Component counts of dense random geometric graphs

Mathew Penrose*
(University of Bath, UK)

Workshop 'Stochastic Geometry in Action' Bath, September 2024

- * Joint work with Xiaochuan Yang (Banque Internationale à Luxembourg.) Supported by EPSRC grant EP/T028653/1
 - Penrose, M.D. and Yang, X. (2023) On k-clusters of high-intensity random geometric graphs (v3). Arxiv
 - Penrose, M.D. and Yang, X. (2024+) On the components of random geometric graphs in the dense limit. In preparation?

Random geometric graphs

Let $d \in \mathbb{N}$, r > 0. Given locally finite $F \subset \mathbb{R}^d$, define the geometric graph G(F,r) = (V,E) with V = F and $\{x,y\} \in E \Leftrightarrow \|x-y\| \leq r$.

Let $A \subset \mathbb{R}^d$ be compact with ∂A smooth and $\operatorname{vol}(A) = 1$. Let X_1, X_2, \ldots be independent uniform random points in A. Let $F_n := \{X_1, \ldots, X_n\}$. Given $(r_n)_{n \geq 1}$, consider $G(F_n, r_n)$ as $n \to \infty$.

Note if $r_n \to 0$, $\mathbb{E}[\operatorname{Deg}(X_1)] \sim \theta n r_n^d$ as $n \to \infty$, where $\theta := \theta_d := \operatorname{vol}(B_1)$

The *k*-component count

Fix $k \in \mathbb{N}$; let $S_{n,k} :=$ number of components of order k in $G(F_n, r_n)$;

Case 1: Suppose $nr_n^d \to \lambda$ as $n \to \infty$. In this case (see Penrose 03) $n^{-1}\mathbb{E}[S_{n,k}] \to k^{-1}p_k(\lambda)$ as $n \to \infty$, and for some $\sigma > 0$,

$$n^{-1/2}(S_{n,k} - \mathbb{E}[S_{n,k}]) \xrightarrow{\mathcal{D}} N(0,\sigma).$$

Here $p_k(\lambda) = p_k(\lambda, d) \in (0, \infty)$ (we'll discuss later).

Note $p_1(\lambda) = \lim_{n \to \infty} \mathbb{P}[\operatorname{Deg}(X_1) = 0] = e^{-\lambda \theta}$.

Case 2: Suppose $d \geq 2$ and $\liminf (n\theta r_n^d/(\log n)) > 2 - 2/d$. Then as $n \to \infty$, $\mathbb{P}[\sum_k S_{n,k} = 1] \to 1$ (Penrose 03), so $\mathbb{P}[S_{n,k} = 0] \to 1$.

Case 0: Suppose $k \geq 2$ and $n(nr_n^d)^{k-1} \to c \in (0,\infty)$ (so $nr_n^d \to 0$). Then $S_{n,k}$ is asymptotically Poisson (see P. 03).

All limiting regimes are of interest (e.g. in Topological Data Analysis).

Case 1.5 (in between Cases 1 and 2)

THEOREM 1 (P. and Yang 2023) Suppose that $d \geq 2$ and that

$$\lim_{n \to \infty} (nr_n^d) = \infty \text{ and } \lim_{n \to \infty} \sup(n\theta r_n^d/\log n) < 2/d.$$
 (1)

Let $I_{n,k}:=\mathbb{E}[S_{n,k}]$, the mean number of k-components in $G(F_n,r_n)$. Then there exists $\alpha_k\in(0,\infty)$ such that as $n\to\infty$ with $k\in\mathbb{N}$ fixed:

(i)
$$kI_{n,k} \sim \alpha_k n(nr_n^d)^{(1-k)(d-1)} \exp(-\theta nr_n^d);$$
 (Note: $\alpha_1 = 1$)

(ii) $Var(S_{n,k}) \sim I_{n,k}$;

(iii)
$$\frac{S_{n,k} - \mathbb{E}[S_{n,k}]}{\sqrt{I_{n,k}}} \stackrel{\mathcal{D}}{\longrightarrow} N(0,1).$$

These results also hold for $S'_{n,k}$, defined like $S_{n,k}$ but with a Poisson(n) number of points.

P+Y also give bounds on the rates of convergence (not presented here). Note: $2/d \le 2 - 2/d$ which was the threshold for Case 2 (connectivity).

Singletons in Case 1.8 (between Cases 1.5 and 2)

THEOREM 2 (P. and Yang 2024+) Suppose that $d \geq 3$ and $nr_n^d \rightarrow \infty$ and

$$\liminf_{n \to \infty} (nr_n^d / \log n) > 2/d;$$
(2)

$$\lim_{n \to \infty} \sup_{n \to \infty} (nr_n^d / \log n) < 2 - 2/d. \tag{3}$$

Let $S_n:=S_{n,1}$, the number of isolated vertices (singletons) in $G(F_n,r_n)$. Let $I_n:=\mathbb{E}[S_n]$, $I'_n:=\mathbb{E}[S'_n]$ where $S'_n:=S'_{n,1}$. Then as $n\to\infty$:

(i)
$$I_n \sim I'_n \sim \theta_{d-1}^{-1} |\partial A| r_n^{1-d} \exp(-\theta n r_n^d/2);$$

(ii)
$$Var(S_n) \sim I_n$$
;

(iii)
$$\frac{S_n - \mathbb{E}[S_n]}{\sqrt{I_n}} \stackrel{\mathcal{D}}{\longrightarrow} N(0,1).$$

Results (ii) and (iii) also hold for S'_n . Also we can relax condition (3) to

$$n\theta r_n^d - (2-2/d)\log n - \log\log n \to -\infty$$

which is equivalent to $I_n \to \infty$.

Number of components and giant component

Let $K_n := \sum_{k=1}^n S_{n,k}$ and $L_n := \max\{k : S_{n,k} > 0\}$ and $R_n := n - L_n$.

If $nr_n^d \to \lambda$, LLN and CLT for K_n and L_n are given in Penrose (2003). Now let $nr_n^d \to \infty$ but $I_n \to \infty$ (eg $\limsup_{n \to \infty} (n\theta r_n^d/\log n) < 2 - 2/d$) Ganesan '13 (for $A = [0,1]^2$): $\exists c > 0$ with $\mathbb{P}[R_n < ne^{-cnr_n^2}] \to 1$.

THM 3 (P. and Y. 2024+) If $d \geq 2$ and ξ_n denotes any of R_n, K_n, R'_n, K'_n ,

$$\mathbb{E}[\xi_n] \sim I_n \sim ne^{-n\theta r_n^d} + e^{-n\theta r_n^d/2} r_n^{1-d} |\partial A|$$
 as $n \to \infty$

If also $d \geq 3$ or ξ_n is R'_n or K'_n , then $\mathbb{V}\mathrm{ar}[\xi_n] \sim I_n$ and

$$\frac{\xi_n - \mathbb{E}[\xi_n]}{I_n^{1/2}} \xrightarrow{\mathcal{D}} N(0,1).$$

If $\limsup (n\theta r_n^d/\log n) < \max(1/2,1-2/d)$ then $\frac{\xi_n}{I_n} \to 1$ almost surely.

Idea of proof of Theorem 3 [$\xi_n = K_n, K'_n, R_n$ or R'_n]

For $0 < a < b < \infty$ let $\xi_{n,a,b}$ denote the contribution to ξ_n from components of Euclidean diameter in the range $(ar_n,br_n]$. Given $\rho > \varepsilon > 0$,

$$\xi_n - S_n = \xi_{n,0,\varepsilon} + \xi_{\varepsilon,\rho} + \xi_{\rho,\infty}.$$

Can choose ε small and ρ large such that all of

$$\mathbb{E}[\xi_{n,0,\varepsilon}], \quad \mathbb{E}[\xi_{n,\varepsilon,\rho}] \quad \mathbb{E}[\xi_{n,\rho,\infty}]$$

are $o(I_n)$. Likewise for

$$\operatorname{Var}[\xi_{n,0,\varepsilon}], \quad \operatorname{Var}[\xi_{n,\varepsilon,\rho}] \quad \operatorname{Var}[\xi_{n,\rho,\infty}]$$

except when d=2 and $\xi_n=K_n$ or R_n .

[We can use spatial independence for $\mathbb{V}\mathrm{ar}[K'_{n,0,\varepsilon}]$ or $\mathbb{V}\mathrm{ar}[R'_{n,0,\varepsilon}]$ but have to use the Efron-Stein inequality for $\mathbb{V}\mathrm{ar}[K_{n,0,\varepsilon}]$ or $\mathbb{V}\mathrm{ar}[R_{n,0,\varepsilon}]$.]

Characterization of p_k and α_k

[Recall Case 1: if $nr_n^d \to \lambda$ then $\mathbb{E}[S_{n,k}/n] \to k^{-1}p_k(\lambda)$. Theorem 1(i): if $nr_n^d \to \infty$ and $\limsup_{n \to \infty} (n\theta r_n^d/\log n) < 2/d$ then $k\mathbb{E}[S_{n,k}] \sim \alpha_k n(nr_n^d)^{(1-k)(d-1)} \exp(-\theta nr_n^d)$.]

Given $\lambda>0$, let \mathcal{H}_λ be a homogeneous Poisson point process in \mathbb{R}^d with intensity λ . Let o be the origin in \mathbb{R}^d and $\mathcal{H}^o_\lambda:=\mathcal{H}_\lambda\cup\{o\}$. Then

$$p_k(\lambda) := \mathbb{P}[|\mathcal{C}_1(o, \mathcal{H}_{\lambda}^o)| = k],$$

where for $x \in F \subset \mathbb{R}^d$, $C_r(x, F) := \{ y \in F : x \leftrightarrow y \text{ in } G(F, r) \} \cup \{x\}.$

THEOREM A (Penrose and Yang 2023). Let $d, k \in \mathbb{N}$. As $\lambda \to \infty$,

$$p_{k+1}(\lambda) \sim \alpha_k e^{-\theta \lambda} \lambda^{-k(d-1)}$$
 (4)

where for a certain 'energy' function $g(z_1,\dots,z_k)$ to be defined later,

$$\alpha_k := \frac{1}{k!} \int_{(\mathbb{R}^d)^k} \exp(-g(z_1, \dots, z_k)) d(z_1, \dots, z_k).$$

[Previously (Alexander 1993)
$$p_{k+1}(\lambda) = \Theta(e^{-\theta\lambda}\lambda^{-k(d-1)})$$
.]

Towards proving Theorem A: a formula for $p_k(\lambda)$

For $F \subset \mathbb{R}^d$, r > 0, let $F^r := \bigcup_{x \in F} B_r(x)$. Also set $h_r(F) := \mathbf{1}\{G(F,r)) \in \mathcal{K}\}$, where \mathcal{K} is the class of connected graphs. Then $\mathbf{1}\{|\mathcal{C}_1(o,\mathcal{H}^0_\lambda)|=k+1\}$ equals 1/k! times

$$\sum_{x_1,\ldots,x_k\in\mathcal{H}_\lambda}^{\neq} h_1(\{o,x_1,\ldots,x_k\})\mathbf{1}\{(\mathcal{H}_\lambda\setminus\{x_1,\ldots,x_k\})\cap\{o,x_1,\ldots,x_k\}^1=\emptyset\},$$

where \sum^{\neq} means the the sum is over ordered k-tuples of distinct points in \mathcal{H}_{λ} . Thus by the multivariate Mecke formula (eg Last and Penrose 2018),

$$p_{k+1}(\lambda) = \frac{\lambda^k}{k!} \int_{\mathbb{R}^d} \cdots \int_{\mathbb{R}^d} h_1(\{o, x_1, \dots, x_k\}) \exp(-\lambda \operatorname{vol}(\{o, x_1, \dots, x_k\}^1))$$
$$d(x_1, \dots, x_k).$$

For short $p_{k+1}(\lambda) = \frac{\lambda^k}{k!} \int_{(\mathbb{R}^d)^k} h_1(o, \mathbf{x}) \exp(-\lambda V(o, \mathbf{x})) d\mathbf{x}$.

Idea for proof of Theorem A

For $\mathbf{x}=(x_1,\ldots,x_k)\in(\mathbb{R}^d)^k$ set $V(o,\mathbf{x})=\mathrm{vol}(\{o,x_1,\ldots,x_k\}^1)$ and $V'(\mathbf{x}):=V(o,\mathbf{x})-\theta.$ Taking $\mathbf{z}=\lambda\mathbf{x}$,

$$p_{k+1}(\lambda) = \frac{\lambda^k}{k!} \int_{(\mathbb{R}^d)^k} h_1(o, \mathbf{x}) \exp(-\lambda V(o, \mathbf{x})) d\mathbf{x}$$
$$= \frac{\lambda^{k-kd} e^{-\theta \lambda}}{k!} \int_{(\mathbb{R}^d)^k} h_1(o, \lambda^{-1} \mathbf{z}) \exp(-\lambda V'(\lambda^{-1} \mathbf{z})) d\mathbf{z}.$$

LEMMA: Let $\mathbf{z} \in (\mathbb{R}^d)^k$. Then $r^{-1}V'(r\mathbf{z}) \to g(\mathbf{z})$ (defined later) as $r \downarrow 0$.

Using the lemma (with $r=\lambda^{-1}$) and fact that the first factor tends to 1 as $\lambda\to\infty$ for all ${\bf z}$, and dominated convergence, gives

$$k! e^{\lambda \theta} \lambda^{kd-k} p_{k+1}(\lambda) \to \int_{(\mathbb{R}^d)^k} \exp(-g(\mathbf{z})) d\mathbf{z}$$

as $\lambda \to \infty$, which is a weak version of Theorem A.

Idea of proof of Lemma: $r^{-1}V'(r\mathbf{z}) \to g(\mathbf{z})$.

Recall
$$V'(\mathbf{x}) = \operatorname{vol}(\{o, x_1, \dots, x_k\}^1) - \theta$$
. For $k = 1$, $r^{-1}V'(rz) \to \theta_{d-1}$ as $r \downarrow 0$.

By some Euclidean geometry, given $x \in \partial B_1(o)$, with s = s(x,rz) as shown and $\alpha(x,z) = \angle xoz$,

$$s(x, rz) \sim r||z||(\cos(\alpha(x, z)))^+$$
 as $r \downarrow 0$.

Using polar coordinates, with σ for Lebesgue surface measure on $\partial B_1(o)$, $r^{-1}V(r\mathbf{z}) \to \int_{\partial B_1(o)} \max_{i \le k} (\|z_i\|(\cos\alpha(x,z_i))^+)\sigma(dx) =: g(\mathbf{z})$

Geometrical interpretation of $g(\mathbf{z})$, $\mathbf{z} \in (\mathbb{R}^d)^k$

From the last slide, $g(\mathbf{z}) := \int_{\partial B_1(o)} \max_{i \leq k} (\|z_i\| (\cos \alpha(x, z_i))^+) \sigma(dx).$

For $\mathbf{z} = (z_1, \dots, z_k) \in (\mathbb{R}^d)^k$ set

$$D(\mathbf{z}) := \bigcup_{i=1}^k B_{\|z\|/2}((1/2)z_i).$$

Then (using Thales' Theorem)

$$g(\mathbf{z}) = \int_{D(\mathbf{z})} \|x\|^{1-d} d\mathbf{x}.$$

Interpretation for d=2: the gravitational energy of $D(\mathbf{z})$ with respect to a large point mass at the origin.

THEOREM B (P. and Yang 2023)

Let $d,k\in\mathbb{N}$. If Y_1,\ldots,Y_k denote the points of $\mathcal{C}_1(o,\mathcal{H}^0_\lambda)\setminus\{o\}$ taken from left to right, then

$$\mathbb{P}[(\lambda Y_1, \dots, \lambda Y_k) \in d\mathbf{z} | (|\mathcal{C}_1(o, \mathcal{H}^0_{\lambda})|) = k+1] \Longrightarrow \mathbb{P}[(Z_{(1)}, \dots, Z_{(k)}) \in d\mathbf{z}]$$
 where $Z_{(1)}, \dots Z_{(k)}$ are the points Z_1, \dots, Z_k taken from left to right, and
$$\mathbb{P}[(Z_1, \dots, Z_k) \in d\mathbf{z}] = (k!\alpha_k)^{-1} \exp(-q(\mathbf{z})) d\mathbf{z}.$$

Re-statement of THEOREM 1 (Case 1.5)

THEOREM 1 (P. and Yang 2023) Suppose that $d \geq 2$ and that

$$\lim_{n \to \infty} (nr_n^d) = \infty \text{ and } \limsup_{n \to \infty} (n\theta r_n^d/\log n) < 2/d.$$
 (5)

Let $I_{n,k}:=\mathbb{E}[S_{n,k}]$, the mean number of k-components in $G(F_n,r_n)$. Then there exists $\alpha_k\in(0,\infty)$ such that as $n\to\infty$ with $k\in\mathbb{N}$ fixed:

(i)
$$kI_{n,k} \sim \alpha_k n(nr_n^d)^{(1-k)(d-1)} \exp(-\theta nr_n^d);$$
 (Note: $\alpha_1 = 1$)

(ii) $\operatorname{Var}(S_{n,k}) \sim I_{n,k}$;

(iii)
$$\frac{S_{n,k} - \mathbb{E}[S_{n,k}]}{\sqrt{I_{n,k}}} \xrightarrow{\mathcal{D}} N(0,1).$$

These results also hold for $S'_{n,k}$, defined like $S_{n,k}$ but with a Poisson(n) number of points.

Ideas of proof of Theorem 1

(i) By scaling and binomial-Poisson approximation,

$$k\mathbb{E}[S_{n,k}] = n \int_{A} \mathbb{P}[|\mathcal{C}_{r_n}(x, F_{n-1} \cup \{x\})| = k] dx$$
$$\sim n\mathbb{P}[|\mathcal{C}_1(o, \mathcal{H}_{nr_n^d} \cup \{o\})| = k] = np_k(nr_n^d)$$

and (i) then follows by applying Theorem A.

(ii) Similar (but more involved) second moment computation.

(iii) Let
$$Y_i := \mathbf{1}\{|\mathcal{C}_{r_n}(X_i, F_n)| = k, X_i \prec X_j \ \forall X_j \in \mathcal{C}_{r_n}(X_i, F_n)\}.$$
 Poisson approximation using Stein's method/coupling (BHJ92)

$$d_{TV}(S_{n,k}, \text{Po}(\mathbb{E}[S_{n,k}])) \le \mathbb{E}[|S_{n,k} - V|]$$

for any coupled V satisfying $\mathcal{L}(V)=\mathcal{L}(S_{n,k}-1|Y_1=1)$. For V, resample $X_1,\ldots X_k$ with conditional law given $\{Y_1=1\}\cap \{C_{r_n}(X_1,F_n)=\{X_1,\ldots,X_k\}\}$. Then resample those $X_j,j>k$ which lie in $\{X_1,\ldots,X_k\}^1$. This works.

References

- Alexander, K.S. (1993) Finite clusters in continuous percolation: compression and sphericality. *Probab. Theory Related Fields* 97, 35–63.
- Barbour, A.D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford University Press.
- Last, G. and Penrose, M. (2018) Lectures on the Poisson process.
 Cambridge University Press.
- Penrose, M.D. (2003). Random Geometric Graphs. Oxford University Press.
- Penrose, M.D. and Yang, X. (2023) On k-clusters of high-intensity random geometric graphs (v3). Arxiv