
Boolean models in hyperbolic space

based on joint work with Günter Last (KIT) and Matthias Schulte (TUHH)

Daniel Hug | University of Bath, September 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


Figure: Lava, Puy de la Nugère, Volvic, France, https://www.kristallin.de/s2/f_diaman.htm, Matthias Bräunlich, Hamburg,
CC-BY-SA 3.0,
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Figure: Pores in aerated concrete created by the reaction of aluminum with the binding agents lime and cement used in
production. https://www.bauen.de/a/porenbeton-fuer-den-hausbau.html

Daniel Hug, KIT



Figure: Oban, Scotland, 24/08/12
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Figure: Porous structure of a zirconium dioxide filtration membrane, imaged by means of a Field Emission Scanning
Electron Microscope (FE-SEM) & tomography package, Roldan, Redenbach, Schladitz, Klingele, Godehardt 2021
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Figure: Blood cells of a frog, https://www.microscopyu.com/gallery-images/frog-blood-cells
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Poisson point process

−→ Poisson particle process (indep. marking) −→ Boolean model

Philosophy:

Gain information about the intensity of the underlying Poisson process and the shape distribution of the
particles via measurements on the Boolean model (union set) within an observation window W .

Approach: Derive relations between local or asymptotic mean values for various functionals of the
typical particle and the Boolean model (state of the art up to, say, 2013).
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BMs in d-dim. Euclidean space: starting with mean value relations (Miles & Davy 1978), recently
variances and limit theorems could be treated (Heinrich, Molchanov ’99, Heinrich, Spiess ’13, H., Last,
Schulte 2016, H., Klatt, Last, Schulte 2017, Schulte, Yukich 2019, Betken, Schulte, Thäle 2022)).

BMs arise by attaching to the points of a Poisson point process independently i.i.d. random shapes and
taking the union set. Equivalently: union sets of Poisson particle processes.

BM is a benchmark model in stochastic geometry and its applications.

BMs in a much more general framework: spaces of constant curvature.
Here we focus on hyperbolic space. Why?

Unexpected phenomena have been discovered in exploring Poisson processes of λ-geodesics / flats in
hyperbolic space (Betken, Bühler, Herold, H., Rosen, Kabluchko, Thäle).
New effects and challenges occur, general trend to study random geometry in other spaces than Euclidean.
Hyperbolic structures are central in geometry, graph theory, . . . and its fun!

Daniel Hug, KIT
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Matheron (Random Sets and Integral Geometry) 1975, Fontainebleau school (Geology)

Serra (Image Analysis and Mathematical Morphology) 1982

Hall (Coverage Processes) 1988

Cressie (Spatial Statistics) 1992

Molchanov (Statistics of random sets, the Boolean Model) 1995

Meesters & Roy (Continuum Percolation) 1996

(Chiu), Stoyan, Kendall, Mecke (Stochastic Geometry and Applications) 1987 (2013)

Schneider & Weil (Integral and Stochastic Geometry) 2008
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Hd d-dimensional hyperbolic space (simply connected RM with constant sectional curvature −1)

Figure: Circles and geodesics in the Poincaré disk model

Kd compact convex subsets of Hd

Id set of isometries, λ Haar measure on Id , x ∈ Id fixed,

Hd(·) =
∫
Id

1{ϱx ∈ ·}λ(dϱ).
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p fixed point in Hd

BR closed ball with radius R and centre p

Surface area and volume of BR are given by

Hd−1(∂BR) = ωd sinh
d−1(R)

and

Hd(BR) = ωd

∫ R

0
sinhd−1(r) dr ,

ωd denotes the surface area of the unit ball in Rd .

Note that Hd−1(∂BR)/Hd(BR) → d − 1 as R → ∞. (General strict lower bound: Gallego & Solanes ’05)

Similar for Vj(BR)/Vd(BR) → d − 1 as R → ∞ (with j ∈ {0, . . . , d − 2}).
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For u ∈ Sd−1
p and t ∈ R, let Bu,t = lim

R→∞
B(expp((t + R)u),R). The limit Bu,t is a horoball (limit/border ball).
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η is a stationary Poisson process on Kd , i.e., a stationary
random collection of particles or a random counting measure
on Kd (with additional distributional properties)

the intensity measure Λ = Eη is isometry invariant:

ϱ♯Λ = Λ for ϱ ∈ Id .

induced stationary Boolean model

Z =
⋃

K∈η

K

Consider Z ∩ W and Z ∩ BR as R → ∞

Daniel Hug, KIT
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Suppose that Λ is locally finite, i.e.,

Λ({K ∈ Kd : K ∩ C ̸= ∅}) <∞ for all compact C ⊂ Hd .

Let ch : Kd → Hd be an isometry covariant centre function and γ :=
∫

1{ch(K ) ∈ B}Λ(dK ) <∞.

Theorem (H., Last, Schulte ’24+)
If f : Kd → [0,∞), then ∫

Kd
f (K ) Λ(dK ) = γ

∫
Kd

∫
Id

f (ϱG)λ(dϱ)Q(dG)

with γ ∈ [0,∞) and a probability measure Q invariant under all ϱ ∈ Id with ϱ(p) = p and concentrated on
Kd

p := {K ∈ Kd : ch(K ) = p}. If γ > 0, then Q is uniquely determined, G ∼ Q is called typical particle.

For the 1-parallel set G(1) of G we have EVol(G(1)) <∞.

Compare with the Euclidean situation.

Daniel Hug, KIT
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Define vd = EVol(G) and the mean covariogram function of the typical grain

C(x , z) = Eλ({ϱ ∈ Id : ϱx , ϱz ∈ G}) = ECG(x , z)

=
1
γ

∫
Kd

1{x , z ∈ K}Λ(dK )

, x , z ∈ Hd .

Euclidean counterpart: C(o, z) = EVol(G ∩ (G+ z)) for z ∈ Rd . Let W ∈ Kd .

Theorem (H., Last, Schulte ’24+)

EVol(Z ∩ W ) = Vol(W )
(
1 − e−γvd

)
, EVd−1(Z ∩ W ) = Vd(W )γvd−1e−γvd + Vd−1(W )

(
1 − e−γvd

)
.

If EVol(G(1))2 <∞, then with independent U ∼ Uniform(Sd−1
p ) and −T ∼ Exp(d − 1).

lim
R→∞

Var Vol(Z ∩ BR)

Vol(BR)
= e−2γvd

∫
Hd

(
eγC(p,z) − 1

)
P(z ∈ BU,T )Hd(dz).

Daniel Hug, KIT
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Let Rd be the convex ring, the set of unions of finitely many compact convex sets.

A map ϕ : Rd → R is called a geometric functional if it is

measurable,

additive: ϕ(U ∪ V ) = ϕ(U) + ϕ(V )− ϕ(U ∩ V ), U,V ∈ Rd ,

isometry invariant: ϕ(ϱU) = ϕ(U), for ϱ ∈ Id and U ∈ Rd ,

locally bounded: sup{|ϕ(K )| : K ∈ Kd , ϱ ∈ Id ,K ⊆ ϱB1} <∞.

Sometimes ϕ is assumed to be continuous on Kd .

Examples (no Hadwiger available): V0, . . . ,Vd (via the Steiner formula in Hd )

and χ (Euler characteristic)

Vd(B(A, r)) = Vd(A) +
d−1∑
j=0

ld,j(r)Vj(A),

ld,j(r) :=
(

d − 1
j

)∫ r

0
coshj(t) sinhd−1−j(t) dt, r ≥ 0.
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On the set of horoballs Bd
h , we define the (σ-finite) measure

µhb(·) =
d − 1
ωd

∫
Sd−1

p

∫
R

1{Bu,t ∈ ·}e(d−1)t dt Hd−1
p (du).

Theorem (H., Last, Schulte ’24+)
If ϕ : Rd → R is a geometric functional that is continuous on Kd , then

lim
R→∞

Eϕ(Z ∩ BR)

Vol(BR)
= γ

∞∑
n=1

(−1)n−1

n!

∫
Bd

h

∫
Kd

∫
(Kd )n−1

ϕ(G ∩ K2 ∩ . . . ∩ Kn ∩ B)

× Λn−1(d (K2, . . . ,Kn))Q(dG)µhb(dB).

For any measurable, additive, locally bounded functional ϕ, the mean Eϕ(Z ∩ W ) has a series expansion.
Compare to Euclidean counterpart! (not in the literature, no continuity required) mϕ,ZEuc = Eϕ(ZEuc ∩ [0, 1)d)

Daniel Hug, KIT
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Corollary (H., Last, Schulte ’24+)

If d = 2 and W ∈ K2, then χ = 1
2π (V0 − V2)

Eχ(Z ∩ W ) = (1 − e−γv2) + V1(W )e−γv2
γv1

2π
+ V2(W )e−γv2

(
γ +

γv2

2π
− (γv1)

2

4π

)
, (1)

where vi := EVi(G). The asymptotic density of the Euler characteristic is given by

mχ,Z = γe−γv2 − γ2e−γv2
v2

1

4π
+ γe−γv2

1
2π

(v1 + v2) .

In the Euclidean case, χ = V0 and (classical formula by Miles ’76)

mχ,ZEuc = γe−γv2 − γ2e−γv2
EH1(∂ G)2

4π
.

Daniel Hug, KIT
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Theorem (H., Last, Schulte ’24+)

Assume that EVol(G(1))2 <∞. If ϕ : Rd → R is a geometric functional that is continuous on Kd , then

lim
R→∞

Var ϕ(Z ∩ BR)

Vol(BR)
= γ

∞∑
n=1

1
n!

∫
Bd

h

∫
Kd

∫
(Kd )n−1

ϕ∗(G ∩ K2 ∩ . . . ∩ Kn ∩ B)2

× Λn−1(d (K2, . . . ,Kn))Q(dG)µhb(dB)

with ϕ∗(·) = Eϕ(Z ∩ ·)− ϕ(·).

Local formulas, limsup is finite (for mb, add., loc. bounded functionals); covariances, . . .

Daniel Hug, KIT
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For local covariances of mb., add., loc. bounded functionals in W , we have series expansions. For special
functionals such as Vd−1,Vd , these can be simplified. Assume EVol(G(1))2 <∞. Define measures

Mi,j := E
∫
Hd

∫
Hd

1{(x , y) ∈ ·}Ci(G, dx) Cj(G, dy) for i, j ∈ {d − 1, d} on (Hd)2.

Theorem (H., Last, Schulte ’24+)

Assume that EVol(G(1))2 <∞. Let vi = EVi(G) for i ∈ {0, . . . , d}. If W ∈ Kd , then

Cov(Vd−1 (Z ∩ W ),Vd(Z ∩ W )) = −e−2γvdγvd−1

∫ (
eγC(p,z) − 1

)
CW (p, z)Hd(dz)

+ e−2γvdγ

∫
eγC(y,z)CW (y , z)Md−1,d(d(y , z))

+ e−2γvd

∫∫ (
eγC(y,z) − 1

)
1{z ∈ W}Cd−1(W , dy)Hd(dz).

Daniel Hug, KIT
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For asymptotic covariances of continuous geometric functionals we have series expansions. For special
functionals, these can be simplified. Assume that EVol(G(1))2 <∞. Recall that

Mi,j := E
∫
Hd

∫
Hd

1{(x , y) ∈ ·}Ci(G, dx) Cj(G, dy) for i, j ∈ {d − 1, d}.

Theorem (H., Last, Schulte ’24+)

Assume that EVol(G(1))2 <∞. If u ∈ Sd−1
p is (arbitrarily) fixed, then

σd−1,d = −e−2γvdγvd−1

∫∫ (
eγC(p,z) − 1

)
1{p, z ∈ B}Hd(dz)µhb(dB)

+ e−2γvdγ

∫∫
eγC(y,z)1{y , z ∈ B}Md−1,d(d(y , z))µhb(dB)

+ (d − 1) e−2γvd

∫ (
eγC(p,z) − 1

)
1{z ∈ Bu,0}Hd(dz).

Daniel Hug, KIT
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Theorem (H., Last, Schulte ’24+)
Let N be a standard Gaussian random variable. Let ϕ : Rd → R be a geometric functional such that

lim inf
R→∞

Var ϕ(Z ∩ BR)

Vol(BR)
> 0.

a) If EVol(G(1))2 <∞, then

SR :=
ϕ(Z ∩ BR)− Eϕ(Z ∩ BR)√

Var(ϕ(Z ∩ BR))

d−→ N as R → ∞.

b) If EVol(G(1))4 <∞, there exists a constant C ∈ (0,∞) such that

sup
t∈R

∣∣P(SR ≤ t)− P(N ≤ t)
∣∣ ≤ C√

Vol(BR)
, R ≥ 1.

Daniel Hug, KIT
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Theorem (H., Last, Schulte ’24+)

Assume that EVol(G(1))2 <∞ and let ϕ : Rd → R be a geometric functional. If there exists some m ∈ N0

such that ∫
Kd

∫
(Kd )m

1{ϕ(G ∩ K1 ∩ . . . ∩ Km) ̸= 0}Λm(d (K1, . . . ,Km))Q(dG) > 0,

then

lim inf
R→∞

Var ϕ(Z ∩ BR)

Vol(BR)
> 0.

For m = 0, the hypothesis means that P(ϕ(G) ̸= 0) > 0.
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Approaches for Euclidean Boolean models: H., Last & Schulte (2016), Schulte & Yukich (2019) and
Betken, Schulte & Thäle (2022) (Euclidean Poisson cylinder processes)

Careful analysis of boundary effects for asymptotic formulas for expectation and variance

Upper bounds for the Wasserstein distance and the Kolmogorov distance from Last, Peccati & Schulte
(2016) and Basse-O’Connor, Podolskij & Thäle (2020) for the central limit theorems

Lower variance bound by Schulte & Trapp (2024+): If a functional F of η with EF 2 <∞ satisfies

E
∫
(Kd )2

(D2
K1,K2

F)2 Λ2(d (K1,K2)) ≤ αE
∫
Kd

(DK F)2 Λ(dK ) <∞, for some α ∈ (0,∞),

then

Var F ≥ 4
(α+ 2)2 E

∫
Kd

(DK F)2 Λ(dK ).

Various results from integral geometry:

Daniel Hug, KIT
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Lemma (H., Last, Schulte ’24+)
Let φ : Kd ∪ Bd

h → R be a bounded, measurable functional. Assume that

lim
R→∞

φ(B(expp((t + R)u),R)) = φ(Bu,t) (2)

for Hd−1
p ⊗H1 almost all (u, t) ∈ Sd−1

p × R and that there exists some r0 ∈ (0,∞) such that

φ(K ) = 0 for all K ∈ Kd with K ∩ Br0 = ∅. (3)

Then

lim
R→∞

1
Vd(BR)

∫
Hd
φ(B(x ,R))Hd(dx) =

∫
Bd

h

φ(B)µhb(dB).

Daniel Hug, KIT
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Lemma (H., Last, Schulte ’24+)
If L ∈ Kd and ψ : Kd → R is a continuous functional such that ψ(∅) = 0, then the map φ : Kd ∪ Bd

h → R,
K 7→ ψ(L ∩ K ), satisfies the hypothesis of the preceding lemma and

lim
R→∞

1
Vd(BR)

∫
Hd
ψ(L ∩ B(x ,R))Hd(dx) =

∫
Bd

h

ψ(L ∩ B)µhb(dB).

In particular, if L ∈ Kd and y , z ∈ Hd , then

Vol(L) =
∫
Bd

h

Vol(L ∩ B)µhb(dB)

and

lim
R→∞

Hd (B(y ,R) ∩ B(z,R))

Vd(BR)
=

∫
Bd

h

1{y , z ∈ B}µhb(dB).

Daniel Hug, KIT
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Lemma (H., Last, Schulte ’24+)
(a) Let A ∈ Kd and u ∈ Sd−1

p be fixed.∫
Bd

h

Vd(A ∩ B)Vd−1(A ∩ B)µhb(dB)

=

∫
Bd

h

Vd(A ∩ B)Cd−1(A,B)µhb(dB) + (d − 1)
∫
Id

1{p ∈ ϱA}Vd(ϱA ∩ Bu,0)λ(dϱ),

(b) ∫
Bd

h

Vd−1(A ∩ B)2 µhb(dB) =
∫
Bd

h

Cd−1(A,B)2 µhb(dB)

+ (d − 1)
∫
Id

1{p ∈ ϱA}
(
2Cd−1(ϱA,Bu,0) + Cd−1(Bu,0, ϱA)

)
λ(dϱ).

Daniel Hug, KIT
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Sketch of proof

∫
Bd

h

Vd(A∩B)Vd−1(A∩B)µhb(dB) =
∫
Bd

h

Vd(A∩B)Cd−1(A,B)µhb(dB)+(d−1)
∫
Id

1{p ∈ ϱA}Vd(ϱA∩Bu,0)λ(dϱ).

From the lemma,∫
Bd

h

Vd(A ∩ B)Vd−1(A ∩ B)µhb(dB) = lim
R→∞

∫
Hd Vd(A ∩ B(x ,R))Vd−1(A ∩ B(x ,R))Hd(dx)

Vd(BR)
.

The integral in the numerator on the rhs is the sum of

I1(R) :=

∫
Hd

Vd(A ∩ B(x ,R))Cd−1(A,B(x ,R))Hd(dx),

I2(R) :=

∫
Hd

Vd(A ∩ B(x ,R))Cd−1(B(x ,R),A)Hd(dx),

The limit wrt I1 can then be treated with the first integral geometric lemma.
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Starting point for the proof of CLTs
Write

σR :=
√

Var ϕ(Z ∩ BR) and FR :=
ϕ(Z ∩ BR)− Eϕ(Z ∩ BR)

σR
.

It follows from Last, Peccati, Schulte ’16 that

dWass(FR,N) ≤ T1 + T2 + T3

with

T1 = 2
(∫

(Kd )3

√
E(DK1 FR)2(DK2 FR)2

√
E(D2

K1,K3
FR)2(D2

K2,K3
FR)2 Λ3(d(K1,K2,K3))

)1/2

,

T2 =

(∫
(Kd )3

E(D2
K1,K3

FR)
2(D2

K2,K3
FR)

2 Λ3(d(K1,K2,K3))

)1/2

,

T3 =

∫
Kd

E|DK FR|3 Λ(dK ).
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Lemma (H., Last, Schulte ’24+)
Let ϕ : Rd → R be measurable, additive, and locally bounded. Let m ∈ N. Then there exists a constant
Cm ∈ (0,∞), depending only on m, d , γ, and Q, such that

(a)
E|ϕ(Z ∩ W )|m ≤ cm

1,d M(ϕ)mE2mη([B1/2]) Vd(W )m

for all W ∈ Kd ,

(b)
E|DKϕ(Z ∩ W )|m ≤ CmM(ϕ)m Vd(K ∩ W )m

for all K ,W ∈ Kd ,

(c)
E|D2

K1,K2
ϕ(Z ∩ W )|m ≤ CmM(ϕ)m Vd(K1 ∩ K2 ∩ W )m

for all K1,K2,W ∈ Kd .
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Continuation of the proof of CLTs
From the Cauchy–Schwarz inequality and the preceding Lemma (b), (c) it follows that

T 2
1 ≤ 4C4M(ϕ)4

σ4
R

∫
(Kd )3

Vd(K1 ∩ BR)Vd(K2 ∩ BR)Vd(K1 ∩ K3 ∩ BR)

× Vd(K2 ∩ K3 ∩ BR) Λ
3(d(K1,K2,K3)).

(4)

The integral on the right-hand side can be rewritten as

J1 := γ3E
∫
I3

d

Vd(ϱ1 G1 ∩BR)Vd(ϱ2 G2 ∩BR)Vd(ϱ1 G1 ∩ϱ3 G3 ∩BR)Vd(ϱ2 G2 ∩ϱ3 G3 ∩BR)

× λ3(d(ϱ1, ϱ2, ϱ3))

with independent copies G1, G2 and G3 of the typical particle.
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Almost disjoint decomposition of Rd by (half-open) cubes is a key tool in dealing with additive functionals in
stochastic geometry.

The next lemma is used to bound additive, locally bounded functionals and their iterated difference operators in
terms of the volume functional.

Lemma (H., Last, Schulte ’24+)
There exist a countable set M ⊂ Hd and a constant cd ∈ N such that⋃

x∈M
B(x , 1/2) = Hd

and
|{x ∈ M : y ∈ B(x , 1/2)}| ≤ cd for all y ∈ Hd .
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Economic covering of hyperbolic space
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