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1. The random connection model

Setting

η is a Poisson process on a complete separable metric space
(CSMS) X with intensity measure tλ, where λ is a σ-finite and
diffuse measure on X and t ≥ 0 is an intensity parameter.

Definition

Let φ : X× X → [0,1] be a measurable and symmetric
connection function, satisfying∫

φ(x , y)λ(dy) < ∞, λ-a.e. x .

Given η, connect any two distinct points x , y ∈ η with probability
φ(x , y) independently of all other pairs. This gives the random
connection model ξ ≡ Γφ(η).
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Definition

Write η = {Xn : n ≤ η(X)} and let (Um,n)m,n≥1 be an
iid-sequence of uniformly distributed random variables. Then
the edges of the RCM Γφ(η) are given by the point process

{{Xm,Xn} : Xm < Xn,Um,n ≤ φ(Xm,Xn)},

where < on is a measurable partial ordering on X, that orders
the points of X λ-a.e. The RCM Γφ(η

′) can be defined for any
point process η′ on X.
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2. Percolation

Definition

Given x ∈ η the cluster C(x , ξ) is the connected
component of x in ξ.
Given x ∈ X let ξx denote the RCM arising from ξ by
adding the point x along with independently drawn
connections between x and the points from η.
The cluster Cx ≡ Cx(x , ξx) is the connected component of
x in ξx .
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Definition

If the RCM ξ has an infinite cluster, then it percolates. The
position dependent percolation probability is defined by

θx(t) := Pt(|Cx | = ∞), x ∈ X.

Theorem

The RCM percolates with positive probability iff

λ({x : θx(t) > 0}) > 0.
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3. The stationary marked RCM

Setting

M is a CSMS equipped with a probability measure Q, the
mark distribution.
X = Rd ×M and λ = tλd ⊗Q, where λd denotes Lebesgue
measure on Rd .
The symmetric connection function satisfies

φ((x ,p), (y ,q)) = φ((0,p), (y − x ,q))

for all x , y ∈ Rd and all p,q ∈ M.

Günter Last Cluster density and the infinite cluster of the random connection model



Remark

The stationary marked RCM ξ is stationary and ergodic w.r.t.
shifts of the spatial coordinate.

Assumption

The expected degree of the typical vertex is denoted by

dφ :=

∫∫
φ(x ,p,q)dx Q2(d(p,q)),

where φ(x ,p,q) := φ((0,p), (x ,q)). We assume that

dφ < ∞.
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Definition

Define

θ(t) :=
∫

Pt
(
|C(0,p)| = ∞

)
Q(dp), t ≥ 0,

as the probability that the cluster of a typical vertex has infinite
size.

Theorem

Let t > 0. Then θ(t) > 0 iff ξ percolates Pt -almost surely.
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Definition

The critical intensity is defined by

tc := inf{t ≥ 0 : θ(t) > 0}.

Remark

In the unmarked case it was shown in the seminal paper
Penrose ’91 that 0 < tc < ∞ (under the minimal assumption
0 <

∫
φ(x)dx < ∞).
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Example

Suppose that M equals the space Cd of all non-empty compact
subsets of Rd , equipped with the Hausdorff metric. Assume
that the connection function is given by

φ((x ,K ), (y ,L)) = 1{(K + x) ∩ (L + y) ̸= ∅}.

The random closed set

Z :=
⋃

(x ,K )∈η

K + x .

is known as the Boolean model. Percolation in ξ is equivalent to
percolation in Z .
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Example

Assume that M = (0,1) equipped with Lebesgue measure Q.
Assume also that

φ((x ,p), (y ,q)) = ρ(g(p,q)∥x − y∥d),

for a decreasing function ρ : [0,∞) → [0,1] and a function
g : (0,1)× (0,1) → [0,∞) which is increasing in both
arguments. We assume that mρ :=

∫
ρ(∥x∥d)dx is positive and

finite. This model is sometimes called weight-dependent
random connection model.
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4. Deletion stability

Setting

ξ is a (Poisson driven) stationary marked RCM.

Definition

For (x ,p) ∈ Rd ×M let N∞(x ,p) denote the number of infinite
clusters in C(x ,p) − δ(x ,p).

Theorem (Chebunin and L. ’24)

The infinite clusters of a stationary marked RCM are deletion
stable, that is

P(N∞(x ,p) ≥ 2) = 0, λ-a.e. (x ,p).
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5. Proof of deletion stability

Definition

The cluster density is defined by

κ(t) :=
∫

Et
[
|C(0,p)|−1]Q(dp), t ∈ R+.

Remark

tκ(t) is the intensity of finite clusters.
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Definition

Let (x ,p) ∈ η.
N0(x ,p) denotes the number of clusters in C(x ,p) − δ(x ,p).
N+(x ,p) is defined similarly, except that at most one
infinite cluster is counted, i.e.

N+(x ,p) := N0(x ,p)− 1{N∞(x ,p) ≥ 1}(N∞(x ,p)− 1).

Goal

Show that

N+(x ,p) = N0(x ,p), λ-a.e. (x ,p) ∈ Rd ×M.
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Use a Margulis–Russo type formula and analytic tools to
prove that κ(t) is differentiable!
Let (Bn)n∈N be an increasing sequence of convex and
compact sets with union Rd .
Define finite volume counterparts N0

n (x ,p) and N+
n (x ,p) of

N0(x ,p) resp. N+(x ,p) based on empty resp. wired
boundary conditions.
Use Margulis–Russo to show for ⋆ ∈ {0,+} that

d
dt

EtMn,⋆ = λd(Bn)− Et

∫∫
1{x ∈ Bn}N⋆

n(x ,p)dx Q(dp),

where Mn,∗ is the number of clusters in Bn with boundary
condition ∗.
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We have

lim
n→∞

(λd(Bn))
−1EtMn,⋆ = tκ(t)

For each n ∈ N the function t 7→ EtMn,⋆ + λd(Bn)dφt2/2 is
convex.
Conclude that t 7→ tκ(t) + dφt2/2 is convex. Hence its
derivative is the limit of the derivatives of

λd(Bn)
−1EtMn,⋆ + dφt2/2.
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6. Irreducibility

Definition

Define

d (1)
φ (p,q) ≡ dφ(p,q) :=

∫
φ(x ,p,q)dx , p,q ∈ M,

and inductively

d (n+1)
φ (p,q) =

∫
d (n)
φ (p, r)d (1)

φ (r ,q)Q(dr), n ∈ N.

Then
∫

d (n)
φ (p,q)1{q ∈ A}Q(dq) is the expected number of

paths of length n from (0,p) to some location with mark in a
measurable set A ⊂ M.
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Theorem

We have that

sup
n≥1

d (n)
φ (p,q) > 0, Q2-a.e. (p,q) ∈ M2

iff ξ is irreducible, that is

P(x1 ↔ x2 in ξx1,x2) > 0, λ2-a.e. (x1, x2) ∈ X2.
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7. Uniqueness of the infinite cluster

Theorem (Chebunin and L. ’24)

An irreducible stationary marked RCM has P-a.s. at most one
infinite cluster.
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Idea of the proof
We need to prove that any two points of η cannot belong to
two different infinite clusters.
By the bivariate Mecke equation we need to prove that for
λ2-a.e. (x1, x2) it is impossible that the clusters Cx1(ξx1,x2)
and Cx2(ξx1,x2) are infinite and not connected.
By irreducibility there is a positive probability that x1 and x2
are connected in ξx1,x2 .
By the multivariate Mecke equation we can find a
measurable set B ⊂ B with 0 < λ(B) < ∞, an n ∈ N and
independent r.v.’s Y1, . . . ,Yn with distribution
λ(· ∩ B)/λ(B)−1 such that x1 and x2 are connected in the
RCM based on x1, x2,Y1, . . . ,Yn with positive probability.
It can be shown that the augmented RCM ξx1,x2,Y1,...,Yn is
still deletion stable.
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Theorem (Chebunin and L. ’24)

Assume that ξ has almost surely at most one infinite cluster.
Then the infinite cluster of ξ is deletion stable.
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8. Analytic properties of the cluster density

Theorem (Chebunin and L. ’24)

The function t 7→ tκ(t) + dφt2/2 is continuously differentiable on
(0,∞), convex on R+ and right differentiable at zero. (Recall
that dφ is expected degree of a typical vertex.)
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9. Sharp phase transition

Definition

Define the critical intensities

tT := inf
{

t ≥ 0 : Et

∫
|C(0,p)|Q(dp) = ∞

}
,

t∞T := inf
{

t ≥ 0 : ess sup
p∈M

Et |C(0,p)| = ∞
}

and note that t∞T ≤ tT ≤ tc .

Definition

Define

d∗
φ := ess sup

p∈M

∫
d(p,q)Q(dq) = ess sup

p∈M

∫
φ(x ,p,q)dx Q(dq).
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Theorem (Chebunin and L. ’24)

Assume that d∗
φ ∈ (0,∞). Then t(∞)

T ≥ 1/d∗
φ. Moreover, for

each t < t(∞)
T there exists δ = δ(t) > 0 such that

ess sup
p∈M

Eteδ|C(0,p)| < ∞

Theorem (Chebunin and L. ’24)

Assume that

0 < ess sup
p∈M

∫
d(p,q)2 Q(dq) < ∞.

Then tc = t∞T and

Etc

∫
|C(0,p)|Q(dp) = ∞.
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Remarks

In the unmarked case the equality tc = tT was proved in
Meester ’95 (under additional assumptions on the
connection function).
The preceding theorems generalize some of the results in
Ziesche ’18, Dickson and Heydenreich ’22, Caicedo and
Dickson ’23 and Küpper and Penrose ’24.
For the spherical Boolean model our assumption require
the random radii to be deterministically bounded. This was
significantly relaxed in Duminil-Copin, Raoufi and Tassion
’20.
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10. Examples

Example

Consider the unmarked stationary RCM ξ. It can be proved that
ξ is irreducible. Hence there is at most one infinite cluster. This
generalizes an earlier result (see Meester and Roy ’96), where
it is assumed that φ(x) = φ̃(∥x∥), x ∈ Rd , for a decreasing
function φ̃ : [0,∞) → [0,1]. The proof there is based on the
Burton–Keane ’89 approach.

Günter Last Cluster density and the infinite cluster of the random connection model



Example

Consider the Boolean model ξ. Assume that the grains contain
almost surely an open neighborhood of the origin. Then ξ is
irreducible and there exists at most one infinite cluster. For the
spherical Boolean model this result can be found in Meester
and Roy ’96.

Example

The weighted RCM is irreducible and hence has at most one
infinite cluster; see Gracar, Lüchtrath and Mörters ’21.
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Thank You!
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