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Diffusion-limited aggregation (DLA)

(Discrete) aggregation models: (for continuum models → ask Frankie)

defined on Zd (or on some other graph)

growth starts from some initial cluster F1 (e.g. a single particle at origin),

particles arrive one after another and are attached where they hit the cluster
for the first time

DLA: particles perform random walks on Zd (started at ∞)
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Diffusion-limited aggregation
introduced by [Witten, Sander ’81] as a model for metal-particle aggregation

similar clusters observed in many physical systems, e.g. in electrodeposition,
mineral deposition or dielectric breakdown

essential: particles aggregate irreversibly and diffusion (thermal motion) is
the means of transport,

∼ 4500 citations (APS); many variants of the model; few rigorous results

By Kevin R Johnson - See Author, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=794123
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Ballistic aggregation
How does the DLA model change, if the arriving particles do not perform random
walks but travel along straight lines?

known in physics as ballistic aggregation or Vold-Sutherland model: [Vold

’59, Sutherland ’66, Bensimon, Domany, Aharony ’81, Meakin ’83]

considered a good model when particles can move freely such as molecules in
a low density vapour
There is also ballistic deposition [Seppäläinen 00], [Penrose 08]
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A general framework
Let Pd

f be the family of finite subsets of Zd .

We consider the nearest neighbor graph on Zd , i.e., the graph (Zd ,E ) with
edge set E := {{x , y} ⊂ Zd : ∥x − y∥ = 1}.
A ∈ Pd

f is called connected, if the subgraph of (Zd ,E ) generated by A is.

For A ∈ Pd
f , the (outer) boundary of A is the set

∂A := {y ∈ Zd \ A : ∃x ∈ A such that {x , y} ∈ E}.

F9 and ∂F9

0

F1 and ∂F1

0

For A ∈ Pd
f \ {∅}, a random point in A is a measurable mapping

yA : Ω → Zd with P(yA ∈ A) = 1. Denote by D(A) the family of all
probability measures on A.

A random finite set is a measurable mapping F : Ω → Pd
f .
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The general model: incremental aggregation

Definition

Let M := (µA)A∈Pd
f
be a family of distributions s.t. µA ∈ D(A) for each A ∈ Pd

f .

A sequence (Fn)n∈N of random finite sets Fn ⊂ Zd is called incremental
aggregation (with distribution family M), if it satisfies the following conditions:

(i) F1 := {y1}, where y1 := 0 ∈ Zd ;

(ii) for any n ∈ N, Fn+1 := Fn ∪ {yn+1}, where yn+1 is a random point in Zd

whose conditional distribution given Fn is µ∂Fn , i.e.,

P (yn+1 = y |Fn = A) := µ∂A(y) for any A ∈ Pd
f and y ∈ Zd .

Fn is called cluster or aggregate at time n.
Observe that

0 ∈ F1 ⊂ F2 ⊂ F3 ⊂ . . . ⊂ Zd ;

for any n ∈ N, a.s. Fn is connected and #Fn = n;

(Fn)n is a Markov chain, in particular, Fn+1 depends on Fn, but not on the
order, in which the points have been added to Fn.
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A simple example of incremental aggregation

Example

Let µA be the uniform distribution on A ∈ Pd
f . The resulting incremental

aggregation is known as Eden growth model. [Eden ’61]

Clusters look ball-like with a rough “boundary” and few holes.

generalization: internal DLA [Lawler, Bramson, Griffeath 92, ...]

by M. James and P. Prusinkiewicz. Copyright: 1993 P. Prusinkiewicz.

http://algorithmicbotany.org/vmm-deluxe/Plates.html#eden
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DLA as incremental aggregation

Diffusion-limited aggregation is incremental aggregation with distribution family
(hA)A∈Pd

f
where hA is the harmonic measure on A.

If (St)t∈N is a symmetric random walk on Zd started ’at ∞’ (or very far
away) and conditioned to visit the set A, then, for any z ∈ A,

hA(z) is the probability that z is the first point in A visited by (St).
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Radius, diameter and cardinality

For any finite A ⊂ Zd (with 0 ∈ A),
denote by

rad (A) := max
x∈A

∥x∥ its radius;

#A its cardinality.

Observe that

rad (A) = inf{r > 0 : A ⊂ B(0, r)}
If A is connected and 0 ∈ A, then

(#A)−d ≲ rad (A) ≤ #A.
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Growth rate and fractal dimension
Let (An)n∈N be an increasing sequence of finite subsets of Zd .

growth rate α of the radii:

rad (An) ∼ (#An)
α as n → ∞

The lower and upper growth rate of the sequence (An) are defined by

αf := αf ((An)n) := lim inf
n→∞

log(rad (An))

log(#An)
and αf := lim sup

n→∞

log(rad (An))

log(#An)
.

Similarly, the lower and upper fractal dimension are defined by

δf := lim inf
n→∞

log(#An)

log(rad (An))
and δf := lim sup

n→∞

log(#An)

log(rad (An))
.

Simple observations:
δf = 1/αf and δf = 1/αf

If the sets An are connected and 0 ∈ A1, then

1 ≤ δf ≤ δf ≤ d and hence 1/d ≤ αf ≤ αf ≤ 1.

Incremental aggregation: Fn is random and thus rad (Fn), δf and δf are
random variables. The above relations hold almost surely.
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Kesten’s result for DLA
Let (Fn)n∈N be DLA in Zd , d ≥ 2.

Theorem [Kesten 87 and 90], [Lawler 91], [Benjamini,Yadin 17]

There exists a constant c > 0 such that a.s. for n sufficiently large

rad (Fn) ≤


c n2/3, if d = 2,

c n1/2(ln n)1/4, if d = 3,

c n2/(d+1), if d ≥ 4.

For the lower fractal dimension δf of DLA in Z2 this implies e.g.

δf = lim inf
n→∞

log n

log(rad (Fn))
≥ lim

n→∞

log n

log(cn2/3)
=

3

2
.

(
Conjecture : δf =

5

3

)

Corollary

For DLA (Fn)n∈N in Zd with d ≥ 2 one has almost surely

δf ≥
d + 1

2
.

(
Physicist’s Conjecture: δf =

d2 + 1

d + 1

)
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Ballistic aggregation

In the ballistic model, the distributions µA of clusters A are determined by
random lines (details in a moment).

variations in the physics literature: lines have a
▶ uniform direction
▶ uniform axis parallel direction, e.g. [Bensimon, Shraiman, Liang ’83]
▶ fixed direction [Bensimon, Shraiman, Liang ’83, Vicsek ’89]

general observation: clusters are much denser than DLA clusters

conjectured dimension: δf = d in Zd [Meakin ’83, Bensimon, Shraiman,

Liang ’83, Ball, Witten ’84]
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Radial growth in the ballistic model
Let (Fn)n∈N be ballistic aggregation in Zd .

Theorem [Bosch, W. 24]

There exists a constant c = c(d) > 0 such that a.s. for n sufficiently large

rad (Fn) ≤ c n1/2.

Corollary (resolution of physicist’s conjecture for d = 2)

For the ballistic model in Z2, δf = 2 almost surely (and δf ≥ 2 in Zd , d ≥ 3).

Proof. On the one hand, δf ≤ 2 a.s. in Z2. On the other hand

δf = lim inf
n→∞

log n

log(rad (Fn))
≥ lim

n→∞

log n

log(cn1/2)
= 2.

Corollary (positive volume)

The ballistic model in Z2 satisfies almost surely

lim inf
n→∞

#Fn

(rad (Fn))2
≥ lim inf

n→∞

n

c2n
= c−2 > 0.
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Ballistic aggregation
How to choose the distributions µA, A ∈ Pd

f in the ballistic model?

stochastic geometry: isotropic random lines (IRL)
Let A(d , 1) be the space of lines in Rd (affine Grassmannian of 1-flats)
equipped with the usual σ-algebra A(d , 1) := σ({[K ] : K ∈ Kd}), where

[K ] := {L ∈ A(d , 1) : L ∩ K ̸= ∅}.

There is a unique Euclidean motion-invariant Radon measure µ1 on A(d , 1)
such that

µ1([Bd ]) = κd−1,

where Bn is the unit ball in Rn and κn = λn(Bn) its volume.
For compact K ⊂ Rd with µ1([K ]) > 0, an IRL through K is a measurable
mapping L : Ω → A(d , 1) with distribution given by

P(L ∈ A) := PK (A) :=
µ1(A ∩ [K ])

µ1([K ])
, A ∈ A(d , 1).

by the Crofton formula (for K ∈ Kd , i.e. K compact and convex):

µ1([K ]) =

∫
A(d,1)

V0(K ∩ L)µ1(dL) = cdVd−1(K )
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Ballistic aggregation
To define it, we need to specify a distribution bA for each A ∈ Pd

f \ {∅}.
For A ∈ Pd

f \ {∅} let

□A :=
⋃
z∈A

Cz , where Cz =

[
−1

2
,
1

2

]d
+ z .

Then an IRL through □A is well defined (µ1[□A] > 0).

Let L be a directed IRL through □A (i.e., an IRL, on which one of the two
directions is chosen uniformly). Then, for any z ∈ A,

bA(z) := P(Cz is the first box in □A visited by L).

Ballistic aggregation on Zd is incremental aggregation with distribution
family (bA)A∈Pd

f
. (Note: b∂A = bA∪∂A!)

A A

L

conv( A)
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Tool: Bounding the local speed of growth

The following statement generalizes Kesten’s strategy in his proof for DLA.

Theorem (Kesten’s method) [Bosch, W. 24]

Let M = (µA)A∈Pd
f
be some family of distributions. Suppose there exists some

constants q,C > 0 such that for all r > 1, any connected set A ∈ Pd
f with 0 ∈ A

and rad (A) ≥ r and any z ∈ A,

µA(z) ≤ C r−q.

Then there is a constant c , such that an incremental aggregation F = (Fn)n∈N
with distribution family M satisfies almost surely

rad (Fn) ≤ c n1/(q+1)

for n sufficiently large.
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Hitting a location in the ballistic model

Let (µA)A∈Pd
f
denote the family of distributions defining the ballistic model in Zd .

Theorem [Bosch, W. 24]

There is a Cd > 0 such that for any r > 1, any connected set A ∈ Pd
f with 0 ∈ A

and rad (A) ≥ r and any z ∈ A,

bA(z) ≤ Cd r
−1.

Kesten’s method yields (with q = 1 and µA = bA):

rad (Fn) ≤ cn1/(q+1) = cn1/2

and thus δf = 2 for d = 2 and δf ≥ 2 for any d ≥ 3 (Conj.: δf = d).

The exponent q = 1 is optimal, i.e. such an estimate is not true for any
q > 1. (This will be clear from the next slide). Therefore, one cannot expect
better bounds for δf from Kesten’s method.
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Idea of proof for d = 2
Let r ≥ 1, A ∈ P2

f connected with 0 ∈ A and rad (A) ≥ r , and z ∈ A.

Note that the connectedness in Z2 implies [□A] = [conv(□A)].

□A contains C0 and another unit size box Cy with y ∈ Z2 and ∥y∥ ≥ r .
Hence conv(□A) contains a rectangle Rr with sidelengths r and 1.

Therefore, µ1([□A]) = µ1([conv(□A)]) ≥ µ1([Rr ]) and so

bA(z) ≤ P□A([Cz ]) =
µ1([Cz ])

µ1([□A])
≤ V1(C0)

V1(Rr )
=

2

1 + r
≤ 2r−1.

A

L

conv( A) conv( A)

Cy

C0

Rr

Remark: The rate q = 1 is optimal (largest possible) for all d ≥ 2, since for a row
of r points A = Ar := {0, ..., r − 1} × {0} and z = 0, one gets

bA(z) ≥
1

2
P□A([Cz ]) = . . . ≥ 1

2
r−1.
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Idea of proof for d ≥ 3
Let r ≥ 1, A ∈ Pd

f connected with 0 ∈ A and rad (A) ≥ r , and z ∈ A.

Now the connectedness of A does not imply [□A] = [conv(□A)].

□A contains C0 and another unit size box Cy with y ∈ Zd and ∥y∥ ≥ r .
There is a path Γ ⊂ A connecting 0 and y .

Let G be the shortest curve in Rd connecting these points in the given order.
Then

G⊕ 1
2
⊂ □Γ and so µ1([□A]) ≥ µ1([□Γ]) ≥ µ1([G⊕ 1

2
]).

Therefore,

bA(z) ≤ P□A([Cz ]) =
µ1([Cz ])

µ1([□A])
≤ µ1([C0])

µ1([G⊕ 1
2
])

Γ ⊆ A
0

y

S

G H

needed: µ1([G⊕ 1
2
]) ≥ cr

tool:

µ1(A) =

∫
A(d,d−1)

µH
1 (A)µd−1(dH)

µH
1 ([G⊕ 1

2
]) ≥ c̃ 1{H ∩ S ̸= ∅}.

µd−1({H ∩ S ̸= ∅}) > ĉr !

Steffen Winter (KIT) Aggregation models 19 / 21



Conclusion and Outlook
incremental aggregation, a framework for many aggregation models, and
Kesten’s method, a tool for lower bounds for radial growth of such models;

ballistic aggregation: δf = 2 in Z2; δf ≥ 2 in Zd ;

analogous results for the variants when only axes parallel directions are
allowed for the lines:

Some open questions:

Can one improve Kesten’s method by taking the volume of the cluster into
account instead of the radius in dimension d ≥ 3?

What is the relation to continuum models (e.g. Hastings-Levitov models)?

What is the relation to ballistic deposition? Can results be transferred from
there?

further questions: asymptotic shape; existence, structure and scaling
properties of voids; anisotropic variants; sticking probabilities; ...
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Paul Meakin.

The Vold-Sutherland and Eden models of cluster formation.
Journal of Colloid and Interface Science, 96(2):415–424, 1983.

I. S. Molchanov.

Diffusion-limited aggregation with jumps and flights.
J. Statist. Comput. Simulation, 64(4):357–381, 1999.

T. A. Witten and L. M. Sander.

Diffusion-limited aggregation, a kinetic critical phenomenon.
Phys. Rev. Lett., 47:1400–1403, Nov 1981.

Steffen Winter (KIT) Aggregation models 21 / 21


