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Introduction

K: C3 smooth convex body in Rd.

Kn: convex hull of n i.i.d. uniform points in K.

K := B2, n = 100 :

Boundary: ∂Kn . As n increases, new points appear, creating new
facets which may subsume existing facets.

Dynamics: ‘peaks’ are smoothed, ‘valleys’ are filled in.
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Kn := convex hull of n iid uniform pts

d = 2. K = B2.

Fn : Facet chosen at random from the facets of Kn.

dist(Fn): distance between the hyperplane containing Fn and
nearest parallel supporting hyperplane on K.

Proposition.

E[dist(Fn)] = Cn−
2
3 (1 + o(1)); E[length(Fn)] = Cn−

1
3 (1 + o(1)).

Scaling exponents 1
3 ,

2
3 reflect locally parabolic behavior of ∂K.
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1
3 ,

2
3 scaling

Is there any significance to 1
3 ,

2
3?

These scaling exponents appear when describing the fluctuations of
planar growth models:

a) the Brownian bridge constrained to lie above semi-circle,

b) Poissonian last passage percolation,

c) the random cluster model,...

These and other growth models, though seemingly different, are
conjectured to exhibit similar behavior on large time and space scales.
More precisely, ...
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KPZ universality conjecture

Planar random growth models have a two-parameter height function
h(t, x), with t the time and x the one-dimensional spatial position.

KPZ universality conjecture: for a large class of models, under 1:2:3
scaling, for fixed t > 0 the re-scaled height function converges as
n→∞

h(n
3
3 t, n

2
3x)− Cnt
n

1
3

D−→ H(t, x;H0)

with H(t, x;H0) a model independent two-parameter field which
depends only on initial data H0.

Cnt non-random, determined by macroscopic limit

H(t, x;H0) given by the variational formula

H(t, x;H0) = sup
y∈R
{t1/3A(t−2/3x, t−2/3y) +H0(y)− (x− y)2

t
}

with A(x, ·) a stationary process which is locally Brownian in space.
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KPZ universality

KPZ universality class should not be confused with KPZ equation of
Kardar, Parisi, and Zhang (1986)

∂

∂t
h(t, x) = ν

∂2

∂x2
h(t, x) + λ(

∂

∂x
h(t, x))2 + Gaussian white noise,

the ill-posed canonical continuum equation for planar random growth.

h = h(t, x) belongs to KPZ universality class. (Hairer, Quastel 2014;
Quastel, Sarkar 2023; Virag 2020)

TASEP (Matetski, Remenik, Quastel 2021)

ASEP (Quastel, Sarkar 2022)
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KPZ universality class

Major unresolved problem: determine sufficient conditions
guaranteeing that a growth model belongs to KPZ universality class.

Loosely speaking, when the model has linear scale n, the height
statistic h(t, x) should exhibit:

a) global parabolic constraints,

b) fluctuations of the order n1/3,

c) spatial correlations of the order n2/3,

d) marginals converging to Tracy-Widom, and

e) locally Gaussian fluctuations in space coordinate x.
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Tracy-Widom Distribution -1994

Gaussian Unitary/Orthogonal Ensemble. Given N ×N random
Hermitian matrix with i.i.d. mean zero complex/real Gaussian entries
with variance N , the largest eigenvalue λmax satisfies

λmax − 2N1/2

N1/3

D−→ TW

GUE: P(TW ≥ s) = exp(−
∫∞
s (x− s)u(x)2dx), s ∈ R

u′′ = 2u3 + xu, Painlevé II (similar for GOE)

G0E: P(TW ≥ s) = exp(−2
3s

3
2 (1 + o(1)).

Length of longest increasing subsequence of random permutation;
Baik, Deift, Johansson - 1999

Fluctuations of corner growth model.
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The convex hull

How does the convex hull of i.i.d. uniform points fit into this picture?

When the linear scale is n, it turns out that the two-parameter height
statistic h(t, x) for convex hull model exhibits:

a) global parabolic constraints,

b) fluctuations of the order n1/3,

c) spatial correlations of the order n2/3,

d) marginals converging to Tracy-Widom-like GOE distribution,

e) but there are no locally Gaussian fluctuations.
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The growth model: the convex hull of t i.i.d. pts

Consider the convex hull of {Xi}ti=1, with Xi i.i.d. uniform in the
unit disc B2.

To make the linear scale t, we blow up by t: {tXi}ti=1

radial fluctuation of convex hull of {tXi}ti=1 is of order t1/3
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KPZ scaling of height fct of convex hull

{Xi}ti=1 i.i.d. uniform in the unit disc B2.

h(t, x) is the radius vector process (height) of conv({tXi}ti=1) in the
direction x ∈ tS.

Object of interest: fluctuations of defect height process t− h(t, x).

Theorem (convergence of defect height process*) Fix t > 0. At large
time and length scales (n→∞), the re-scaled two-parameter height
process satisfies(

nt− h(n
3
3 t, n

2
3x)

n
1
3

)
|x|≤πn

1
3 t

D−→ (H(t, x))x∈R.

* convergence in C([−L,L]), L fixed.
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Scaling limit H(t, x) given by variational formula

Down parabola with apex at (x′, h′) ∈ R× R+:

Π↓t (x
′, h′) := {(x, h) ∈ R× R, h ≤ h′ − |x− x

′|2

2t
}.

P 1
t
: rate 1

t Poisson pt process on R× R+.

Variational formula for H:

H(t, x) := sup
(x′,h′)∈R×R+, Π↓t (x′,h′)∩P 1

t
=∅

(h′ − |x− x
′|2

2t
).

Recall KPZ variational formula:

H(t, x;H0) = sup
y∈R
{t1/3A(t−2/3x, t−2/3y) +H0(y)− (x− y)2

t
}

Pierre Calka Joe Yukich (University of Bath September 10-13, 2024 )Fluctuations of Dynamic Convex Hulls Stochastic Geometry in Action 12 / 22



Scaling limit H(t, x) given by variational formula

Down parabola with apex at (x′, h′) ∈ R× R+:

Π↓t (x
′, h′) := {(x, h) ∈ R× R, h ≤ h′ − |x− x

′|2

2t
}.

P 1
t
: rate 1

t Poisson pt process on R× R+.

Variational formula for H:

H(t, x) := sup
(x′,h′)∈R×R+, Π↓t (x′,h′)∩P 1

t
=∅

(h′ − |x− x
′|2

2t
).

Recall KPZ variational formula:

H(t, x;H0) = sup
y∈R
{t1/3A(t−2/3x, t−2/3y) +H0(y)− (x− y)2

t
}

Pierre Calka Joe Yukich (University of Bath September 10-13, 2024 )Fluctuations of Dynamic Convex Hulls Stochastic Geometry in Action 12 / 22



KPZ scaling for support function of convex hull

Xi := (|Xi|, xi), 1 ≤ i ≤ t, i.i.d. uniform in B2; |xi| ≤ π.

Support process of convex hull of {tXi}ti=1:

s(t, x) := max
1≤i≤t

t|Xi| cos
(
|x
t
− xi|

)
, |x| ≤ πt

Object of interest: fluctuations of defect support process t− s(t, x).

Scale time by n, space by n2/3, and fluctuations by n1/3:

Sn(t, x) :=
nt− s(n

3
3 t, n

2
3x)

n
1
3

, |x| ≤ πn
1
3 t

Theorem (convergence of defect support process) Fix t > 0. As
n→∞

(Sn(t, x))
|x|≤πn

1
3 t

D−→ (S(t, x))x∈R.
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KPZ for support process of convex hull

The support process for the convex hull of {tXi}ti=1 displays 1 : 2 : 3
scaling and process-level convergence to a limit field (S(t, x))x∈R
whose parabolas have apices at the lowest pts of P 1

t
.

Variational formula for S:

S(t, x) := inf
(x′,h′)∈P 1

t

(h′ +
|x− x′|2

2t
).

Height process and support process for dynamic convex hull tKt

belongs to a KPZ sub-universality class.

They would belong to KPZ universality class if the respective limit
fields also contained a stationary process which was locally Brownian
in the space variable.
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Convergence of marginals

Recall: h(t, x) is radius vector process in direction x ∈ tS for convex
hull of {tXi}ti=1, with Xi iid in B2.

Recall previous process convergence theorem: for fixed t > 0(
nt− h(n

3
3 t, n

2
3x)

n
1
3

)
|x|≤n

1
3 t

D−→ (H(t, x))x∈R.

Theorem (convergence of marginals to Tracy Widom-like

distribution) Fix t = 1 and let x ∈ n
1
3S. Then as n→∞

n− h(n
3
3 , n

2
3x)

n
1
3

D−→ h∞

GOE tails : P(h∞ ≥
s

2
) ∼ exp(−2

3
s

3
2 (1 + o(1))), s→∞
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Maximal radial fluctuations follow Gumbel law

· Theorem
Let K ⊂ Rd be C3 smooth, convex, with curvature bounded away
from zero. Kt is convex hull of {Xi}ti=1.

There are constants ai := ai(K), i ∈ {0, 1, 2, 3}, such that if

ut(τ,K) := t−
2
d+1 [a0(a1 log t+a2 log(log t)+a3+τ)]

2
d+1 , τ ∈ (−∞,∞),

then as t→∞

P (dH(Kt,K) ≤ ut(τ,K))→ exp(−θ(d)e−τ ), τ ∈ (−∞,∞).

θ(2) = 3
4 , θ(d) = d22−d

Γ(
d
2 )

Γ(
d+1

2 )

Γ(
d2+1

2 )

Γ(
d2

2 +1)
.

Not many (any?) results for maximal fluctuations of growth models.
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Extensions

Process convergence for defect height and support functions were
stated for convex hulls of iid pts in unit disc B2.

Disc may be replaced by any C3 smooth convex K ⊂ R2, with
curvature bounded away from zero.

Process convergence for height statistic h(t, x) extends to all
dimensions:
· 1 : 2 : 3 scaling replaced by d− 1, d, d+ 1 scaling,

· the triplet Fluctuations: Space: Time has scaling coefficients

n
d−1
d+1 , n

d
d+1 , n

d+1
d+1
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Proof ideas: process convergence for radius vector fct

Down parabola with apex at (x′, h′) ∈ R× R+:

Π↓t (x
′, h′) := {(x, h) ∈ R× R, h ≤ h′ − |x− x

′|2

2t
}.

P 1
t
: rate 1

t Poisson pt process on R× R+. Burgers’ festoon H:

H(t, x) := sup
(x′,h′)∈R×R+, Π↓t (x′,h′)∩P 1

t
=∅

(h′ − |x− x
′|2

2t
).

Parabolas are the re-scaled asymptotic images of the edges in convex hull Kt.
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Proof ideas: process convergence for radius vector fct

We need to find the right scaling transform mapping ∂(t ·Kt) to the upper
half plane. The overly simplified approach has these ingredients:

Define for each t and n a parabolic scaling transform
T (t,n) : tB2 → R× R+

T (t,n) maps the edges of ∂(t ·Kt) to curves in R× R+ which are
nearly parabolic and which become parabolic as n→∞.

T (t,n) maps the t i.i.d. uniform points in tB2 to point process in
rectangle [−n

1
3 t, n

1
3 t]× [0, n

2
3 t].

As n→∞ and using coupling, this point process converges to a
Poisson point process in the upper half-plane of intensity 1/t.
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Proof ideas: convergence of facet distances

Typical facet: Fλ is a typical facet of KPo(λ) if for all non-neg.
measurable g defined on the facets of Kλ we have

Eg(Fλ) =
1

Zλ
E

∑
F∈Facets

g(F ),

Zλ being the expected number of facets.

Mecke’s formula: P(g(Fλ) ≥ s) = E[1(g(Fλ) ≥ s)] equals

=
1

Zλ
E
[ ∑
{x1,··· ,xd}⊂P 6=λ

1(g(∆(x1, · · · , xd)) ≥ s)

× 1(∆(x1, · · · , xd) is a facet)
]

=
1

Zλ

λd

d!

∫
K
· · ·
∫
K
1(g(∆(x1, ..., xd)) ≥ s)

× e−λVold(K∩H+(x1,··· ,xd))dx1 · · · dxd.

if g is distance, d = 2, then e−λVold(...) ∼ exp(−2
3s

3
2 (1 + o(1)).
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Summary

Rescaled height process of dynamic convex hull tKt converges as
n→∞ to Burgers’ festoon; the triplet ‘fluctuations: space: time’
exhibits 1 : 2 : 3 scaling.

The space-time height process of tKt belongs to KPZ sub-universality
class; same for support function process of tKt.

Marginal distribution of height process converges to an explicit limit
distribution whose right-hand tail coincides with Tracy-Widom GOE
tail.

Maximal radial fluctuations converge to a Gumbel distribution.
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Thank you!
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