles, Alcalde and Dahm (2007) propose a serial con-

test that integrates relative efforts akin to Tullock’s contest, and absolute effort dif-

ferences from difference-form contests. Altman et al. (2012) investigate the effects of

carry-over benefits, where performance in one battle affects the probability of success

in subsequent battles. Hortala-Vallve and Llorente-Saguer (2012) examine a Colonel

Blotto game where opposing parties have varying relative intensities and characterize

the conditions under which pure strategy equilibria exist. Fu et al. (2015) examine

multi-stage R&D contests where contest entry is an endogenous choice. Morgan et al.

(2018) explore self-selection dynamics where entry into larger or more meritocratic

contests varies non-monotonically with ability. Other relevant papers are those of

Harris and Vickers (1987), Malueg and Yates (2010), Kovenock and Roberson (2010),

and Fu et al. (2015). We study sequential contests with a jury as an extension to our

main model in Section 4.6 and show the differences with the simultaneous case.

In terms of experimental work, Knight and Schiff’s (2010) applied paper on dy-

namic electoral competition highlights the role of cumulative advantages and strategic

momentum in political campaigns. Chowdhury et al. (2013) explore Colonel Blotto

games, focusing on the differences in strategies used by players across different al-
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location treatments. Mago and Sheremeta (2017) experimentally study subjects in

simultaneous and sequential multi-battle contests and find incomplete bidding in si-

multaneous contests and overbidding in sequential contests. Chowdhury et al. (2021)

investigate the impact of battlefield salience in Colonel Blotto games and find that

subjects deviate from Nash equilibrium predictions when battlefields have salient tar-

gets but do not otherwise. Stephenson (2024) examines contests with complementary

prizes where agents allocate fixed budgets across multiple battlefields and shows the

existence of a unique pure strategy Nash equilibrium under highly sensitive battlefield

success functions. Hortala-Vallve and Llorente-Saguer (2015) experimentally test a

Colonel Blotto game with heterogeneous and asymmetric battlefield valuations and

find that learning improves aggregate welfare despite initial deviations from theo-

retical predictions. Deck et al. (2017) show experimentally that subjects prioritize

specific winning combinations rather than all battles.

From a technical point of view, our paper also contributes to the contest literature

by being the first to employ a result from the statistics literature (Wadsworth (1960)

and Abramowitz and Stegun (1965)) that relates the Binomial cumulative distribu-

tion function (which is used to calculate the probability of receiving the support of

the majority of jurors/winning the majority of the battlefields) with the Incomplete

Beta Function. As we show in the paper, this equality significantly simplifies our

calculations and is at the core of the pivotality effect.

This paper is also connected to the literature on political economy and voting.

In particular with the strand of the literature that began with the seminal work of

Palfrey and Rosenthal (1983), who were the first to highlight the implications of the

so-called pivotal logic on elections. According to the pivotal logic, since a voter’s

action only affects their payoff when that voter is pivotal, voters should choose their

payoff-maximising action assuming they are pivotal. Given equilibrium strategies,

being pivotal confers information about the behaviours and types of other voters,

which should then be internalized by each player when choosing an action. Since

Palfrey and Rosenthal’s seminal work, a significant number of papers have made

further advancements into how pivotality and the pivotal logic affect incentives in
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elections. For more on this literature see, for instance, Austen-Smith and Banks

(1996) and Mengel and Rivas (2017).

2 The Model

Assume 2 players compete to win a prize worth v > 0. To compete for the prize, each

player i ∈ {1, 2} simultaneously chooses how much effort to exert, denoted by ei ≥ 0.

Effort has a cost given by the function

ci(ei) = αiei,

with αi > 0 for all i ∈ {1, 2}. Once all players have chosen their effort levels, a jury

decides who is the winner of the prize.

There are N ≥ 1 members of the jury (jurors henceforth), where N is an odd

number. Each juror simultaneously chooses a player and the winner of the prize is

the player who is chosen by most jurors, i.e. a simple majority voting rule.

Jurors’ choices of players are independent and identically distributed, where the

probability that a juror chooses player i is denoted by the function pi and given by

the Tullock Contest Success Function (TCSF):

pi(ei, ej) =


nie

m
i

niemi +njemj
if ei + ej ̸= 0,

1
2

otherwise,

with ni > 0 and m ∈ [0, 2] for all i ∈ {1, 2} and j ∈ {1, 2} ∖ i. Whenever it

is convenient, we do not include efforts as an argument in pi. Note that we do

not assume m ≤ 1. That is, the impact functions may be non-concave. For more

information on the TCSF employed in this paper see Dahm and Corchón (2010) and

references therein.

In Section 4, we relax a number of the assumptions made in this section and

show that our qualitative results are robust to these modifications. In Section 4.1, we

allow jurors to be strategic instead of their behaviour being abstracted by a TCSF.
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In Section 4.2, we consider supermajority voting rules and also allow for an even

number of jurors. In Section 4.4, we explore the case where there are more than two

contestants.

Note that any contest with homogeneous valuations, heterogeneous marginal costs,

and biased CSF, such as the one we consider in this paper, is strategically equivalent

to a contest with heterogeneous valuations, homogeneous marginal costs and non-

biased CSF. That is, our paper deals with a contest that is strategically equivalent

to one where each players values the prize vi > 0 for i ∈ {1, 2}, α1 = α2 and n1 = n2.

The equivalence is found by setting vi = v
n

1
m
i

αi
, and the effort in this modified model,

êi, is given by êi = n
1
m
i ei.

We assume that effort choice is single-dimensional. This is in contrast with multi-

battle contests where a potentially different effort level is chosen for each battlefield

(each jury in our setting). The reason why we look at the case where there is a single

effort choice is because it better represents the real world situations that we want to

model: a single contest decided by multiple jurors (such as grant competitions where

a single application is presented by each contestant and assessed by multiple jurors, or

sports competitions like gymnastics or diving where a single performance is assessed

by multiple jurors).

Snyder (1989) and Klumpp and Polborn (2006) show that in the setting considered

in this paper, if m ≤ 1, optimal effort choices are such that the same effort level is

chosen for all battlefields. Therefore, single dimensional effort choice is equivalent

to multidimensional effort choice if m ≤ 1. It is not currently known what the

equilibrium looks like in a model where m > 1 and multidimensional effort choice is

allowed.
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3 Results

3.1 Equilibrium

We focus first on equilibria in pure strategies and study mixed strategy equilibria

later on. The payoff of player i as a function of effort levels is given by πi, where

πi = v

N∑
k=N+1

2

(
N

k

)
pki (1− pi)

N−k − ci(ei).

At the core of the pivotality effect is an equality that relates the Binomial cumu-

lative distribution function with the Incomplete Beta Function:

N∑
k=N+1

2

(
N

k

)
pki (1− pi)

N−k =
N !

N−1
2

!2

∫ pi

0

x
N−1

2 (1− x)
N−1

2 dx. (1)

This result is featured in Wadsworth (1960) and Abramowitz and Stegun (1965),

among others. For completeness, we present the proof for a general voting rule q

in the appendix (simple majority is given by q = 1
2
). The proof involves iteratively

integrating by parts on the right-hand side of the equation above.

The convenience of (1) is that it allows us to easily derive the best responses of

players without having to deal with a sum where the number of terms depends on

the jury size. The best response of player i, given the effort level of the other player,

is found by setting ∂πi

∂ei
= 0 and is implicitly given by

v
N !

N−1
2

!2
p

N−1
2

i (1− pi)
N−1

2
∂pi
∂ei

= c′i(ei). (2)

In the standard contest with only one juror, we have that v ∂pi
∂ei

= c′i(ei). Thus, the

addition of a jury introduces the term N !
N−1

2
!2
p

N−1
2

i (1 − pi)
N−1

2 , which is equal to the

probability that the jury is exactly one vote away from awarding the prize to either

player. That is, N−1
2

jurors are voting for player i and N−1
2

jurors are voting for player

j, while the remaining jury member is still undecided. Using the terminology from
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the voting literature, N !
N−1

2
!2
p

N−1
2

i (1−pi)
N−1

2 is the probability that there is one pivotal

juror. This is the pivotality effect.

Given equation (2), we have that the best response effort levels are related via the

equation

c′1(e1)

c′2(e2)
=

∂p1
∂e1
∂p2
∂e2

. (3)

Note that in equation (3), the jury size N is not present. While N affects the

level of effort exerted by both players, it does not affect how the best responses are

related.

Substituting the functions ci and pi, we obtain that the best response effort levels

are related via the equation

e2
e1

=
α1

α2

. (4)

Define θ = n2

n1

(
α1

α2

)m

. The equation above, together with equation (2), leads to

α1 = v
N !

N−1
2

!2

(
em1

em1 + θem1

)N−1
2

(
θem1

em1 + θem1

)N−1
2

× mem1 θe
m
1

(em1 + θem1 )
2

1

e1
,

α1e1 = v
N !

N−1
2

!2

(
θ

(1 + θ)2

)N−1
2 mθ

(1 + θ)2
,

e1 = v
N !

N−1
2

!2

(
θ

(1 + θ)2

)N+1
2 m

α1

,

Since e2 =
α1

α2
e1, we have that

ei = v
N !

N−1
2

!2

(
θ

(1 + θ)2

)N+1
2 m

αi

(5)

for i ∈ {1, 2}.

Note that if an equilibrium in pure strategies exists, it is unique. This is because

we have just proven by construction that there is a unique value for the pair (e1, e2)

at which both players play a best response.
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Finally, for the pair of efforts in (5) to be an equilibrium, it must be that players’

profits are positive, and that the second-order conditions are met. We develop this

analysis in the Appendix and summarize its findings in our next result.

Proposition 1. Define p = 1
1+θ

and let e∗i for i ∈ {1, 2} be given by

e∗i = v
N !

N−1
2

!2
[p(1− p)]

N+1
2

m

αi

.

A pure strategy equilibrium exists, and it is given by (e∗1, e
∗
2), if and only if:

1. The profit functions are globally concave: mN+1
2

≤ 1, or

2.a the profit functions are locally concave at (e∗1, e
∗
2):

(1− 2p)m
N + 1

2
≤ 1,

(2p− 1)m
N + 1

2
≤ 1,

2.b and the profit of both players is positive at (e∗1, e
∗
2):

N∑
k=N+1

2

(
N

k

)
pk (1− p)N−k − N !

N−1
2

!2
[p(1− p)]

N+1
2 m ≥ 0,

N∑
k=N+1

2

(
N

k

)
(1− p)kpN−k − N !

N−1
2

!2
[p(1− p)]

N+1
2 m ≥ 0.

Furthermore, if a pure strategy equilibrium exists, it is unique.

Corollary 1. In a fully symmetric contest (n1 = n2 and α1 = α2), an equilibrium in

pure strategies exists, and is unique, if and only if m ≤ 2N
N−1

2
!2

N !
.

In the case with only one juror (N = 1) and a symmetric contest (α1 = α2 and

n1 = n2), we have that a pure strategy equilibrium exists, and it is unique, if and

only if m ≤ 2 (parts 2.a and 2.b of the proposition). This is a well-known result in

the literature (see Tullock (1980) and Baye et al. (1996)).
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If players are symmetrical (α1 = α2 = N) and treated symmetrically by the jurors

(n1 = n2), as in the case considered in Klumpp and Polborn (2006), we obtain the

same necessary and sufficient existence conditions as they do (Corollary 1).

If m ∈ [1, 2], then a pure strategy equilibrium with N = 1 always exists (part 1 in

the Proposition), whereas a pure strategy equilibrium with N > 1 exists only if (part

2.a in the Proposition)

max

{
1

1 + θ
,

θ

1 + θ

}
≤ 1

2

N + 3

N + 1
.

That is, a necessary condition for the existence of pure strategy equilibria with m ∈
[1, 2] is that the contest is not too asymmetric given the number of jurors.

Snyder (1989) shows that a sufficient condition for a unique pure strategy equilib-

rium in our setting is mN ≤ 1, and acknowledges that this condition is not tight. We

provide the tight condition for all n1, n2, α1 and α2: m
N+1
2

≤ 1 (part 1. of the propo-

sition), and also the necessary and sufficient conditions for the case where mN+1
2

> 1

(in this case, the conditions depend on the particular values of n1, n2, α1 and α2, as

given in parts 2.a and 2.b of the proposition).

If mN+1
2

> 1, the profit function is not globally concave. It can be shown (see

the Appendix) that the second derivative of the profit function is decreasing in the

effort choice of the player. Thus, if the profit function is not globally concave then,

given the effort level of the other player, there exists a ê > 0 such that for all ei < ê

the profit function of i is convex, whereas for all ei > ê the profit function is concave.

Therefore, if a local maximum is found, this maximum is in fact a global one, and it

is unique. In this case, the only requirement left to check for equilibrium is that the

player obtains a positive profit.

Proposition 1 shows that pure strategy equilibria where the profit function is not

globally concave are possible. To our knowledge, the case with N > 1 where the

profit function is not globally concave
(
mN+1

2
> 1

)
has not been looked at before in

the literature.

A situation where the profit function is not globally concave is depicted in Figure
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1. As can be seen, in a neighbourhood around zero effort, the shape of the profit

function is fundamentally different between N = 1 and N = 3. With a single juror

(N = 1), the profit function is globally concave, as starting from zero effort, a marginal

increase in effort increases the player’s probability of winning by a proportionately

higher amount compared to the increase in effort. On the other hand, with a jury

(N = 3 and beyond), the profit function is convex near 0. This is because a marginal

increase in effort of ∆ > 0 increases the probability of winning by a factor of ∆2 or

lower, which is negligible for small enough ∆. That is, at a cost of order ∆ and a

benefit of order ∆2, the player goes from zero profit to negative profit. As we shall

see later on, this effect has qualitative implications, such as fostering the crowding

out of players.

Figure 1: Example of the profit function of player 1 when player 2 exerts effort

e2 = 0.4 with v = α1 = α2 = n1 = n2 = m = 1.

3.2 Mixed Strategy Equilibria and Rent Dissipation

Throughout this paper, we focus on pure strategy equilibria. The complexity of mixed

strategy equilibria in contests is well-known (see, for instance, Ewerhart (2015) and
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Feng and Lu (2017) and references therein). Nevertheless, for symmetric contests we

can fully characterize rent dissipation for all jury size N , irrespective of whether a

pure strategy equilibrium exists or not.

Proposition 2. Assume n1 = n2 and α1 = α2 = α, and define

m̂(N) = 2N
N−1
2

!2

N !
.

If m ≤ m̂(N) the sum of equilibrium efforts equals v
α

m
m̂(N)

, whereas if m > m̂(N)

the sum of equilibrium efforts is v
α
.

Proposition 2 follows from two results. First, Corollary 1 states that an equilib-

rium in pure strategies exists if and only if m ≤ m̂(N), in which case the sum of

equilibrium efforts is v
α

m
m̂(N)

by Proposition 1. Second, Ewerhart (2017) shows that if

m > m̂(N), there is full rent dissipation in all mixed strategy equilibria, i.e., the sum

of (expected) equilibrium efforts is given by v
α
.

Figure 2 shows an example of rent dissipation for all jury sizes. Note that the

plot should consist of discrete points instead of a smooth curve, as the number of

jurors is a discrete number. However, here and henceforth we use the Regularized

Beta Function to plot continuous curves, as we believe this helps to visualize trends

and compare different scenarios more easily.

Notice how rent dissipation is increasing with the jury size, and maximised when

a pure strategy equilibrium is no longer possible. As shown in Proposition 2, this

observation holds for all symmetric contests. However, this is not the case for asym-

metric contests, where rent dissipation is non-monotonic on jury size because of the

pivotality and uncertainty effects. We explore this non-monotonicity in the next

subsection.

3.3 Effort Maximising Jury Size

Next, we explore how jury size affects the efforts of both players in the pure strategy

equilibrium. Note that, since in equilibrium e2 = ke1 with k > 0, we have that
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Figure 2: Sum of equilibrium profits when v = α1 = α2 = n1 = n2 = m = 1.

maximising e1 + e2 is equivalent to maximising e1. Moreover, since in equilibrium

π1 + π2 = v − α1e1 − α2e2 = v − (α1 + α2k)e1, maximizing the sum of efforts is

equivalent to maximizing rent dissipation.

From (5), maximising e1 is equivalent to maximising A(N) given by

A(N) =
N !

N−1
2

!2

(
θ

(1 + θ)

)N+1
2

.

Define D(N) = A(N + 2) − A(N). If D(N) > 0, then both players’ equilibrium

efforts increase when the jury size goes from N to N + 2. We have,

D(N) ∝ N + 2

N + 1

4θ

(1 + θ)2
− 1. (6)

Note that D(N) is decreasing in N . Moreover, N+2
N+1

> 1 for all N , whereas

4θ

(1 + θ)2
≤ 1

with equality only when θ = 1. Therefore, ignoring equilibrium payoffs for now, if

θ ̸= 1, then there exists an N ≥ 1 that maximises equilibrium effort. The effort-

maximising jury size is either the odd floor or the odd ceiling of the N∗ that solves

D(N∗) = 0.
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Figure 3 shows how e(N), i.e., the sum of equilibrium efforts for a givenN , changes

as the jury size changes. This figure also shows the function D(N). In the example

from this figure, the effort-maximising jury size is 5 (N is only allowed to take on

odd values in this section). Figure 4 shows how players’ profits change as jury size

changes.

Figure 3: Example with v = 1, α1 = 1, α2 = 0.2, n1 = n2 = 1 and m = 0.5. Effort

maximising jury size is N = 5.

The reason why there can be an optimal interior effort-maximising jury size is that

there are two incentives at play. On the one hand, increasing the jury size reduces

uncertainty, i.e. the player with a higher effort is more likely to win, which in contests

with not too heterogeneous players leads to an increase in effort. On the other hand,

increasing the jury size also leads to a reduction in the probability that a juror is

pivotal and, thus, a reduction in effort. With low jury size, the uncertainty effect

dominates, and increasing the number of jurors leads to more effort. However, as

jury size increases, there comes a point where the pivotal effect starts to dominate,

and increasing the number of jurors leads to a decrease in equilibrium effort.

The contest considered in Klumpp and Polborn (2006) is such that α1 = α2 = 1,

and n1 = n2 = 1. The situation in Klumpp and Polborn (2006) is a fully symmetric
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Figure 4: Example with v = 1, α1 = 1, α2 = 0.2, n1 = n2 = 1 and m = 0.5. Effort

maximising jury size is N = 5.

case: players’ costs are symmetric, and jurors treat players symmetrically. With their

restrictions, we have θ = 1, which means that 4θ
(1+θ)2

= 1 for all m > 0, and thus

D(N) is always positive for all N . This is a special case that does not appear as soon

as either players are not symmetric or jurors do not treat players symmetrically. In

this paper, we drop all these symmetry assumptions (note that Klumpp and Polborn

(2006) consider asymmetric players, but only for the limit case of N → ∞).

The intuition for why the pivotality effect is not relevant in fully symmetric con-

tests is that 4θ
(1+θ)2

= 1 implies that in equilibrium p1 = p2 = 1
2
. When the contest

is most contested, and only then, the probability that a juror is pivotal vanishes at

speeds orders of magnitude lower compared to the uncertainty effect. In particular, we

have for all N ≥ 1, including in the limit, that N+2
N+1

4θ
(1+θ)2

> 1. That is, the pivotality

effect never dominates the uncertainty effect. In this case, the effort maximising jury

sizes are those that lead to full rent dissipation as discussed in the previous section:

all N such that m > m̂(N).

We collect the facts proven in this subsection in the next proposition:
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Proposition 3. Define p = 1
1+θ

. In Tullock contests, the (pure-strategy) effort-

maximising jury size is given by N∗ = min{N1, N2}, where N1 is the maximum N

such that both players have non-negative profits and N2 is either the odd floor or the

odd ceiling of the N ≥ 1 that solves

N + 2

N + 1
4p(1− p) = 1.

Moreover, changing the jury size either increases or decreases both equilibrium effort

levels.

4 Extensions

4.1 Strategic Jurors

We now explore in more detail jurors’ behaviour by considering the case where jurors

can be strategic. A way to motivate jurors’ strategic behaviour is by considering a

situation where jurors want to choose the player that exerted more effort, i.e., they

want player i to win the contest if ei > ej for i ∈ {1, 2}, and are indifferent about

who wins if e1 = e2.

However, in many real-life scenarios, the effort of each player, nor their type (i.e.,

its cost function) may be directly observable. Consider instead that each juror k has

a symmetric prior about players (i.e., their prior distribution about e1 and α1 is the

same as that about e2 and α2), and, on top of that, each juror receives an informative

signal σk ∈ {1, 2} about which player exerted the most effort.

Consider, for instance, that signals are independent and identically distributed

and are given by

P (σk = i|e1, e2) = pi, (7)

where pi is the TCSF given in Section 2. Since jurors’ prior is symmetric, if σk = i,

then the probability that player i exerted more effort than player j is higher than 1
2
,

whereas if σk = j, then this probability is less than 1
2
.
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Consider a situation where jurors want to choose the player that exerted the

most effort and use their signal σk from equation 7 to do so. In the main text, it was

assumed that jurors’ vote follows pi, which with strategic jurors is equivalent to stating

that they vote according to their signal. The question is then whether a situation

where each juror chooses a candidate according to their signal is a (Bayesian Nash)

equilibrium. This is referred to in the voting literature as an informative equilibrium

(see, for instance, Austen-Smith and Banks (1996)). The answer is positive.

Proposition 4. Assume jurors are strategic, have a symmetric common prior, and

receive an informative i.i.d. signal about effort choices given in (7), then there is an

informative equilibrium where every juror votes informatively.

The proof follows from Austen-Smith and Banks (1996) and is thus omitted. The

intuition is that a juror must behave as if pivotal (i.e., the vote of the other jurors

is split 50/50) because otherwise, their vote is irrelevant. If a juror is pivotal and

if jurors vote according to their signal, then there are as many signals for candidate

1 as there are for candidate 2 when not counting a juror’s own signal. Since the

prior is symmetric and signals are i.i.d., the posterior when considering being pivotal

and after observing a juror’s own signal is simply the juror’s own signal. Given this

posterior, it is a best response to vote according to the signal as the signal has a more

than 50% chance of being correct.

Note that, just as in Austen-Smith and Banks (1996), if we used a non-majority

voting rule, then there are equilibria where some jurors are not sincere to offset

whichever bias the voting rule might introduce. For example, if there are 7 jurors

and player 1 wins if and only if this player is chosen by at least 6 jurors, there is

no equilibrium where all jurors are sincere, but there is an equilibrium where any 4

jurors vote for player 1 and the other 3 vote sincerely. This contest is then equivalent

to one where the voting rule is simple majority and there are only 3 jurors who are

all sincere.

Since sincere voting is essentially what we assumed from the outset, the assump-

tion is made without loss of generality if the appropriate informational setting and
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voting equilibrium is used.

4.2 Other Voting Rules and Even Number of Jurors

Suppose that N can take even values and the winner of the contest is player 1 if

they are chosen by at least a fraction q ∈ (0, 1] of the jurors; otherwise, player 2

wins. We refer to q as the voting rule. For example, if q = 1
2
, then the voting rule is

simple majority (this is the case we have looked at so far) where ties go to player 1

(alternatively, we could assume that ties imply that the contest ends in a draw, as in

Vesperoni and Yildizparlak (2017), however, this is outside the scope of this paper).

On the other hand, if q = 1, the voting rule is unanimity for 1 with player 2 as the

status quo.

The payoff of player 1 as a function of effort levels is given by

π1 = v
N∑

k=⌈Nq⌉

(
N

k

)
pk1(1− p1)

N−k − c1(e1),

and similarly for player 2.

Using the equivalence shown in the appendix, the critical points of πi for i ∈ {1, 2}
are given by

v
N !

(⌈Nq⌉ − 1)!(N − ⌈Nq⌉)!
p
⌈Nq⌉−1
i (1− pi)

N−⌈Nq⌉∂pi
∂ei

= c′i(ei).

Best response effort levels are then related via the equation

c′1(e1)

c′2(e2)
=

∂p1
∂e1
∂p2
∂e2

.

Note that this is the same equation as for simple majority, and that the voting

rule q is not present. While N and q affect the equilibrium levels of effort, they do

not affect how these effort levels are related.

Proceeding as in the proof if Proposition 1, a sufficient condition for an equilibrium

in pure strategies is

m (max {⌈Nq⌉, N − ⌈Nq⌉}+ 1) ≤ 1. (8)
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In terms of effort-maximising jury size, we proceed as in Section 3.3. Increasing

the jury size by 2 jurors (we choose 2 extra jurors instead of 1 to keep this section

in line with the main model) increases the votes that i needs to win the contest by

a = ⌈q(N + 2)⌉ − ⌈qN⌉ ∈ {0, 1, 2}. Proceeding as in the case with q = 1
2
, we find

after some algebra

Di(N) ∝ (N + 2)(N + 1)

G(N, q)
4pai (1− pi)

2−a − 1.

where

G(N, q) =


4(N − ⌈Nq⌉+ 2)(N − ⌈Nq⌉+ 1) if a = 0,

4⌈Nq⌉(N − ⌈Nq⌉+ 1) if a = 1,

4(⌈Nq⌉+ 1)⌈Nq⌉ if a = 2,

with a = ⌈q(N + 2)⌉ − ⌈qN⌉.

Note that the equation above is qualitatively the same as Equation (6), with the

difference that increases in jury size have a varying effect on the sum of equilibrium

efforts depending on the rounding of natural numbers. Thus, the incentives and

results about effort-maximising jury size are the same as those already presented.

4.3 Effort maximising Voting Rule

A contest designer may be interested in maximising the effort choice of participants

but constrained in the number of jurors it can employ. In such cases, the voting rule

used to determined the winner of the contest can be leveraged to affect effort levels.

In this subsection we explore, given a jury size, what is the voting rule that maximises

the sum of efforts.

Given the complexities of dealing with a general voting rule whose outcome de-

pends on the rounding of real numbers, we explore this issue numerically. Consider

a Tullock contest with v = α1 = n1 = n2 = 1, and α2 = α > 0. Assume that there

are N = 5 jurors. From equation (8), we know that a necessary condition for an

equilibrium in pure strategies for all q ∈ (0, 1] is m ≤ 0.2. We thus set m = 0.2.
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Figure 5 shows how the sum of efforts changes for different voting rules for two

different values of the cost function of player 2. When both players have the same

cost, α = 1, simple majority maximises the sum of efforts. On the other hand, when

player 2 has a higher cost function, α = 5, then the voting rule where unanimity is

required for 1 to win outperforms other voting rules. That is, when the contest is

unbalanced in that one player is better than the other, the effort-maximising voting

rule is one where the better player needs more votes to win. This observation is

consistent across different parameter values.

Figure 5: Example with N = 5, v = 1 = α1 = n1 = n2 = 1, m = .2 and α2 = α.

The intuition behind this is that in contests where competition is uneven, aggre-

gate effort is lower than in contests where there is even competition between players.

The reason for this is that, first, the player with the higher costs has a lower return

on effort given the high effort exerted by the other player, and second, the player

with the lower costs does not need to exert a high level of effort to win the contest

given the costs of the other player. Hence, a voting rule that balances the contest

is the one that maximises aggregate effort. The way the balancing is achieved is by

requiring the player with the lower cost function to obtain more votes to win than
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the other player.

4.4 More than Two Contestants

Assume for this section that there are C ∈ {3, . . .} players and the winner of the

contest is the player that is chosen by most jurors, where for simplicity, in the case of

a tie, a winner is chosen uniformly at random among tied players. Given effort levels,

define a state of the world as a vector v ∈ {1, . . . , N}C such that
∑

i vi = N . That

is, vi denotes the votes received by player i.

If there are more than two contestants, deriving analytical results is no longer

possible. The reason is that with more than two contestants, the number of votes

needed to win the contest depends on the whole distribution of votes that all players

receive. As an example, if there are 3 players and 7 jurors, then player 1 wins in

any of the following states of the world: (3, 2, 2), (4, 2, 1), (4, 1, 2), (5, 2, 0), (5, 0, 2),

(5, 1, 1), (6, 1, 0), (6, 0, 1), (7, 0, 0), and (3, 3, 1) and (3, 1, 3) with probability 1
2
. As

the number of players and/or the number of jurors increases, the number of states in-

creases exponentially and, more importantly, there is no known analytically tractable

way to enumerate them for general N and C.

Intuitively, however, our results carry through to the case with more than two

contestants, as both the uncertainty effect and pivotality effect are still present. Nev-

ertheless, with three or more players, there is equilibrium multiplicity, and in partic-

ular, there can be equilibria where there is crowding out. Crowding out equilibria are

those where a contestant, not necessarily the one with the lower costs, exerts zero

effort in equilibrium.

To illustrate these observations, we consider a contest with 3 players and jury

sizes N = 1 and N = 3. Assume for simplicity that v = 1, α1 = n1 = m1 = 1,

α2 = n2 = m2 = 1, n3 = m3 = 1 and α3 = α > 0. With these parameter values,

we have that pi = ei∑
j ej

for all i ∈ {1, 2, 3}, and ci(ei) = ei for all i ∈ {1, 2} and

c3(e3) = αe3.
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Let vi denote the votes received by player i. The payoff of each player is given by

π1 = P (v1 > v2, v1 > v3) +
1

3
P (v1 = v2 = v3)− e1,

π2 = P (v2 > v1, v2 > v3) +
1

3
P (v1 = v2 = v3)− e2,

π3 = P (v3 > v1, v3 > v2) +
1

3
P (v1 = v2 = v3)− αe3.

Note that with 3 players and jury sizes 1 and 3, there can never be a 2-way tie.

With a one-person jury (N = 1), it can be easily shown that for α ≤ 2, there

is a unique pure strategy equilibrium given by e1 = e2 = 2α
(2+α)2

and e3 = 2(2−α)
(2+α)2

. If

α ≥ 2, then there is an equilibrium where player 3 is crowded out and exerts no effort,

whereas the other two players choose the same effort level (this is similar to the case

in Franke (2012)). If α < 1, i.e. player 3 has a lower cost function than players 1 and

2, then this player exerts more effort, whereas if α > 1, then the opposite happens.

This is a standard result in traditional Tullock contests without a jury.

However, if the jury size is instead N = 3, we have that there is equilibrium

multiplicity. To begin with, there is an equilibrium where all three players exert

positive effort. The equilibrium efforts are shown in Figure 6 for different values of α.

Given the complexity of the explicit form of the equilibrium efforts we have chosen

not to show them in the paper.

On top of that, with N = 3, there are also equilibria with crowding out where

one of the players exerts zero effort in equilibrium. In terms of crowding out players

1 or 2, if 0.646 < α < 1.194, there are two equilibria where e3 = 6α
(1+α)4

and either

(e1, e2) =
(

6α2

(1+α)4
, 0
)
or (e1, e2) =

(
0, 6α2

(1+α)4

)
. A lower bound on α is needed because

otherwise player 3’s cost function is significantly lower than that of player 1, and

this player would obtain negative profits in equilibrium. On the other hand, an upper

bound on α is needed because otherwise player 3’s cost function is significantly higher

than that of players 1 and 2, and player 2 (or player 1) finds it profitable to enter the

competition and exert a positive effort level.

In terms of crowding out player 3, for α > 0.906, there is an equilibrium where

players 1 and 2 choose e1 = e2 = 3
8
, and player 3 chooses e3 = 0. Notice that there
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Figure 6: Example with three players and N = 3, v = 1, α1 = n1 = 1, α2 = n2 = 1,

and α3 = α, n3 = 1 and m = 1.

is crowding out of player 3 even in cases where this player has a lower cost function

than that of players 1 and 2. Such a situation is not possible in the traditional contest

with a single juror.

The reason why there are equilibria with crowding out, even when the player

crowded out is the one with the lowest cost function, is due to the pivotality effect. To

see this, consider a situation where player 3 is not exerting any effort and players 1 and

2 are exerting positive effort equal to the two-player equilibrium, i.e. the equilibrium

effort levels in a situation where there is no player 3. Player 3’s marginal profit at zero

effort level is negative. The reason is that increasing effort marginally only improves

payoff in cases where there is a pivotal juror for player 3 (the pivotality effect), but

since player 3 is currently exerting zero effort and the other two players are exerting

positive effort, the probability of being in a pivotal state for player 3 is zero. Thus, a

marginal increase in effort for player 3 will lead to negative profits.

This can be seen in Figure 7, where the payoff of player 3 for different effort levels

is compared between the 2-player N = 1 equilibrium efforts (e1 = e2 = 1
2
), and the
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3-player N = 3 crowding out equilibrium efforts (e1 = e2 = 3
8
). As can be noted,

for low effort levels, with only 1 juror, player 3 finds it optimal to exert a positive

effort, which makes an equilibrium where there is crowding out not possible (concave

shape). With 3 jurors, exerting a positive effort leads to negative profits as that effort

needs to swing two jurors, i.e. a marginal increase in effort equal to ∆ > 0 increases

the probability of winning by a quantity proportional to ∆2 (convex shape), i.e. a

negligible amount given the cost.

Figure 7: Profits of player 3 as a function of its own effort when α = 0.95, v = 1,

α1 = n1 = 1, α2 = n2 = 1, α3 = α, n3 = 1 and m = 1. For N = 1 we have

e1 = e2 =
1
2
, whereas for N = 3 we have e1 = e2 =

3
8
.

With respect to a non-marginal increase in effort, since players 1 and 2 are exerting

the crowding out equilibrium effort levels, player 3 exerting a positive effort level will

lead to negative profits since the cost of effort required to have a significant probability

of winning the contest is too high given the potential gains. Figure 8 shows the profits

of player 3 as a function of their own effort level when α = 0.95 and players 1 and 2

are exerting the equilibrium effort levels when there is crowding out of player 3. As

can be noted, player 3’s profits are negative for all effort levels and, thus, their optimal

choice is to stay out of the contest even though they have a lower cost function than
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that of players 1 and 2.

Figure 8: Profits of player 3 as a function of its own effort when α = 0.95, e1 = e2 =
3
8

and N = 3, v = 1, α1 = n1 = 1, α2 = n2 = 1, α3 = α, n3 = 1 and m = 1.

Increasing the player count past 3 or using different parameter values leads to the

same observations as just made for three players. We collect these in the following

proposition, whose proof is via the example just shown.

Proposition 5. With three or more players, there can be equilibrium multiplicity.

Moreover, there can be crowding out equilibria where the player with the lowest cost

function exerts zero effort.

4.5 Contests with Discrimination

In this subsection, we focus on contests where there is discrimination against a con-

testant and show how increasing the jury size, even when new jurors also show dis-

crimination in the same way as existing jurors, can help mitigate the effects of dis-

crimination if the player that is being discriminated against is better (in the sense

that they have a lower cost function).
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The key mechanism is that increasing the jury size can lead to both players ex-

erting more effort, and since the cost of effort is lower for the player that is being

discriminated against, this player increases their effort more than the other player.

This extra increase in effort may not only offset the fact that there are now more

jurors who discriminate against the player, but it can also lead to a net increase in

the probability that the player being discriminated against wins.

With linear cost functions, players’ equilibrium efforts are related linearly as per

equation (4), and changes in the jury size do not change each individual juror’s

behaviour (i.e., pi). To have players’ equilibrium efforts not to be related linearly,

it suffices to assume non-linear costs. Assume then that cost functions are given by

ci(ei) = αie
βi

i with βi ≥ 1 for i ∈ 1, 2. Given these cost functions, equation (3) implies

e2 =
(

α1β1

α2β2

) 1
β2 e

β1
β2
1 .

We use the following two definitions.

Definition 1. We say that player i is discriminated against if, for all a > 0,

whenever e1 = e2 = a, then pi <
1
2
.

That is, with discrimination against i, for all effort levels, when both players exert

the same effort, player i has a lower probability of winning than player j. Given our

assumptions on pi, this means that if i is discriminated against, then pi ≥ 1
2
implies

ei > ej, whereas pj >
1
2
and ej < ei are possible.

Definition 2. We say that player i is better than player j if βi < βj.

We focus on the case where, if a player is discriminated against, this player is

also better than the other player. A way to represent this situation is by assuming

α1 = α2 = β1 = n1 = 1, β2 > 1, and n2 > 1. Thus, p1 = e1
e1+n2e2

with n2 > 1.

That is, player 1 is discriminated against. Moreover, the cost function of player 1 is

c1(e1) = e1, whereas that of player 2 is c2(e2) = eβ2

2 with β2 > 1. That is, player 1 is

better than player 2.

Figure 9 shows an example where the probability that player 1 wins increases

from less than 50% to more than 50% when the jury size is increased from 1 to
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9. Proposition 1 can be easily adapted to non-linear cost functions to show that a

sufficient condition for a pure strategy equilibrium is that mN+1
2

≤ 1. Therefore, for

N = 9 we require m ≤ 0.2, and, thus, we set m = 0.2.

Figure 9: Probability that player 1 wins as jury size increases with v = 10, α1 = β1 =

n1 = 1, α2 = 1, β2 = 3, n2 = 1.1 and m = 0.2.

As shown in Figure 9, with one juror (i.e. the standard Tullock contest), the player

who is discriminated against has less than a 50% probability of winning. As the jury

size increases, this probability rises until it exceeds 50% with 9 jurors. This shows

that increasing the jury size can help address the effects of discrimination. This is

our next result, which we have illustrated through this example:

Proposition 6. Consider a scenario where a player is discriminated against. In-

creasing the jury size, even if the additional jurors also discriminate against that

player, can increase the probability that the discriminated player wins.

Note that there are situations where discriminating against the better player in

favour of the weaker player may be desirable on normative grounds. For papers that

explore traditional contest settings with positive discrimination, see Franke (2012),

Calsamiglia et al. (2013), Fu and Wu (2020) and Chowdhury et al. (2023)).
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4.6 Sequential Effort Choice

In this section, we explore the scenario where players choose their effort levels se-

quentially. Player 1 chooses their effort e1 first and, after observing e1, player 2

chooses their effort level e2. To simplify, we consider a Tullock contest with v = 1,

α1 = n1 = m1 = 1, n2 = m2 = 1, and α2 = α > 0. With these parameter values, we

have pi =
ei∑
j ej

, c1(e1) = e1, and c2(e2) = αe2.

Using backwards induction, the best response of player 2 to the effort level chosen

by player 1 is equivalent to the case with simultaneous choice of effort:

e2 =
N !

N−1
2

!2
p

N+1
2

1 (1− p1)
N+1

2
1

α
. (9)

Since, in equilibrium, e2 depends on the effort level chosen by player 1, we can

use implicit differentiation to obtain the following result after some algebra:

de2
de1

=

N+1
2

(1− 2p1)
1−p1
p1

1 + N+1
2

(1− 2p1)
. (10)

The first order condition of player 1 is

N !
N−1
2

!2
p

N−1
2

1 (1− p1)
N−1

2

[
∂p1
∂e1

+
∂p1
∂e2

de2
de1

]
= 1,

where de2
de1

is given in equation (10). Substituting we obtain

e1 =
N !

N−1
2

!2
p

N+1
2

1 (1− p1)
N+1

2

[
1−

N+1
2

(1− 2p1)

1 + N+1
2

(1− 2p1)

]

Combining this with the best response of player 2 from equation (9), we obtain

the following equilibrium condition:

1

α

p1
1− p1

=
1

1 + N+1
2

(2p1 − 1)
.

Solving the equation above yields the equilibrium value for p1:

p1 =
1 + α + N+1

2
−
√

(1 + α + N+1
2

)2 − 8αN+1
2

4N+1
2

,
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the positive root leads to a minimum in the player’s optimization problem and is thus

ignored.

In the standard Tullock contest with a single juror (N = 1), the probability of

player 1 winning is given by p1 =
α
2
(note that for α > 2, a pure strategy equilibrium

does not exist). This implies that the player with the lower cost exerts more effort and

consequently has a higher probability of winning, regardless of which player moves

first. In other words, there is no first-mover advantage. This result is well-documented

in the contests literature; see, for example, Linster (1993) or Morgan (2003).

When N > 1, the equilibrium value of p1 is real if and only if α ≤ 1. Consequently,

for some values of N and α > 1, there is no equilibrium in pure strategies. The reason

is that when player 1 moves first and has a lower cost function, the jury’s presence

leads player 1 to choose an effort level such that player 2 prefers not to compete at

all, resulting in a best response of e2 = 0. Therefore, in these cases, equilibrium can

only be achieved in mixed strategies.

If α ≤ 1, our findings still hold. Figure 10 shows the sum of equilibrium efforts as a

function of jury size when α = 0.95. As with simultaneous competition, for small jury

sizes, increasing the jury size raises the sum of efforts because the uncertainty effect

dominates the pivotality effect. For large jury sizes, the pivotality effect dominates,

and equilibrium efforts decrease.

Comparing sequential competition and simultaneous competition is a complex

issue. The type of contest that leads to more aggregate effort depends non-trivially

on the characteristics of the contests, such as the players and the contest success

function. For more information, see, for example, Morgan (2003), Serena (2017), or

Hinnosaar (2024).

5 Conclusions

We considered contests in which the winner is chosen by a jury. A jury introduces

two distinct effects on a contest: an uncertainty effect and a pivotality effect. The
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Figure 10: Sum of efforts with sequential competition, player 1 chooses first, with

α1 = n1 = 1, n2 = 1, α2 = α = 0.95 and m = 1. Effort maximising jury size is N = 3.

pivotality effect occurs because marginal increases in effort increase marginal profit

only when there is a pivotal juror. As the jury size increases, the likelihood of a

pivotal juror decreases, which in turn reduces the returns to effort.

Among other findings, we have shown that there is an effort-maximising jury

size and that the presence of a jury can mitigate discrimination against contestants.

Furthermore, we found that in contests where one candidate is better than the others,

it may be beneficial to use a voting rule requiring the better player to secure more

votes to win. Additionally, in contests with three or more players, there may be

crowding out of the more efficient players.

Our results have implications for contest design, rent dissipation, and discrimi-

nation, among other areas. Future research could explore both experimentally and

empirically the pivotality effect and, more broadly, how the presence of a jury affects

a contest across its various dimensions. Future work could also look at heteroge-

neous jurors and determine what is the optimal jury composition from the point of

view of effort choice, or at strategic jurors where each juror has a bias towards either
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candidate and receives information about effort choices that is not independent and

identically distributed.
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Appendix

Proof of Equation (1)

We want to show the following equality for all N ∈ {1, 2, . . .}, p ∈ [0, 1] and q ∈ (0, 1]:

N∑
k=⌈Nq⌉

(
N

k

)
pk(1− p)N−k =

N !

(⌈Nq⌉ − 1)!(N − ⌈Nq⌉)!

∫ p

0

x⌈Nq⌉−1(1− x)N−⌈Nq⌉dx.

Define S =
∑N

k=⌈Nq⌉
(
N
k

)
pk(1 − p)N−k. In the right-hand side in the equation

above, set u = (1− x)N−⌈Nq⌉ and dv = x⌈Nq⌉−1dx, then integrate by parts to obtain

N !

(⌈Nq⌉ − 1)!(N − ⌈Nq⌉)!

∫ p

0

x⌈Nq⌉−1(1− x)N−⌈Nq⌉dx =

N !

⌈Nq⌉!(N − ⌈Nq⌉)!
p⌈Nq⌉(1− p)N−⌈Nq⌉ +

N !

⌈Nq⌉!(N − ⌈Nq⌉ − 1)!

∫ p

0

x⌈Nq⌉(1− x)N−⌈Nq⌉−1dx.

Notice how the first term on the right-hand size equals the first term in the

series S. In the integral on the right-hand side, integrate by parts again setting

u = (1− x)N−⌈Nq⌉−1 and dv = x⌈Nq⌉dx to obtain

N !

⌈Nq⌉!(N − ⌈Nq⌉ − 1)!

∫ p

0

x⌈Nq⌉(1− x)N−⌈Nq⌉−1dx =

N !

(⌈Nq⌉+ 1)!(N − ⌈Nq⌉ − 1)!
p⌈Nq⌉+1(1− p)N−⌈Nq⌉−1 +

N !

(⌈Nq⌉+ 1)!(N − ⌈Nq⌉ − 2)!
×∫ p

0

x⌈Nq⌉+1(1− x)N−⌈Nq⌉−2dx.

The first term on the right-hand size equals the second term in the series S.

Continue in this fashion until, after the s-th integration by parts with 0 < s <

N − ⌈Nq⌉, we arrive at the integral

N !

(⌈Nq⌉+ s− 1)!(N − ⌈Nq⌉ − s)!

∫ p

0

x⌈Nq⌉+s−1(1− x)N−⌈Nq⌉−sdx.
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Integrate by parts setting u = (1− x)N−⌈Nq⌉−s and dv = x⌈Nq⌉+s−1dx to obtain

N !

(⌈Nq⌉+ s− 1)!(N − ⌈Nq⌉ − s)!

∫ p

0

x⌈Nq⌉+s−1(1− x)N−⌈Nq⌉−sdx =

N !

(⌈Nq⌉+ s)!(N − ⌈Nq⌉ − s)!

×p⌈Nq⌉+k(1− p)N−⌈Nq⌉−s

+
N !

(⌈Nq⌉+ s)!(N − ⌈Nq⌉ − s− 1)!

×
∫ p

0

x⌈Nq⌉+s(1− x)N−⌈Nq⌉−s−1dx.

Notice that the first term on the right-hand side equals the (s+1)-th term in the

series S. Continue in this manner until, after performing (N −⌈Nq⌉) integrations by
parts, we are left with the integral N !

(N−1)!

∫ p

0
xN−1dx, which evaluates to pN , i.e. the

last term in the series S.

Proof of Proposition 1

For the effort levels in (5) to be an equilibrium, the second order conditions must be

satisfied. The second derivative of the profit function for i ∈ {1, 2} is given by

∂2πi

∂2ei
= v

N !
N−1
2

!2
p

N−3
2

i (1− pi)
N−3

2

(
N − 1

2
(1− 2pi)

∂pi
∂ei

2

+ pi(1− pi)
∂2pi
∂2ei

)
− c′′i (ei).

Substituting the functions pi and ci we obtain

∂2πi

∂2ei
∝ (1− 2pi)m

N + 1

2
− 1.

Therefore, if mN+1
2

≤ 1, the profit function is concave as desired. If mN+1
2

> 1,

there exists an ê > 0 such that the profit function of player i is convex for ei < ê and

concave for ei > ê. Consequently, there is a single concave region. This implies that

if the profit function is concave at (e∗1, e
∗
2), then e∗1 is a global maximiser of player 1’s

profit function when player 2’s effort is e∗2, and vice versa.
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By Equation (4), we have that p1 = 1
1+θ

. Thus, the second order conditions are

met if and only if (
1− 2

1

1 + θ

)
m
N + 1

2
− 1 < 0,(

1− 2
θ

1 + θ

)
m
N + 1

2
− 1 < 0.

Moreover, for the effort levels in Equation (5) to constitute an equilibrium, both

players must have non-negative profits. Specifically, given the effort levels in Equation

(5), it must be that

v
N∑

k=N+1
2

(
N

k

)
pki (1− pi)

N−k − ci(ei) ≥ 0

for both i ∈ {1, 2}. Substituting the functions pi and ci and using Equation (5) we

obtain

v
N∑

k=N+1
2

(
N

k

)(
1

1 + θ

)k (
θ

1 + θ

)N−k

− N !
N−1
2

!2

(
θ

(1 + θ)2

)N+1
2

m ≥ 0,

v
N∑

k=N+1
2

(
N

k

)(
θ

1 + θ

)k (
1

1 + θ

)N−k

− N !
N−1
2

!2

(
θ

(1 + θ)2

)N+1
2

m ≥ 0.
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