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Random geometric graphs

Let d ∈ N, r > 0. Given locally finite F ⊂ Rd, define the geometric graph
G(F, r) = (V,E) with V = F and {x, y} ∈ E ⇔ ‖x− y‖ ≤ r.

Let A ⊂ Rd be compact with ∂A smooth and vol(A) = 1.
Let X1, X2, . . . be independent uniform random points in A.
Let Fn := {X1, . . . , Xn}. Given (rn)n≥1, consider G(Fn, rn) as n→∞.

Note if rn → 0, E[Deg(X1)] ∼ θnrdn as n→∞, where θ := θd := vol(B1).
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The k-component count

Fix k ∈ N; let Sn,k := number of components of order k in G(Fn, rn);

Case 1: Suppose nrdn → λ as n→∞. In this case (see Penrose 03)
n−1E[Sn,k]→ k−1pk(λ) as n→∞, and for some σ > 0,

n−1/2(Sn,k − E[Sn,k])
D−→ N(0, σ).

Here pk(λ) = pk(λ, d) ∈ (0,∞) (we’ll discuss later).
Note p1(λ) = limn→∞ P[Deg(X1) = 0] = e−λθ.

Case 2: Suppose d ≥ 2 and lim inf(nθrdn/(log n)) > 2− 2/d. Then as
n→∞, P[

∑
k Sn,k = 1]→ 1 (Penrose 03), so P[Sn,k = 0]→ 1.

Case 0: Suppose k ≥ 2 and n(nrdn)k−1 → c ∈ (0,∞) (so nrdn → 0). Then
Sn,k is asymptoticlaly Poisson (see P. 03).

All limiting regimes are of interest (e.g. in Topological Data Analysis).
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Case 1.5 (in between Cases 1 and 2)

THEOREM 1 (P. and Yang 2023) Suppose that d ≥ 2 and that

lim
n→∞

(nrdn) =∞ and lim sup
n→∞

(nθrdn/ log n) < 2/d. (1)

Let In,k := E[Sn,k], the mean number of k-components in G(Fn, rn).
Then there exists αk ∈ (0,∞) such that as n→∞ with k ∈ N fixed:

(i) kIn,k ∼ αkn(nrdn)(1−k)(d−1) exp(−θnrdn); (Note: α1 = 1)

(ii) Var(Sn,k) ∼ In,k;

(iii)
Sn,k−E[Sn,k]√

In,k

D−→ N(0, 1).

These results also hold for S′n,k, defined like Sn,k but with a Poisson(n)
number of points.

P+Y also give bounds on the rates of convergence (not presented here).
Note: 2/d ≤ 2− 2/d which was the threshold for Case 2 (connectivity).
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Singletons in Case 1.8 (between Cases 1.5 and 2)

THEOREM 2 (P. and Yang 2024+) Suppose that d ≥ 3 and nrdn →∞ and

lim inf
n→∞

(nrdn/ log n) > 2/d; (2)

lim sup
n→∞

(nrdn/ log n) < 2− 2/d. (3)

Let Sn := Sn,1, the number of isolated vertices (singletons) in G(Fn, rn).
Let In := E[Sn], I ′n := E[S′n] where S′n := S′n,1. Then as n→∞:

(i) In ∼ I ′n ∼ θ−1d−1|∂A|r
1−d
n exp(−θnrdn/2);

(ii) Var(Sn) ∼ In;

(iii) Sn−E[Sn]√
In

D−→ N(0, 1).

Results (ii) and (iii) also hold for S′n. Also we can relax condition (3) to

nθrdn − (2− 2/d) log n− log log n→ −∞

which is equivalent to In →∞.
5 / 17



Number of components and giant component

Let Kn :=
∑n

k=1 Sn,k and Ln := max{k : Sn,k > 0} and Rn := n− Ln.

If nrdn → λ, LLN and CLT for Kn and Ln are given in Penrose (2003).
Now let nrdn →∞ but In →∞ (eg lim supn→∞(nθrdn/ log n) < 2− 2/d)
Ganesan ’13 (for A = [0, 1]2): ∃c > 0 with P[Rn < ne−cnr

2
n ]→ 1.

THM 3 (P. and Y. 2024+) If d ≥ 2 and ξn denotes any of Rn,Kn, R
′
n,K

′
n,

E[ξn] ∼ In ∼ ne−nθr
d
n + e−nθr

d
n/2r1−dn |∂A| as n→∞

If also d ≥ 3 or ξn is R′n or K ′n, then Var[ξn] ∼ In and

ξn − E[ξn]

I
1/2
n

D−→ N(0, 1).

If lim sup(nθrdn/ log n) < max(1/2, 1− 2/d) then ξn
In
→ 1 almost surely.
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Idea of proof of Theorem 3 [ξn = Kn, K
′
n, Rn or R′n]

For 0 < a < b <∞ let ξn,a,b denote the contribution to ξn from
components of Euclidean diameter in the range (arn, brn]. Given
ρ > ε > 0,

ξn − Sn = ξn,0,ε + ξε,ρ + ξρ,∞.

Can choose ε small and ρ large such that all of

E[ξn,0,ε], E[ξn,ε,ρ] E[ξn,ρ,∞]

are o(In). Likewise for

Var[ξn,0,ε], Var[ξn,ε,ρ] Var[ξn,ρ,∞]

except when d = 2 and ξn = Kn or Rn.
[We can use spatial independence for Var[K ′n,0,ε] or Var[R′n,0,ε] but have
to use the Efron-Stein inequality for Var[Kn,0,ε] or Var[Rn,0,ε].]
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Characterization of pk and αk

[Recall Case 1: if nrdn → λ then E[Sn,k/n]→ k−1pk(λ).
Theorem 1(i): if nrdn →∞ and lim supn→∞(nθrdn/ log n) < 2/d then
kE[Sn,k] ∼ αkn(nrdn)(1−k)(d−1) exp(−θnrdn).]

Given λ > 0, let Hλ be a homogeneous Poisson point process in Rd with
intensity λ. Let o be the origin in Rd and Hoλ := Hλ ∪ {o}. Then

pk(λ) := P[|C1(o,Hoλ)| = k],

where for x ∈ F ⊂ Rd, Cr(x, F ) := {y ∈ F : x↔ y in G(F, r)} ∪ {x}.

THEOREM A (Penrose and Yang 2023). Let d, k ∈ N. As λ→∞,

pk+1(λ) ∼ αke−θλλ−k(d−1) (4)

where for a certain ‘energy’ function g(z1, . . . , zk) to be defined later,

αk :=
1

k!

∫
(Rd)k

exp(−g(z1, . . . , zk))d(z1, . . . , zk).

[Previously (Alexander 1993) pk+1(λ) = Θ(e−θλλ−k(d−1)).]
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Towards proving Theorem A: a formula for pk(λ)

For F ⊂ Rd, r > 0, let F r := ∪x∈FBr(x). Also set
hr(F ) := 1{G(F, r)) ∈ K}, where K is the class of connected graphs.
Then 1{|C1(o,H0

λ)| = k + 1} equals 1/k! times

6=∑
x1,...,xk∈Hλ

h1({o, x1, . . . , xk})1{(Hλ\{x1, . . . , xk})∩{o, x1, . . . , xk}1 = ∅},

where
∑ 6= means the the sum is over ordered k-tuples of distinct points in

Hλ. Thus by the multivariate Mecke formula (eg Last and Penrose 2018),

pk+1(λ) =
λk

k!

∫
Rd
· · ·

∫
Rd
h1({o, x1, . . . , xk}) exp(−λvol({o, x1, . . . , xk}1))

d(x1, . . . , xk).

For short pk+1(λ) = λk

k!

∫
(Rd)k h1(o,x) exp(−λV (o,x))dx.
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Idea for proof of Theorem A

For x = (x1, . . . , xk) ∈ (Rd)k set V (o,x) = vol({o, x1, . . . , xk}1) and
V ′(x) := V (o,x)− θ. Taking z = λx,

pk+1(λ) =
λk

k!

∫
(Rd)k

h1(o,x) exp(−λV (o,x))dx

=
λk−kde−θλ

k!

∫
(Rd)k

h1(o, λ
−1z) exp(−λV ′(λ−1z))dz.

LEMMA: Let z ∈ (Rd)k. Then r−1V ′(rz)→ g(z) (defined later) as r ↓ 0.

Using the lemma (with r = λ−1) and fact that the first factor tends to 1
as λ→∞ for all z, and dominated convergence, gives

k!eλθλkd−kpk+1(λ)→
∫
(Rd)k

exp(−g(z))dz

as λ→∞, which is a weak version of Theorem A.
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Idea of proof of Lemma: r−1V ′(rz)→ g(z).

Recall V ′(x) = vol({o, x1, . . . , xk}1)− θ. For k = 1,

r−1V ′(rz)→ θd−1 as r ↓ 0.

By some Euclidean geometry, given x ∈ ∂B1(o), with s = s(x, rz) as
shown and α(x, z) = ∠ xoz,

s(x, rz) ∼ r‖z‖(cos(α(x, z)))+ as r ↓ 0.

Using polar coordinates, with σ for Lebesgue surface measure on ∂B1(o),
r−1V (rz)→

∫
∂B1(o)

maxi≤k(‖zi‖(cosα(x, zi))
+)σ(dx) =: g(z)

α β
rzo z

1+s
1 1B (rz)

(1+s)x
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Geometrical interpretation of g(z), z ∈ (Rd)k

From the last slide, g(z) :=
∫
∂B1(o)

maxi≤k(‖zi‖(cosα(x, zi))
+)σ(dx).

o
z

z

z
3

2

1

For z = (z1, . . . , zk) ∈ (Rd)k set

D(z) := ∪ki=1B‖z‖/2((1/2)zi).

Then (using Thales’ Theorem)

g(z) =

∫
D(z)
‖x‖1−ddx.

Interpretation for d = 2: the gravitational energy of D(z) with respect to
a large point mass at the origin.
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THEOREM B (P. and Yang 2023)

Let d, k ∈ N. If Y1, . . . , Yk denote the points of C1(o,H0
λ) \ {o} taken from

left to right, then

P[(λY1, . . . , λYk) ∈ dz|(|C1(o,H0
λ)|) = k + 1] =⇒ P[(Z(1), . . . , Z(k)) ∈ dz]

where Z(1), . . . Z(k) are the points Z1, . . . , Zk taken from left to right, and

P[(Z1, . . . , Zk) ∈ dz] = (k!αk)
−1 exp(−g(z))dz.
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Re-statement of THEOREM 1 (Case 1.5)

THEOREM 1 (P. and Yang 2023) Suppose that d ≥ 2 and that

lim
n→∞

(nrdn) =∞ and lim sup
n→∞

(nθrdn/ log n) < 2/d. (5)

Let In,k := E[Sn,k], the mean number of k-components in G(Fn, rn).
Then there exists αk ∈ (0,∞) such that as n→∞ with k ∈ N fixed:

(i) kIn,k ∼ αkn(nrdn)(1−k)(d−1) exp(−θnrdn); (Note: α1 = 1)

(ii) Var(Sn,k) ∼ In,k;

(iii)
Sn,k−E[Sn,k]√

In,k

D−→ N(0, 1).

These results also hold for S′n,k, defined like Sn,k but with a Poisson(n)
number of points.

14 / 17



Ideas of proof of Theorem 1

(i) By scaling and binomial-Poisson approximation,

kE[Sn,k] = n

∫
A
P[|Crn(x, Fn−1 ∪ {x})| = k]dx

∼ nP[|C1(o,Hnrdn ∪ {o})| = k] = npk(nr
d
n)

and (i) then follows by applying Theorem A.
(ii) Similar (but more involved) second moment computation.
(iii) Let Yi := 1{|Crn(Xi, Fn)| = k,Xi ≺ Xj ∀Xj ∈ Crn(Xi, Fn)}.
Poisson approximation using Stein’s method/coupling (BHJ92)

dTV (Sn,k,Po(E[Sn,k])) ≤ E[|Sn,k − V |]

for any coupled V satisfying L(V ) = L(Sn,k − 1|Y1 = 1).
For V , resample X1, . . . Xk with conditional law given
{Y1 = 1} ∩ {Crn(X1, Fn) = {X1, . . . , Xk}}. Then resample those
Xj , j > k which lie in {X1, . . . , Xk}1. This works.
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