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Random connection model (RCM)

I Stationary Poisson process η in Rd with intensity one as nodes

I ϕ : Rd → [0, 1] connection function with ϕ(x) = ϕ(−x) for
x ∈ Rd

I Connect x , y ∈ η, x 6= y , with probability ϕ(x − y) by an edge
independently

I Penrose (1991)
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Random connection model (RCM)

I ϕ(x , y) = exp(−c‖x − y‖2)

I ϕ(x , y) = 1{‖x − y‖ ≤ r} with r > 0
=⇒ random geometric graph
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Degree of the typical vertex of the RCM

The degree D of the typical vertex has the same distribution as the
degree of 0 if we add 0 as additional point to the RCM. Thus,

D
d
=
∑
x∈η

1{0↔ x} d
= Poisson

(∫
Rd

ϕ(x) dx

)
.
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The scale-free RCM

I W positive random variable such that P(W > u) = u−βL(u),
u > 0, with β > 0 and L slowly varying.

I Mark the points of η with i.i.d. copies (Wx)x∈η of W .

I Connect x , y ∈ η, x 6= y , independently with probability

P(x ↔ y) = 1− exp

(
− λWxWy

‖x − y‖α

)
.
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Typical degree of the scale-free RCM

The degree D of the typical
vertex has the same distribution
as the degree of 0 if we add
(0,W0) with independent

W0
d
= W to the scale-free RCM.

Theorem: Deprez/Wüthrich 2019

If min{α, αβ} > d , then

P(D > u) = `(u)u−αβ/d , u > 0,

with a slowly varying function ` : (0,∞)→ (0,∞).
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Typical degree of the scale-free RCM

Since

D
d
=
∑
x∈η

1{0↔ x},

for given weight W0 of the
typical vertex (or of 0),

E[D |W0] = EW

∫
Rd

1− exp

(
− λW0W

‖x‖α

)
dx

= W
d/α
0 λd/αE[W d/α]Γ(1− d/α)

and
D

d
= Poisson

(
W

d/α
0 λd/αE[W d/α]Γ(1− d/α)

)
.

Thus, for large W0, D ≈W
d/α
0 λd/αE[W d/α]Γ(1− d/α).
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Maximum degrees

How does

max
x∈η∩[0,n1/d ]d

Deg(x)

behave as n→∞?

For random geometric graphs (see Penrose (2003)) there exist
sequences (an)n∈N with

lim
n→∞

P(maximum degree ∈ {an, an + 1}) = 1.
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Notation

I A random variable Z is Fréchet(γ)-distributed with γ > 0 if

P(Z ≤ y) = e−y
−γ

for y ≥ 0.

I Let Pγ , γ > 0, be a Poisson process on (0,∞) with intensity
measure νγ such that

νγ((a, b]) = a−γ − b−γ

for 0 < a < b <∞.

Large degrees and components of scale-free random connection models | Matthias Schulte 8



Large degrees of the scale-free RCM

Let

q(t) := inf{s ≥ 0 : P(W d/α ≤ s) ≥ 1− 1/t}, t ≥ 1,

κd the volume of the d-dimensional unit ball and

ξ := λd/ακdΓ(1− d/α)EW d/α.

Theorem: Bhattacharjee/S. 2022

For the scale-free RCM with d < min{α, αβ}, as n→∞,

1

ξq(n)
max

x∈η∩[0,n1/d ]d
Deg(x)

d−→ Fréchet(αβ/d)

and {
Deg(x)

ξq(n)
: x ∈ η ∩ [0, n1/d ]d

}
∩ (0,∞)

d−→ Pαβ/d .
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Proof idea

Compare the point processes

Dn :=

{
Deg(x)

ξq(n)
: x ∈ η ∩ [0, n1/d ]d

}
and

En :=

{
W

d/α
x

q(n)
: x ∈ η ∩ [0, n1/d ]d

}
and use that En is a Poisson process.

Our proof implies that, for any k ∈ N,

lim
n→∞

P(point with k-th largest weight in [0, n1/d ]d

has k-th largest degree) = 1.
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Extension to other random graphs

The results for the large degrees of the scale-free
RCM follow from a more general result in
Bhattacharjee/S. (2022) also applicable to:

I Norros-Reittu model

I Chung-Lu model

I Scale-free percolation model on Zd

I Ultra-small scale-free geometric networks

It is shown that the Hill estimator for the degree
distribution is consistent.
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Components of the scale-free RCM

What are the sizes of the large components within [0, n1/d ]d?

I Let C(x) be the component of x ∈ η and |C(x)| its cardinality.
I Define Vmax := {x ∈ η : Wx ≥Wy for all y ∈ C(x)}.

We study

max
x∈η∩[0,n1/d ]d∩Vmax

|C(x)| and
{
|C(x)| : x ∈ η ∩ [0, n1/d ]d ∩Vmax

}
.
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Large components of the scale-free RCM

Theorem: Lienau/S. 2024+

Assume that α > d , E[W 3d/α] <∞ and

% := λd/ακdΓ(1− d/α)E[W 2d/α] < 1.

Then, there exists a constant ζ > 0 such that, as n→∞,

1

ζq(n)
max

x∈η∩[0,n1/d ]d∩Vmax

|C(x)| d−→ Fréchet(αβ/d)

and {
|C(x)|
ζq(n)

: x ∈ η ∩ [0, n1/d ]d ∩ Vmax

}
∩ (0,∞)

d−→ Pαβ/d .
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Component size of the typical vertex

Let |C0| denote the size of the component of 0 in the RCM with

the additional point (0,W0) with independent W0
d
= W .

Lemma:

Under the assumptions of the previous theorem, there exists a
constant ζ > 0 such that

lim
w→∞

E[|C0| |W0 = w ]− ζwd/α

wd/α
= 0.

Proof idea of the theorem: Compare the point processes

Dn :=

{
|C(x)|
ζq(n)

: x ∈ η ∩ [0, n1/d ]d ∩ Vmax

}
and En := {W d/α

x /q(n) : x ∈ η ∩ [0, n1/d ]d}.
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Component size of the typical vertex

Recall % := λd/ακdΓ(1− d/α)E[W 2d/α] < 1.

Since

|C0| ≤ 1 +
∞∑
k=1

∑
(x1,...,xk )∈ηk6=

1{0↔ x1 ↔ . . .↔ xk},

we can bound E[|C0| |W0] by

1 +
∞∑
k=1

EW1,...,Wk

∫
(Rd )k

k∏
i=1

(
1− e−λWi−1Wi/‖xi−xi−1‖α

)
d(x1, . . . , xk)

= 1 + W
d/α
0

∞∑
k=1

EW d/α
k

k−1∏
i=1

W
2d/α
i λkd/α

(∫
Rd

1− e−1/‖x‖
α

dx

)k

= 1 + W
d/α
0

E[W d/α]

E[W 2d/α]

∞∑
k=1

%k .
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1{0↔ x1 ↔ . . .↔ xk},

we can bound E[|C0| |W0] by

1 +
∞∑
k=1

EW1,...,Wk

∫
(Rd )k

k∏
i=1

(
1− e−λWi−1Wi/‖xi−xi−1‖α

)
d(x1, . . . , xk)

= 1 + W
d/α
0

∞∑
k=1

EW d/α
k

k−1∏
i=1

W
2d/α
i λkd/α

(∫
Rd

1− e−1/‖x‖
α

dx

)k

= 1 + W
d/α
0

E[W d/α]

E[W 2d/α]

∞∑
k=1

%k .
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Percolation of the scale-free RCM

Recall that

P(x ↔ y) = 1− exp

(
− λWxWy

‖x − y‖α

)
and define λc := inf{λ > 0 : P(|C0| =∞) > 0}.

Theorem: Deprez/Wüthrich (2019)

Let d ≥ 2 and assume that min{α, αβ} > d .

a) If αβ < 2d , then λc = 0.

b) If αβ > 2d , then λc ∈ (0,∞).

The assumptions % := λd/ακdΓ(1− d/α)E[W 2d/α] < 1 and
E[W 3d/α] <∞ imply αβ > 2d and λ < λc .
There are some λ < λc with % ≥ 1. For those it is open if our
result holds.
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Norros-Reittu model

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

I W positive random variable such that P(W > u) = u−βL(u),
u > 0, with β > 0 and L slowly varying

I Mark the nodes [n] := {1, . . . , n} with i.i.d. copies of W .

I Connect i , j ∈ [n] with Poisson(WiWj/
∑n

k=1Wk) many edges
independently.

I Norros/Reittu (2006)

I D
d
= Deg(1)

d
= Poisson(W1)

d
= Poisson(W )
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Subcritical Norros-Reittu model

Define

q̃(t) := inf{s ≥ 0 : P(W ≤ s) ≥ 1− 1/t}, t ≥ 1,

and ζ̃ := E[W ]/(E[W ]− E[W 2]).

Theorem: Lienau/S. 2023+

Assume that β > 2 and that E[W 2] < E[W ]. Then, as n→∞,

1

ζ̃q̃(n)
max
i∈[n]
|C(i)| d−→ Fréchet(β)

and{
|C(i)|
ζ̃q̃(n)

: i ∈ [n] and Wj ≥Wi ∀ j ∈ C(i)

}
∩ (0,∞)

d−→ Pβ.

Large degrees and components of scale-free random connection models | Matthias Schulte 18



Thank you!

Thank you!
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