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Random geometric graphs

Let d € N, 7 > 0. Given locally finite F' C R?, define the geometric graph
G(F,r)= (V,E) with V = F and {z,y} € E & |z —y| <.

Let A C R? be compact with A smooth and vol(A) = 1.
Let X1, X5, ... be independent uniform random points in A.
Let F, ;== {X1,...,Xn}. Given (7,,)n>1, consider G(F,,r,) as n — o0.

Note if 7, — 0, E[Deg(X1)] ~ 6nrd as n — oo, where f := 64 := vol(By).



The k-component count

Fix k € N; let S, 1, := number of components of order k in G(Fy,,ry);

Case 1: Suppose nré — X as n — oco. In this case (see Penrose 03)
nYE[Sn k] = kpr(A) as n — oo, and for some o > 0,

nV2(Sp k — E[Snil) = N(0,0).

Here pr.(A) = pr(A, d) € (0,00) (we'll discuss later).
Note p1()\) = lim,,_,0o P[Deg(X;) = 0] = e,

Case 2: Suppose d > 2 and lim inf(nfrl/(logn)) > 2 — 2/d. Then as
n — 00, P[>, Spr = 1] = 1 (Penrose 03), so P[S,, ;, = 0] — 1.

Case 0: Suppose k > 2 and n(nrd)*=1 — ¢ € (0,00) (so nrd — 0). Then
Sn.k is asymptoticlaly Poisson (see P. 03).

All limiting regimes are of interest (e.g. in Topological Data Analysis).



Case 1.5 (in between Cases 1 and 2)

THEOREM 1 (P. and Yang 2023) Suppose that d > 2 and that

lim (nrd) = oo and limsup(nfrl/logn) < 2/d. (1)

n—00 n—o00

Let I, := E[S,, ], the mean number of k-components in G(F,,,ry,).
Then there exists oy, € (0,00) such that as n — oo with k € N fixed:

(i) kI g ~ agn(nrd)3=RE=1) exp(—Onrd); (Note: a; =1)
(ii) Var(Spx) ~ In;

1/ In,k

These results also hold for .S}, ;, defined like S, but with a Poisson(n)
number of points.

P-+Y also give bounds on the rates of convergence (not presented here).
Note: 2/d < 2 — 2/d which was the threshold for Case 2 (connectivity).



Singletons in Case 1.8 (between Cases 1.5 and 2)

THEOREM 2 (P. and Yang 2024+ ) Suppose that d > 3 and nré — oo and

liniinf(nrg/log n) > 2/d, (2)
lim sup(nrd/logn) < 2 — 2/d. (3)
n—oo
Let S, := Sp.1, the number of isolated vertices (singletons) in G(F,, ry,).
Let I,, := E[S,], I, := E[S],] where S} := 5] ;. Then as n — oc:

(i) I, ~ I, ~ 071 |10A|r =@ exp(—6nrd /2);

(i) Var(Sy) ~ Ip;

vy Su—E[S,] D

(iii) % 25 N(0,1).

Results (ii) and (iii) also hold for S),. Also we can relax condition (3) to

nfré — (2 —2/d)logn — loglogn — —oo

which is equivalent to I,, — oo.



Number of components and giant component

Let K, :=) p_; Snk and Ly, := max{k : S, > 0} and R, :=n — Ly,
If nrd — X\, LLN and CLT for K, and L,, are given in Penrose (2003).

Now let nrd — oo but I,, — oo (eg limsup,,_, .. (nfrd/logn) < 2 — 2/d)
Ganesan '13 (for A = [0,1]?): 3¢ > 0 with P[R,, < ne—cm“r%] — 1.

THM 3 (P. and Y. 2024+) If d > 2 and &, denotes any of R, K,,, R, K,
E[¢,] ~ Iy ~ ne " 4 67"9T2/2r£*d|8/1| as n — 0o
If also d > 3 or &, is R), or K], then Var[¢,] ~ I,, and

fn B E[&n]

D
Y R N(0,1).

If lim sup(nfrd /logn) < max(1/2,1 —2/d) then % — 1 almost surely.



Idea of proof of Theorem 3 [¢, = K,,, K, R,, or R]

For 0 <a <b < oo let &, denote the contribution to &, from
components of Euclidean diameter in the range (ary,, br,]. Given
p>e >0,

fn - Sn = §n,0,e + ga,p + fp,oo

Can choose € small and p large such that all of

E[gn,O,s]v E[gn,s,p] E[gn,p,oo]

are o(I,,). Likewise for

Var[fn,o,a]a Var[fn,s,p] Var[fn,ppo]

except when d =2 and ¢, = K,, or R,,.
[We can use spatial independence for Var[K], ] or Var[R] , | but have
to use the Efron-Stein inequality for Var[K, o E] or Var[Rn7076] ]



Characterization of p; and oy

[Recall Case 1: if nrd — X then E[S,, x/n] — k™ 1pi(N).
Theorem 1(i): if nrd — oo and limsup,,_, .. (nfrl/logn) < 2/d then
KE[S,, 1] ~ agn(nrd)A=RE@=1) exp(—gnrd) ]

Given A > 0, let H be a homogeneous Poisson point process in R¢ with
intensity A. Let o be the origin in R? and H$ := H, U {o}. Then

Pe(A) := P[ICi (0, HY)| = K],
where for v € F CRY, Cp(2, F) :={y € F: x> y in G(F,r)} U {z}.
THEOREM A (Penrose and Yang 2023). Let d,k € N. As A\ — oo,

pk—i—l()\) ~ akefe)\)\fk(dfl) (4)
where for a certain ‘energy’ function g(z1, ..., zx) to be defined later,
1
oy = — exp(—g(z1, ..., 2k))d(z1, . . ., 2k).
k! J(mayk

[Previously (Alexander 1993) pj41(\) = ©(e~ AN —F(d-1)) ]



Towards proving Theorem A: a formula for p;(\)

For FCR?, >0, let F" := UperB,(x). Also set
h.(F) := 1{G(F,r)) € K}, where K is the class of connected graphs.
Then 1{|C1 (0, HY)| = k + 1} equals 1/k! times

£
> mo, .M\ 2, )00,z 3t = 0,

Tl TR EHN

where Zsﬁ means the the sum is over ordered k-tuples of distinct points in
Hy. Thus by the multivariate Mecke formula (eg Last and Penrose 2018),

Ak
a0 =55 [ [ oo es(-Avol({oan. .} )
- JRA Rd

d(l‘l, N ,:L'k).

For short pr11(\) = ),‘7’,6 f(Rd)k hi(o,x) exp(—AV (0, x))dx.



Idea for proof of Theorem A

For x = (z1,...,71) € (RY)* set V(0,x) = vol({0,z1,...,7;}') and
V/(x) := V(0,x) — 6. Taking z = \x,

)\k
pen() =0 / 1 (0,%) exp(=AV (0, x))dx
. (Rd)k
\k—kdp—0X
= / hi(o, A7 z) exp(=AV'(A\712))dz.
k' (Rd)k

LEMMA: Let z € (RY)*. Then r~1V'(rz) — g(z) (defined later) as r | 0.

Using the lemma (with 7 = A~!) and fact that the first factor tends to 1
as A — oo for all z, and dominated convergence, gives

e NEp (V) — exp(—g(z))dz
(R)k

as A — oo, which is a weak version of Theorem A.



Idea of proof of Lemma: r'V'(rz) — g(z).

Recall V'(x) = vol({o,x1,...,2x}*) — 0. For k=1,
r W (rz) = 041 asr 0.

By some Euclidean geometry, given x € 0B1(0), with s = s(x,rz) as
shown and a(z,z2) = Zzoz,

s(z,rz) ~ r||z||(cos(a(z,2)))" asr]O0.

Using polar coordinates, with o for Lebesgue surface measure on 9Bj(0),
PV 2) = fop, o maxica(( ) (cos e, ) )o(da) = g(2)




Geometrical interpretation of g(z), z € (R%)*

From the last slide, g(z) := faBl(o) max;<k (|| zi|| (cos a(z, z;)) 7)o (dx).

2

Z,

Forz = (z1,...,2) € (R set
D(z) == UL, By, 2((1/2)2).
Then (using Thales” Theorem)

9(z) = / ||~
D(z)

Interpretation for d = 2: the gravitational energy of D(z) with respect to
a large point mass at the origin.



THEOREM B (P. and Yang 2023)

Let d,k € N. If Y1,...,Y} denote the points of C1(0,H3) \ {0} taken from
left to right, then

P{(AY1,..., AYs) € dz|(|Ci (0, HY)]) = k + 1] = P[(Z), - .-, Zry) € d2]
where Z(y),... Z,) are the points Z1, ..., Zj taken from left to right, and

P((Z1,...,2Z) € dz] = (Kloy,) " exp(—g(z))dz.



Re-statement of THEOREM 1 (Case 1.5)

THEOREM 1 (P. and Yang 2023) Suppose that d > 2 and that

lim (nr?) = co and limsup(nfré/logn) < 2/d. (5)
n—00 n—o0
Let I, := E[S,, ], the mean number of k-components in G(F,, ry,).

Then there exists oy, € (0,00) such that as n — oo with k € N fixed:

(i) kg ~ agn(nrd)3=RE=1) exp(—Onrd); (Note: o =1)

(it) Var(Sn) ~ Ing;

\ In,k

These results also hold for .57, ;, defined like S;, 1 but with a Poisson(n)
number of points.



Ideas of proof of Theorem 1

(i) By scaling and binomial-Poisson approximation,

EE[Sy k] = ”/APHCM (x, Fom1 U{z})| = kl]dx
~ nP|C1(0, Hppa U {0})] = k] = npi(nry)

and (i) then follows by applying Theorem A.

(ii) Similar (but more involved) second moment computation.
(iii) Let V; := 1{|Crn(Xan)’ =k X; < Xj VX]' S Crn(XiaFn)}-
Poisson approximation using Stein's method/coupling (BHJ92)

dTV(Sn,ka PO(]E[Sn,kD) < EH‘S’an - V”

for any coupled V satisfying L(V) = L(S,, — 1|Y1 =1).

For V, resample X1, ... X} with conditional law given

{1 =1} n{C,, (X1, F,) ={X1,...,Xk}}. Then resample those
X,,7 > k which lie in {X1,..., Xz}, This works.
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