## Fluctuations of Dynamic Convex Hulls

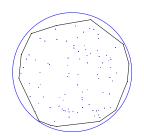
Pierre Calka Joe Yukich

University of Bath September 10-13, 2024

Stochastic Geometry in Action

#### Introduction

- $K: \mathcal{C}^3$  smooth convex body in  $\mathbb{R}^d$ .
- $K_n$ : convex hull of n i.i.d. uniform points in K.
- $K := \mathbb{B}^2, n = 100$ :



- ullet Boundary:  $\partial K_n$  . As n increases, new points appear, creating new facets which may subsume existing facets.
- Dynamics: 'peaks' are smoothed, 'valleys' are filled in.



## $K_n := \text{convex hull of } n \text{ iid uniform pts}$

- d = 2  $K = \mathbb{R}^2$
- $\mathcal{F}_n$ : Facet chosen at random from the facets of  $K_n$ .
- $\operatorname{dist}(\mathcal{F}_n)$ : distance between the hyperplane containing  $\mathcal{F}_n$  and nearest parallel supporting hyperplane on K.
- Proposition.

$$\mathbb{E}[\operatorname{dist}(\mathcal{F}_n)] = Cn^{-\frac{2}{3}}(1 + o(1)); \, \mathbb{E}[\operatorname{length}(\mathcal{F}_n)] = Cn^{-\frac{1}{3}}(1 + o(1)).$$

• Scaling exponents  $\frac{1}{3}, \frac{2}{3}$  reflect locally parabolic behavior of  $\partial K$ .

Stochastic Geometry in Action

# $\frac{1}{3}, \frac{2}{3}$ scaling

- Is there any significance to  $\frac{1}{3}, \frac{2}{3}$ ?
- These scaling exponents appear when describing the fluctuations of planar growth models:
  - a) the Brownian bridge constrained to lie above semi-circle,
  - b) Poissonian last passage percolation,
  - c) the random cluster model,...

# $\frac{1}{3}, \frac{2}{3}$ scaling

- Is there any significance to  $\frac{1}{3}, \frac{2}{3}$ ?
- These scaling exponents appear when describing the fluctuations of planar growth models:
  - a) the Brownian bridge constrained to lie above semi-circle,
  - b) Poissonian last passage percolation,
  - c) the random cluster model,...
- These and other growth models, though seemingly different, are conjectured to exhibit similar behavior on large time and space scales.
   More precisely, ...

#### KPZ universality conjecture

- Planar random growth models have a two-parameter height function h(t,x), with t the time and x the one-dimensional spatial position.
- KPZ universality conjecture: for a large class of models, under 1:2:3 scaling, for fixed t>0 the re-scaled height function converges as  $n \to \infty$

$$\frac{h(n^{\frac{3}{3}}t, n^{\frac{2}{3}}x) - C_n t}{n^{\frac{1}{3}}} \xrightarrow{\mathcal{D}} H(t, x; H_0)$$

with  $H(t, x; H_0)$  a model independent two-parameter field which depends only on initial data  $H_0$ .

•  $C_n t$  non-random, determined by macroscopic limit

#### KPZ universality conjecture

- Planar random growth models have a two-parameter height function h(t,x), with t the time and x the one-dimensional spatial position.
- KPZ universality conjecture: for a large class of models, under 1:2:3 scaling, for fixed t>0 the re-scaled height function converges as  $n \to \infty$

$$\frac{h(n^{\frac{3}{3}}t, n^{\frac{2}{3}}x) - C_n t}{n^{\frac{1}{3}}} \xrightarrow{\mathcal{D}} H(t, x; H_0)$$

with  $H(t, x; H_0)$  a model independent two-parameter field which depends only on initial data  $H_0$ .

- $\bullet$   $C_n t$  non-random, determined by macroscopic limit
- $H(t, x; H_0)$  given by the variational formula

$$H(t, x; H_0) = \sup_{y \in \mathbb{R}} \{ t^{1/3} A(t^{-2/3} x, t^{-2/3} y) + \frac{H_0(y)}{t} - \frac{(x-y)^2}{t} \}$$

with  $A(x,\cdot)$  a stationary process which is locally Brownian in space.

#### KPZ universality

 KPZ universality class should not be confused with KPZ equation of Kardar, Parisi, and Zhang (1986)

$$\frac{\partial}{\partial t}h(t,x) = \nu \frac{\partial^2}{\partial x^2}h(t,x) + \lambda (\frac{\partial}{\partial x}h(t,x))^2 + \text{Gaussian white noise},$$

the ill-posed canonical continuum equation for planar random growth.

• h=h(t,x) belongs to KPZ universality class. (Hairer, Quastel 2014; Quastel, Sarkar 2023; Virag 2020)

## KPZ universality

 KPZ universality class should not be confused with KPZ equation of Kardar, Parisi, and Zhang (1986)

$$\frac{\partial}{\partial t}h(t,x) = \nu \frac{\partial^2}{\partial x^2}h(t,x) + \lambda (\frac{\partial}{\partial x}h(t,x))^2 + \text{Gaussian white noise},$$

the ill-posed canonical continuum equation for planar random growth.

- h=h(t,x) belongs to KPZ universality class. (Hairer, Quastel 2014; Quastel, Sarkar 2023; Virag 2020)
- TASEP (Matetski, Remenik, Quastel 2021)
- ASEP (Quastel, Sarkar 2022)



# KPZ universality class

- Major unresolved problem: determine sufficient conditions guaranteeing that a growth model belongs to KPZ universality class.
- $\bullet$  Loosely speaking, when the model has linear scale n, the height statistic h(t, x) should exhibit:
  - a) global parabolic constraints,
  - b) fluctuations of the order  $n^{1/3}$ ,
  - c) spatial correlations of the order  $n^{2/3}$ .
  - d) marginals converging to Tracy-Widom, and
  - e) locally Gaussian fluctuations in space coordinate x.

## Tracy-Widom Distribution -1994

• Gaussian Unitary/Orthogonal Ensemble. Given  $N \times N$  random Hermitian matrix with i.i.d. mean zero complex/real Gaussian entries with variance N, the largest eigenvalue  $\lambda_{\max}$  satisfies

$$\frac{\lambda_{\max} - 2N^{1/2}}{N^{1/3}} \stackrel{\mathcal{D}}{\longrightarrow} TW$$

- GUE:  $\mathbb{P}(TW \geq s) = \exp(-\int_{a}^{\infty} (x-s)u(x)^2 dx), s \in \mathbb{R}$  $u'' = 2u^3 + xu$ , Painlevé II (similar for GOE)
- G0E:  $\mathbb{P}(TW \ge s) = \exp(-\frac{2}{2}s^{\frac{3}{2}}(1+o(1)).$

## Tracy-Widom Distribution -1994

• Gaussian Unitary/Orthogonal Ensemble. Given  $N \times N$  random Hermitian matrix with i.i.d. mean zero complex/real Gaussian entries with variance N, the largest eigenvalue  $\lambda_{\max}$  satisfies

$$\frac{\lambda_{\max} - 2N^{1/2}}{N^{1/3}} \xrightarrow{\mathcal{D}} TW$$

- GUE:  $\mathbb{P}(TW \geq s) = \exp(-\int_{a}^{\infty} (x-s)u(x)^2 dx), s \in \mathbb{R}$  $u'' = 2u^3 + xu$ , Painlevé II (similar for GOE)
- GOE:  $\mathbb{P}(TW \ge s) = \exp(-\frac{2}{3}s^{\frac{3}{2}}(1+o(1)).$
- Length of longest increasing subsequence of random permutation; Baik, Deift, Johansson - 1999
- Fluctuations of corner growth model.

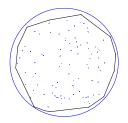


#### The convex hull

- How does the convex hull of i.i.d. uniform points fit into this picture?
- When the linear scale is n, it turns out that the two-parameter height statistic h(t,x) for convex hull model exhibits:
  - a) global parabolic constraints,
  - b) fluctuations of the order  $n^{1/3}$ .
  - c) spatial correlations of the order  $n^{2/3}$ ,
  - d) marginals converging to Tracy-Widom-like GOE distribution,
  - e) but there are no locally Gaussian fluctuations.

## The growth model: the convex hull of t i.i.d. pts

- Consider the convex hull of  $\{X_i\}_{i=1}^t$ , with  $X_i$  i.i.d. uniform in the unit disc  $\mathbb{B}^2$ .
- To make the linear scale t, we blow up by t:  $\{tX_i\}_{i=1}^t$



ullet radial fluctuation of convex hull of  $\{tX_i\}_{i=1}^t$  is of order  $t^{1/3}$ 

# KPZ scaling of height fct of convex hull

- $\{X_i\}_{i=1}^t$  i.i.d. uniform in the unit disc  $\mathbb{B}^2$ .
- h(t,x) is the radius vector process (height) of  $\operatorname{conv}(\{tX_i\}_{i=1}^t)$  in the direction  $x \in t\mathbb{S}$ .
- Object of interest: fluctuations of defect height process t h(t, x).



<sup>\*</sup> convergence in C([-L, L]), L fixed.

# KPZ scaling of height fct of convex hull

- $\{X_i\}_{i=1}^t$  i.i.d. uniform in the unit disc  $\mathbb{B}^2$ .
- h(t,x) is the radius vector process (height) of  $\operatorname{conv}(\{tX_i\}_{i=1}^t)$  in the direction  $x \in t\mathbb{S}$ .
- Object of interest: fluctuations of defect height process t h(t, x).
- **Theorem** (convergence of defect height process\*) Fix t > 0. At large time and length scales  $(n \to \infty)$ , the re-scaled two-parameter height process satisfies

$$\left(\frac{nt - h(n^{\frac{3}{3}}t, n^{\frac{2}{3}}x)}{n^{\frac{1}{3}}}\right)_{|x| \le \pi n^{\frac{1}{3}}t} \xrightarrow{\mathcal{D}} (H(t, x))_{x \in \mathbb{R}}.$$



<sup>\*</sup> convergence in C([-L, L]), L fixed.

# Scaling limit H(t,x) given by variational formula

• Down parabola with apex at  $(x',h') \in \mathbb{R} \times \mathbb{R}^+$ :

$$\Pi_t^{\downarrow}(x',h') := \{(x,h) \in \mathbb{R} \times \mathbb{R}, \ h \le h' - \frac{|x-x'|^2}{2t}\}.$$

- ullet  $\mathcal{P}_{\frac{1}{t}}$ : rate  $\frac{1}{t}$  Poisson pt process on  $\mathbb{R} \times \mathbb{R}^+$ .
- Variational formula for *H*:

$$H(t,x) := \sup_{(x',h') \in \mathbb{R} \times \mathbb{R}^+, \ \Pi_t^{\downarrow}(x',h') \cap \mathcal{P}_{\frac{1}{t}} = \emptyset} (h' - \frac{|x - x'|^2}{2t}).$$



# Scaling limit H(t,x) given by variational formula

• Down parabola with apex at  $(x', h') \in \mathbb{R} \times \mathbb{R}^+$ :

$$\Pi_t^{\downarrow}(x',h') := \{(x,h) \in \mathbb{R} \times \mathbb{R}, \ h \le h' - \frac{|x-x'|^2}{2t}\}.$$

- $\mathcal{P}_{\frac{1}{2}}$ : rate  $\frac{1}{t}$  Poisson pt process on  $\mathbb{R} \times \mathbb{R}^+$ .
- Variational formula for H:

$$H(t,x) := \sup_{(x',h') \in \mathbb{R} \times \mathbb{R}^+, \ \Pi_t^{\downarrow}(x',h') \cap \mathcal{P}_{\frac{1}{t}} = \emptyset} (h' - \frac{|x - x'|^2}{2t}).$$

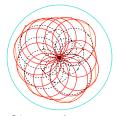


Recall KPZ variational formula:

$$H(t, x; H_0) = \sup_{y \in \mathbb{R}} \{ t^{1/3} A(t^{-2/3} x, t^{-2/3} y) + \frac{H_0(y)}{t} - \frac{(x - y)^2}{t} \}$$

# KPZ scaling for support function of convex hull

•  $X_i := (|X_i|, x_i), 1 \le i \le t$ , i.i.d. uniform in  $\mathbb{B}^2$ ;  $|x_i| \le \pi$ .



Support process of convex hull of  $\{tX_i\}_{i=1}^t$ :

$$s(t,x) := \max_{1 \le i \le t} t|X_i| \cos\left(\left|\frac{x}{t} - x_i\right|\right), |x| \le \pi t$$

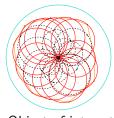
- ullet Object of interest: fluctuations of defect support process t-s(t,x).
- Scale time by n, space by  $n^{2/3}$ , and fluctuations by  $n^{1/3}$ :

$$S_n(t,x) := \frac{nt - s(n^{\frac{3}{3}}t, n^{\frac{2}{3}}x)}{n^{\frac{1}{3}}}, \quad |x| \le \pi n^{\frac{1}{3}}t$$



# KPZ scaling for support function of convex hull

•  $X_i := (|X_i|, x_i), 1 \le i \le t$ , i.i.d. uniform in  $\mathbb{B}^2$ ;  $|x_i| \le \pi$ .



Support process of convex hull of  $\{tX_i\}_{i=1}^t\colon$ 

$$s(t,x) := \max_{1 \le i \le t} t|X_i| \cos\left(\left|\frac{x}{t} - x_i\right|\right), |x| \le \pi t$$

- Object of interest: fluctuations of defect support process t s(t, x).
- Scale time by n, space by  $n^{2/3}$ , and fluctuations by  $n^{1/3}$ :

$$S_n(t,x) := \frac{nt - s(n^{\frac{3}{3}}t, n^{\frac{2}{3}}x)}{n^{\frac{1}{3}}}, \quad |x| \le \pi n^{\frac{1}{3}}t$$

• Theorem (convergence of defect support process) Fix t>0. As  $n\to\infty$ 

$$(S_n(t,x))_{|x| \le \pi n^{\frac{1}{3}}t} \xrightarrow{\mathcal{D}} (S(t,x))_{x \in \mathbb{R}}.$$



#### KPZ for support process of convex hull

- The support process for the convex hull of  $\{tX_i\}_{i=1}^t$  displays 1:2:3 scaling and process-level convergence to a limit field  $(S(t,x))_{x\in\mathbb{R}}$  whose parabolas have apices at the lowest pts of  $\mathcal{P}_{\frac{1}{\tau}}$ .
- Variational formula for S:

$$S(t,x) := \inf_{(x',h') \in \mathcal{P}_{\frac{1}{t}}} (h' + \frac{|x - x'|^2}{2t}).$$

## KPZ for support process of convex hull

- The support process for the convex hull of  $\{tX_i\}_{i=1}^t$  displays 1:2:3 scaling and process-level convergence to a limit field  $(S(t,x))_{x\in\mathbb{R}}$  whose parabolas have apices at the lowest pts of  $\mathcal{P}_{\frac{1}{x}}$ .
- Variational formula for S:

$$S(t,x) := \inf_{(x',h')\in\mathcal{P}_{\frac{1}{t}}} (h' + \frac{|x - x'|^2}{2t}).$$

- ullet Height process and support process for dynamic convex hull  $tK_t$  belongs to a KPZ sub-universality class.
- They would belong to KPZ universality class if the respective limit fields also contained a stationary process which was locally Brownian in the space variable.

# Convergence of marginals

- Recall: h(t,x) is radius vector process in direction  $x \in t\mathbb{S}$  for convex hull of  $\{tX_i\}_{i=1}^t$ , with  $X_i$  iid in  $\mathbb{B}^2$ .
- Recall previous process convergence theorem: for fixed t > 0

$$\left(\frac{nt - h(n^{\frac{3}{3}}t, n^{\frac{2}{3}}x)}{n^{\frac{1}{3}}}\right)_{|x| \le n^{\frac{1}{3}}t} \xrightarrow{\mathcal{D}} (H(t, x))_{x \in \mathbb{R}}.$$

# Convergence of marginals

- Recall: h(t,x) is radius vector process in direction  $x \in t\mathbb{S}$  for convex hull of  $\{tX_i\}_{i=1}^t$ , with  $X_i$  iid in  $\mathbb{B}^2$ .
- Recall previous process convergence theorem: for fixed t > 0

$$\left(\frac{nt - h(n^{\frac{3}{3}}t, n^{\frac{2}{3}}x)}{n^{\frac{1}{3}}}\right)_{|x| \le n^{\frac{1}{3}}t} \xrightarrow{\mathcal{D}} (H(t, x))_{x \in \mathbb{R}}.$$

• Theorem (convergence of marginals to Tracy Widom-like distribution) Fix t=1 and let  $x\in n^{\frac{1}{3}}\mathbb{S}$ . Then as  $n\to\infty$ 

$$\frac{n - h(n^{\frac{3}{3}}, n^{\frac{2}{3}}x)}{n^{\frac{1}{3}}} \xrightarrow{\mathcal{D}} h_{\infty}$$

GOE tails: 
$$\mathbb{P}(h_{\infty} \ge \frac{s}{2}) \sim \exp(-\frac{2}{3}s^{\frac{3}{2}}(1+o(1))), \quad s \to \infty$$



#### Maximal radial fluctuations follow Gumbel law

#### Theorem

- Let  $K \subset \mathbb{R}^d$  be  $\mathcal{C}^3$  smooth, convex, with curvature bounded away from zero.  $K_t$  is convex hull of  $\{X_i\}_{i=1}^t$ .
- There are constants  $a_i := a_i(K), i \in \{0, 1, 2, 3\}$ , such that if

$$u_t(\tau, K) := t^{-\frac{2}{d+1}} [a_0(a_1 \log t + a_2 \log(\log t) + a_3 + \tau)]^{\frac{2}{d+1}}, \ \tau \in (-\infty, \infty),$$

then as  $t \to \infty$ 

$$\mathbb{P}\left(d_H(K_t, K) \le u_t(\tau, K)\right) \to \exp(-\theta(d)e^{-\tau}), \ \tau \in (-\infty, \infty).$$

- $\theta(2) = \frac{3}{4}$ ,  $\theta(d) = d^2 2^{-d} \frac{\Gamma(\frac{d}{2})}{\Gamma(\frac{d+1}{2})} \frac{\Gamma(\frac{d^2+1}{2})}{\Gamma(\frac{d^2+1}{2})}$ .
- Not many (any?) results for maximal fluctuations of growth models.



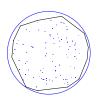
#### Extensions

- Process convergence for defect height and support functions were stated for convex hulls of iid pts in unit disc  $\mathbb{B}^2$ .
- Disc may be replaced by any  $\mathcal{C}^3$  smooth convex  $K \subset \mathbb{R}^2$ , with curvature bounded away from zero.
- Process convergence for height statistic h(t,x) extends to all dimensions:
  - $\cdot 1:2:3$  scaling replaced by d-1, d, d+1 scaling,
  - · the triplet Fluctuations: Space: Time has scaling coefficients

$$n^{\frac{d-1}{d+1}}, n^{\frac{d}{d+1}}, n^{\frac{d+1}{d+1}}$$



# Proof ideas: process convergence for radius vector fct





• Down parabola with apex at  $(x',h') \in \mathbb{R} \times \mathbb{R}^+$ :

$$\Pi_t^{\downarrow}(x',h') := \{(x,h) \in \mathbb{R} \times \mathbb{R}, \ h \le h' - \frac{|x-x'|^2}{2t}\}.$$

ullet  $\mathcal{P}_{\frac{1}{t}}$ : rate  $\frac{1}{t}$  Poisson pt process on  $\mathbb{R} \times \mathbb{R}^+$ . Burgers' festoon H:

$$H(t,x) := \sup_{(x',h') \in \mathbb{R} \times \mathbb{R}^+, \ \Pi_t^{\downarrow}(x',h') \cap \mathcal{P}_{\frac{1}{t}} = \emptyset} (h' - \frac{|x - x'|^2}{2t}).$$

ullet Parabolas are the re-scaled asymptotic images of the edges in convex hull  $K_t$ .

# Proof ideas: process convergence for radius vector fct

We need to find the right scaling transform mapping  $\partial(t\cdot K_t)$  to the upper half plane. The overly simplified approach has these ingredients:

• Define for each t and n a parabolic scaling transform  $T^{(t,n)} \cdot t\mathbb{R}^2 \to \mathbb{R} \times \mathbb{R}^+$ 





•  $T^{(t,n)}$  maps the edges of  $\partial(t\cdot K_t)$  to curves in  $\mathbb{R}\times\mathbb{R}^+$  which are nearly parabolic and which become parabolic as  $n\to\infty$ .

# Proof ideas: process convergence for radius vector fct

We need to find the right scaling transform mapping  $\partial(t\cdot K_t)$  to the upper half plane. The overly simplified approach has these ingredients:

• Define for each t and n a parabolic scaling transform  $T^{(t,n)}:t\mathbb{B}^2\to\mathbb{R}\times\mathbb{R}^+$ 





- $T^{(t,n)}$  maps the edges of  $\partial(t\cdot K_t)$  to curves in  $\mathbb{R}\times\mathbb{R}^+$  which are nearly parabolic and which become parabolic as  $n\to\infty$ .
- $T^{(t,n)}$  maps the t i.i.d. uniform points in  $t\mathbb{B}^2$  to point process in rectangle  $[-n^{\frac{1}{3}}t,n^{\frac{1}{3}}t]\times[0,n^{\frac{2}{3}}t]$ .
- As  $n \to \infty$  and using coupling, this point process converges to a Poisson point process in the upper half-plane of intensity 1/t.



#### Proof ideas: convergence of facet distances

• Typical facet:  $\mathcal{F}_{\lambda}$  is a typical facet of  $K_{\text{Po}(\lambda)}$  if for all non-neg. measurable q defined on the facets of  $K_{\lambda}$  we have

$$\mathbb{E}g(\mathcal{F}_{\lambda}) = \frac{1}{Z_{\lambda}} \mathbb{E} \sum_{F \in \text{Facets}} g(F),$$

 $Z_{\lambda}$  being the expected number of facets.

• Mecke's formula:  $\mathbb{P}(g(\mathcal{F}_{\lambda}) \geq s) = \mathbb{E}[\mathbf{1}(g(\mathcal{F}_{\lambda}) \geq s)]$  equals

$$\begin{split} &= \frac{1}{Z_{\lambda}} \mathbb{E} \big[ \sum_{\{x_1, \cdots, x_d\} \subset \mathcal{P}_{\lambda}^{\neq}} \mathbf{1}(g(\Delta(x_1, \cdots, x_d)) \geq s) \\ &\qquad \qquad \times \mathbf{1}(\Delta(x_1, \cdots, x_d) \text{ is a facet}) \big] \\ &= \frac{1}{Z_{\lambda}} \frac{\lambda^d}{d!} \int_K \cdots \int_K \mathbf{1}(g(\Delta(x_1, ..., x_d)) \geq s) \\ &\qquad \qquad \times e^{-\lambda \operatorname{Vol}_d(K \cap H^+(x_1, \cdots, x_d))} \mathrm{d}x_1 \cdots \mathrm{d}x_d. \end{split}$$

• if g is distance, d=2, then  $e^{-\lambda {
m Vol}_d(...)} \sim \exp(-\frac{2}{3}s_{\perp}^{\frac{3}{2}}(1+o(1)).$ 



#### Summarv

- Rescaled height process of dynamic convex hull  $tK_t$  converges as  $n \to \infty$  to Burgers' festoon; the triplet 'fluctuations: space: time' exhibits 1:2:3 scaling.
- The space-time height process of  $tK_t$  belongs to KPZ sub-universality class; same for support function process of  $tK_t$ .
- Marginal distribution of height process converges to an explicit limit distribution whose right-hand tail coincides with Tracy-Widom GOE tail.
- Maximal radial fluctuations converge to a Gumbel distribution.

Pierre Calka

Thank you!