Radial growth in aggregation models

Steffen Winter

Karlsruhe Institute of Technology

joint work with Tillmann Bosch

Workshop "Stochastic Geometry in Action"

September 2024, Bath

Diffusion-limited aggregation (DLA)

(Discrete) aggregation models: (for continuum models o ask Frankie)

- ullet defined on \mathbb{Z}^d (or on some other graph)
- \bullet growth starts from some initial cluster F_1 (e.g. a single particle at origin),
- particles arrive one after another and are attached where they hit the cluster for the first time
- DLA: particles perform random walks on \mathbb{Z}^d (started at ∞)

Steffen Winter (KIT)

Aggregation models

Diffusion-limited aggregation

- introduced by [Witten, Sander '81] as a model for metal-particle aggregation
- similar clusters observed in many physical systems, e.g. in electrodeposition, mineral deposition or dielectric breakdown
- essential: particles aggregate irreversibly and diffusion (thermal motion) is the means of transport,
- ullet \sim 4500 citations (APS); many variants of the model; few rigorous results

By Kevin R Johnson - See Author, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=794123

Ballistic aggregation

How does the DLA model change, if the arriving particles do not perform random walks but travel along straight lines?

- known in physics as ballistic aggregation or Vold-Sutherland model: [Vold '59, Sutherland '66, Bensimon, Domany, Aharony '81, Meakin '83]
- considered a good model when particles can move freely such as molecules in a low density vapour
- There is also ballistic deposition [Seppäläinen 00], [Penrose 08]

Steffen Winter (KIT) Aggregation models

A general framework

Let \mathcal{P}_f^d be the family of finite subsets of \mathbb{Z}^d .

- We consider the nearest neighbor graph on \mathbb{Z}^d , i.e., the graph (\mathbb{Z}^d, E) with edge set $E := \{\{x,y\} \subset \mathbb{Z}^d : \|x-y\| = 1\}$.
- $A \in \mathcal{P}_f^d$ is called connected, if the subgraph of (\mathbb{Z}^d, E) generated by A is.
- For $A \in \mathcal{P}_f^d$, the (outer) boundary of A is the set

$$\partial A := \{ y \in \mathbb{Z}^d \setminus A : \exists x \in A \text{ such that } \{x, y\} \in E \}.$$

- For $A \in \mathcal{P}_f^d \setminus \{\emptyset\}$, a random point in A is a measurable mapping $y_A : \Omega \to \mathbb{Z}^d$ with $\mathbb{P}(y_A \in A) = 1$. Denote by $\mathcal{D}(A)$ the family of all probability measures on A.
- A random finite set is a measurable mapping $F: \Omega \to \mathcal{P}_f^d$.

Steffen Winter (KIT) Aggregation models 5 / 21

The general model: incremental aggregation

Definition

Let $\mathcal{M}:=(\mu_A)_{A\in\mathcal{P}_f^d}$ be a family of distributions s.t. $\mu_A\in\mathcal{D}(A)$ for each $A\in\mathcal{P}_f^d$. A sequence $(F_n)_{n\in\mathbb{N}}$ of random finite sets $F_n\subset\mathbb{Z}^d$ is called incremental aggregation (with distribution family \mathcal{M}), if it satisfies the following conditions:

- (i) $F_1 := \{y_1\}$, where $y_1 := 0 \in \mathbb{Z}^d$;
- (ii) for any $n \in \mathbb{N}$, $F_{n+1} := F_n \cup \{y_{n+1}\}$, where y_{n+1} is a random point in \mathbb{Z}^d whose conditional distribution given F_n is $\mu_{\partial F_n}$, i.e.,

$$\mathbb{P}(y_{n+1} = y \mid F_n = A) := \mu_{\partial A}(y) \qquad \text{for any } A \in \mathcal{P}_f^d \text{ and } y \in \mathbb{Z}^d.$$

 F_n is called cluster or aggregate at time n.

Observe that

- $0 \in F_1 \subset F_2 \subset F_3 \subset \ldots \subset \mathbb{Z}^d$;
- for any $n \in \mathbb{N}$, a.s. F_n is connected and $\#F_n = n$;
- $(F_n)_n$ is a Markov chain, in particular, F_{n+1} depends on F_n , but not on the order, in which the points have been added to F_n .

Steffen Winter (KIT) Aggregation models 6/21

A simple example of incremental aggregation

Example

- Let μ_A be the uniform distribution on $A \in \mathcal{P}_f^d$. The resulting incremental aggregation is known as Eden growth model. [Eden '61]
- Clusters look ball-like with a rough "boundary" and few holes.
- generalization: internal DLA [Lawler, Bramson, Griffeath 92, ...]

by M. James and P. Prusinkiewicz. Copyright: 1993 P. Prusinkiewicz.

http://algorithmicbotany.org/vmm-deluxe/Plates.html#eden

DLA as incremental aggregation

Diffusion-limited aggregation is incremental aggregation with distribution family $(h_A)_{A \in \mathcal{P}_2^d}$ where h_A is the harmonic measure on A.

• If $(S_t)_{t\in\mathbb{N}}$ is a symmetric random walk on \mathbb{Z}^d started 'at ∞ ' (or very far away) and conditioned to visit the set A, then, for any $z\in A$,

 $h_A(z)$ is the probability that z is the first point in A visited by (S_t) .

Radius, diameter and cardinality

For any finite $A \subset \mathbb{Z}^d$ (with $0 \in A$), denote by

- $rad(A) := \max_{x \in A} ||x||$ its radius;
- #A its cardinality.

Observe that

- $rad(A) = inf\{r > 0 : A \subset B(0, r)\}$
- If A is connected and $0 \in A$, then

$$(\#A)^{-d} \lesssim \operatorname{rad}(A) \leq \#A.$$

Growth rate and fractal dimension

Let $(A_n)_{n\in\mathbb{N}}$ be an increasing sequence of finite subsets of \mathbb{Z}^d .

• growth rate α of the radii:

$$\operatorname{rad}(A_n) \sim (\#A_n)^{\alpha}$$
 as $n \to \infty$

The lower and upper growth rate of the sequence (A_n) are defined by

$$\underline{\alpha}_f := \underline{\alpha}_f((A_n)_n) := \liminf_{n \to \infty} \frac{\log(\mathrm{rad}\,(A_n))}{\log(\#A_n)} \text{ and } \overline{\alpha}_f := \limsup_{n \to \infty} \frac{\log(\mathrm{rad}\,(A_n))}{\log(\#A_n)}.$$

Similarly, the lower and upper fractal dimension are defined by

$$\underline{\delta}_f := \liminf_{n \to \infty} \frac{\log(\#A_n)}{\log(\mathrm{rad}\,(A_n))} \text{ and } \overline{\delta}_f := \limsup_{n \to \infty} \frac{\log(\#A_n)}{\log(\mathrm{rad}\,(A_n))}.$$

Simple observations:

- $\underline{\delta}_f = 1/\overline{\alpha}_f$ and $\overline{\delta}_f = 1/\underline{\alpha}_f$
- If the sets A_n are connected and $0 \in A_1$, then

$$1 \leq \underline{\delta}_f \leq \overline{\delta}_f \leq d$$
 and hence $1/d \leq \underline{\alpha}_f \leq \overline{\alpha}_f \leq 1$.

• Incremental aggregation: F_n is random and thus $\operatorname{rad}(F_n)$, $\underline{\delta}_f$ and $\overline{\delta}_f$ are random variables. The above relations hold almost surely.

Steffen Winter (KIT) Aggregation models 10/21

Kesten's result for DLA

Let $(F_n)_{n\in\mathbb{N}}$ be DLA in \mathbb{Z}^d , $d\geq 2$.

Theorem [Kesten 87 and 90], [Lawler 91], [Benjamini, Yadin 17]

There exists a constant c > 0 such that a.s. for n sufficiently large

$$\operatorname{rad}(F_n) \leq \begin{cases} c \, n^{2/3}, & \text{if } d = 2, \\ c \, n^{1/2} (\ln n)^{1/4}, & \text{if } d = 3, \\ c \, n^{2/(d+1)}, & \text{if } d \geq 4. \end{cases}$$

For the lower fractal dimension $\underline{\delta}_f$ of DLA in \mathbb{Z}^2 this implies e.g.

$$\underline{\delta}_f = \liminf_{n \to \infty} \frac{\log n}{\log(\operatorname{rad}(F_n))} \ge \lim_{n \to \infty} \frac{\log n}{\log(cn^{2/3})} = \frac{3}{2}. \qquad \left(Conjecture : \delta_f = \frac{5}{3}\right)$$

Corollary

For DLA $(F_n)_{n\in\mathbb{N}}$ in \mathbb{Z}^d with $d\geq 2$ one has almost surely

$$\underline{\delta}_f \geq rac{d+1}{2}.$$
 (Physicist's Conjecture: $\delta_f = rac{d^2+1}{d+1}$)

11 / 21

Steffen Winter (KIT) Aggregation models

Ballistic aggregation

- In the ballistic model, the distributions μ_A of clusters A are determined by random lines (details in a moment).
- variations in the physics literature: lines have a
 - uniform direction
 - uniform axis parallel direction, e.g. [Bensimon, Shraiman, Liang '83]
 - ▶ fixed direction [Bensimon, Shraiman, Liang '83, Vicsek '89]

- general observation: clusters are much denser than DLA clusters
- conjectured dimension: $\delta_f = d$ in \mathbb{Z}^d [Meakin '83, Bensimon, Shraiman, Liang '83, Ball, Witten '84]

Radial growth in the ballistic model

Let $(F_n)_{n\in\mathbb{N}}$ be ballistic aggregation in \mathbb{Z}^d .

Theorem [Bosch, W. 24]

There exists a constant c = c(d) > 0 such that a.s. for n sufficiently large

$$\operatorname{rad}(F_n) \leq c n^{1/2}$$
.

Corollary (resolution of physicist's conjecture for d = 2)

For the ballistic model in \mathbb{Z}^2 , $\delta_f=2$ almost surely (and $\underline{\delta}_f\geq 2$ in \mathbb{Z}^d , $d\geq 3$).

Proof. On the one hand, $\overline{\delta}_f \leq 2$ a.s. in \mathbb{Z}^2 . On the other hand

$$\underline{\delta}_{f} = \liminf_{n \to \infty} \frac{\log n}{\log(\operatorname{rad}(F_{n}))} \ge \lim_{n \to \infty} \frac{\log n}{\log(cn^{1/2})} = 2. \quad \Box$$

Corollary (positive volume)

The ballistic model in \mathbb{Z}^2 satisfies almost surely

$$\liminf_{n\to\infty} \frac{\#F_n}{(\mathrm{rad}(F_n))^2} \ge \liminf_{n\to\infty} \frac{n}{c^2n} = c^{-2} > 0.$$

13 / 21

Ballistic aggregation

How to choose the distributions μ_A , $A \in \mathcal{P}_f^d$ in the ballistic model?

- stochastic geometry: isotropic random lines (IRL)
- Let A(d,1) be the space of lines in \mathbb{R}^d (affine Grassmannian of 1-flats) equipped with the usual σ -algebra $A(d,1) := \sigma(\{[K] : K \in \mathcal{K}^d\})$, where

$$[K] := \{L \in A(d,1) : L \cap K \neq \emptyset\}.$$

ullet There is a unique Euclidean motion-invariant Radon measure μ_1 on A(d,1) such that

$$\mu_1([B_d]) = \kappa_{d-1},$$

where B_n is the unit ball in \mathbb{R}^n and $\kappa_n = \lambda_n(B_n)$ its volume.

• For compact $K \subset \mathbb{R}^d$ with $\mu_1([K]) > 0$, an IRL through K is a measurable mapping $L: \Omega \to A(d,1)$ with distribution given by

$$\mathbb{P}(L \in \mathcal{A}) := \mathbb{P}^{\mathcal{K}}(\mathcal{A}) := \frac{\mu_1(\mathcal{A} \cap [\mathcal{K}])}{\mu_1([\mathcal{K}])}, \qquad \mathcal{A} \in \mathcal{A}(d,1).$$

• by the Crofton formula (for $K \in \mathcal{K}^d$, i.e. K compact and convex):

$$\mu_1([K]) = \int_{A(d,1)} V_0(K \cap L) \mu_1(dL) = c_d V_{d-1}(K)$$

Steffen Winter (KIT) Aggregation models 14/21

Ballistic aggregation

To define it, we need to specify a distribution b_A for each $A \in \mathcal{P}_f^d \setminus \{\emptyset\}$.

• For $A \in \mathcal{P}_f^d \setminus \{\emptyset\}$ let

$$\Box A := \bigcup_{z \in A} C_z, \qquad \text{ where } C_z = \left[-\frac{1}{2}, \frac{1}{2} \right]^d + z.$$

Then an IRL through $\Box A$ is well defined $(\mu_1[\Box A] > 0)$.

• Let L be a directed IRL through $\square A$ (i.e., an IRL, on which one of the two directions is chosen uniformly). Then, for any $z \in A$,

$$b_A(z) := \mathbb{P}(C_z \text{ is the first box in } \square A \text{ visited by } L).$$

• Ballistic aggregation on \mathbb{Z}^d is incremental aggregation with distribution family $(b_A)_{A \in \mathcal{P}_{\epsilon}^d}$. (Note: $b_{\partial A} = b_{A \cup \partial A}!$)

Tool: Bounding the local speed of growth

The following statement generalizes Kesten's strategy in his proof for DLA.

Theorem (Kesten's method) [Bosch, W. 24]

Let $\mathcal{M}=(\mu_A)_{A\in\mathcal{P}_f^d}$ be some family of distributions. Suppose there exists some constants q,C>0 such that for all r>1, any connected set $A\in\mathcal{P}_f^d$ with $0\in A$ and $\mathrm{rad}\,(A)\geq r$ and any $z\in A$,

$$\mu_A(z) \leq C r^{-q}$$
.

Then there is a constant c, such that an incremental aggregation $\mathcal{F}=(\mathcal{F}_n)_{n\in\mathbb{N}}$ with distribution family \mathcal{M} satisfies almost surely

$$\mathrm{rad}\left(F_{n}\right)\leq c\,n^{1/(q+1)}$$

for *n* sufficiently large.

Hitting a location in the ballistic model

Let $(\mu_A)_{A\in\mathcal{P}^d_f}$ denote the family of distributions defining the ballistic model in \mathbb{Z}^d .

Theorem [Bosch, W. 24]

There is a $C_d > 0$ such that for any r > 1, any connected set $A \in \mathcal{P}_f^d$ with $0 \in A$ and $\operatorname{rad}(A) \geq r$ and any $z \in A$,

$$b_A(z) \leq C_d r^{-1}$$
.

• Kesten's method yields (with q=1 and $\mu_A=b_A$):

$$rad(F_n) \le cn^{1/(q+1)} = cn^{1/2}$$

and thus $\delta_f=2$ for d=2 and $\underline{\delta}_f\geq 2$ for any $d\geq 3$ (Conj.: $\delta_f=d$).

• The exponent q=1 is optimal, i.e. such an estimate is not true for any q>1. (This will be clear from the next slide). Therefore, one cannot expect better bounds for δ_f from Kesten's method.

Steffen Winter (KIT) Aggregation models 17/21

Idea of proof for d = 2

Let $r \geq 1$, $A \in \mathcal{P}_f^2$ connected with $0 \in A$ and $\operatorname{rad}(A) \geq r$, and $z \in A$.

- Note that the connectedness in \mathbb{Z}^2 implies $[\Box A] = [\operatorname{conv}(\Box A)]$.
- $\Box A$ contains C_0 and another unit size box C_y with $y \in \mathbb{Z}^2$ and $||y|| \ge r$. Hence conv($\Box A$) contains a rectangle R_r with sidelengths r and 1.
- Therefore, $\mu_1([\Box A]) = \mu_1([\mathsf{conv}(\Box A)]) \ge \mu_1([R_r])$ and so

Remark: The rate q=1 is optimal (largest possible) for all $d \ge 2$, since for a row of r points $A=A_r:=\{0,...,r-1\}\times\{0\}$ and z=0, one gets

$$b_A(z) \geq \frac{1}{2} \mathbb{P}^{\square A}([C_z]) = \ldots \geq \frac{1}{2} r^{-1}.$$

Steffen Winter (KIT) Aggregation models 18/21

Idea of proof for $d \ge 3$

Let $r \geq 1$, $A \in \mathcal{P}_f^d$ connected with $0 \in A$ and $\operatorname{rad}(A) \geq r$, and $z \in A$.

- Now the connectedness of A does not imply $[\Box A] = [conv(\Box A)]$.
- $\square A$ contains C_0 and another unit size box C_y with $y \in \mathbb{Z}^d$ and $||y|| \ge r$. There is a path $\Gamma \subset A$ connecting 0 and y.
- Let G be the shortest curve in \mathbb{R}^d connecting these points in the given order.

Then
$$G_{\oplus \frac{1}{2}} \subset \Box \Gamma$$
 and so $\mu_1([\Box A]) \geq \mu_1([\Box \Gamma]) \geq \mu_1([G_{\oplus \frac{1}{2}}])$.

Therefore,

$$b_A(z) \leq \mathbb{P}^{\Box A}([C_z]) = \frac{\mu_1([C_z])}{\mu_1([\Box A])} \leq \frac{\mu_1([C_0])}{\mu_1([G_{\oplus \frac{1}{2}}])}$$

- needed: $\mu_1([G_{\oplus \frac{1}{3}}]) \geq cr$
- tool: $\mu_1(\mathcal{A}) = \int_{A(d,d-1)} \mu_1^H(\mathcal{A}) \mu_{d-1}(dH)$
- $\mu_1^H([G_{\oplus \frac{1}{2}}]) \geq \tilde{c} \, \mathbb{1}\{H \cap S \neq \emptyset\}.$
- $\mu_{d-1}(\{H \cap S \neq \emptyset\}) > \hat{c}r!$

Conclusion and Outlook

- incremental aggregation, a framework for many aggregation models, and Kesten's method, a tool for lower bounds for radial growth of such models;
- ballistic aggregation: $\delta_f = 2$ in \mathbb{Z}^2 ; $\underline{\delta}_f \geq 2$ in \mathbb{Z}^d ;
- analogous results for the variants when only axes parallel directions are allowed for the lines:

Some open questions:

- Can one improve Kesten's method by taking the volume of the cluster into account instead of the radius in dimension $d \ge 3$?
- What is the relation to continuum models (e.g. Hastings-Levitov models)?
- What is the relation to ballistic deposition? Can results be transferred from there?
- further questions: asymptotic shape; existence, structure and scaling properties of voids; anisotropic variants; sticking probabilities; ...

Steffen Winter (KIT) Aggregation models 20/21

Some References

R. C. Ball and T. A. Witten.

Causality bound on the density of aggregates. Phys. Rev. A, 29:2966–2967, May 1984.

Harry Kesten.

How long are the arms in DLA? J. Phys. A, 20(1):L29-L33, 1987.

Harry Kesten.

Upper bounds for the growth rate of DLA. Phys. A, 168(1):529–535, 1990.

Gregory F. Lawler.

Intersections of random walks.

Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1991.

Paul Meakin.

The Vold-Sutherland and Eden models of cluster formation.

Journal of Colloid and Interface Science, 96(2):415–424, 1983.

I. S. Molchanov.

Diffusion-limited aggregation with jumps and flights. J. Statist. Comput. Simulation, 64(4):357–381, 1999.

T. A. Witten and L. M. Sander.

Diffusion-limited aggregation, a kinetic critical phenomenon.

Phys. Rev. Lett., 47:1400-1403, Nov 1981.