Long-range connections and the giant component of a random geometric graph

Frankie Higgs Based on joint work with Mathew Penrose

University of Bath

Stochastic Geometry in Action, Bath, 13th September 2024

Boolean model

In our setting: we use a homogeneous PPP of intensity n inside $A \subseteq \mathbb{R}^d$ and all the balls have the same radius r_n .

Continuum percolation

 $A=\mathbb{R}^d$ or $A=\mathbb{H}:=[0,\infty)\times\mathbb{R}^{d-1}$. Parameter $\lambda>0$, homogeneous PPP \mathcal{P}_λ on A and cluster $Z_\lambda:=\bigcup_{x\in\mathcal{P}_\lambda}B(x,1)$. Known: non-trivial critical intensity $\lambda_c\in(0,\infty)$ (see Meester and Roy). Estimated $\lambda_c\approx0.36$ in \mathbb{R}^2 . Tanemura 1993: same critical point for \mathbb{R}^d and \mathbb{H} .

If $nr_n^d \to \lambda$ as $n \to \infty$, the Boolean model and continuum percolation are related.

An "application"

Figure: The frogs can't reach each other. Images by "Dana" and "DaPuglet" on Flikr

and "Noodle Snacks" on Wikimedia

Figure: This time they can meet

How to understand the "communication" event?

As a percolation event, via a giant component

When the pond is huge or the lilypads are tiny, does the geometry of the boundary matter?

Let $\theta_A(\lambda) := \mathbb{P}[0 \text{ is in an unbounded component of } Z_{\lambda}].$

Proposition ((A corollary of) Penrose, 2022)

Suppose $\lambda \neq \lambda_c(\mathbb{R}^2)$. Let $A = [-1/2, 1/2]^2$. Let V be uniformly distributed on $[-1/2, 1/2]^2$, then

$$\lim_{\substack{n \to \infty \\ nr_a^2 = \lambda}} \mathbb{P}[0 \leftrightarrow V \text{ via the Boolean model}] = \theta_{\mathbb{R}^d}(\lambda)^2.$$

(This was for the soft RGG / random connection model.)

Let $\theta_A(\lambda) := \mathbb{P}[0 \text{ is in an unbounded component of } Z_{\lambda}].$

Proposition ((A corollary of) Penrose, 2022)

Suppose $\lambda \neq \lambda_c(\mathbb{R}^2)$. Let $A = [-1/2, 1/2]^2$. Let V be uniformly distributed on $[-1/2, 1/2]^2$, then

$$\lim_{\substack{n \to \infty \\ nr_n^2 = \lambda}} \mathbb{P}[0 \leftrightarrow V \ \textit{via the Boolean model}] = \theta_{\mathbb{R}^d}(\lambda)^2.$$

(This was for the soft RGG / random connection model.) 0 and V don't really know that they aren't in \mathbb{R}^2 . What about boundary effects?

Theorem (H. and Penrose, 2024+)

Let $A \subseteq \mathbb{R}^d$ be bounded, $A = \overline{A^\circ}$, with a C^2 boundary. Suppose $\lambda \neq \lambda_c(\mathbb{R}^d)$. Fix distinct $x, y \in \partial A$, then

 $\lim_{\substack{n \to \infty \\ nr_n^d = \lambda}} \mathbb{P}[x \leftrightarrow y \ \textit{via the Boolean model}] = \theta_{\mathbb{H}}(\lambda)^2.$

Boundary effects

Our theorem says: once we get away from the boundary it's very easy to connect.

Several techniques to deal with the boundary: osculating spheres (good for local events) and "fitting a cylinder."

Boundary effects

Our theorem says: once we get away from the boundary it's very easy to connect.

Several techniques to deal with the boundary: osculating spheres (good for local events) and "fitting a cylinder."

To connect with high probability: renormalisation.

It is conjectured (known in d=2 and $d\geq 11$ for \mathbb{Z}^d) that $\theta_{\mathbb{R}^d}(\lambda_c)=0$.

Figure: To connect C_x and C_y we build a grid of balls, and connect them via a path of "good" sites.

Figure: There must be a unique large component in the box, so the paths between balls are in the same component.

We rely on a very useful result:

Theorem (Penrose and Pisztora, 1996)

Let $\lambda > \lambda_c(\mathbb{R}^d)$ and suppose $\phi : \mathbb{N} \to \mathbb{R}$ satisfies $\phi(n)/\log n \to \infty$ as $n \to \infty$ and $\phi(n) \le n$ for all n. Then with high probability there exists a unique connected component of $Z_\lambda \cap [0,n]^d$ of diameter at least $\phi(n)$ if n is large.

Extended to the soft RGG for d=2 by Lichev, Lodewijks, Mitsche, and Schapira (2023).

We rely on a very useful result:

Theorem (Penrose and Pisztora, 1996)

Let $\lambda > \lambda_c(\mathbb{R}^d)$ and suppose $\phi : \mathbb{N} \to \mathbb{R}$ satisfies $\phi(n)/\log n \to \infty$ as $n \to \infty$ and $\phi(n) \le n$ for all n. Then with high probability there exists a unique connected component of $Z_\lambda \cap [0,n]^d$ of diameter at least $\phi(n)$ if n is large.

Extended to the soft RGG for d=2 by Lichev, Lodewijks, Mitsche, and Schapira (2023).

If we could replace " $\lambda > \lambda_c$ " with $\theta(\lambda) > 0$, then we'd be able to prove our result at $\lambda = \lambda_c$. But that would also solve the major open problem of determining $\theta(\lambda_c)$.

Thank you all for a great workshop!

