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Boolean model

In our setting: we use a homogeneous PPP of intensity n
inside A ⊆ Rd and all the balls have the same radius rn.



Continuum percolation

A = Rd or A = H := [0, ∞) × Rd−1. Parameter λ > 0,
homogeneous PPP Pλ on A and cluster Zλ := ⋃

x∈Pλ
B(x , 1).

Known: non-trivial critical intensity λc ∈ (0, ∞) (see Meester
and Roy). Estimated λc ≈ 0.36 in R2.
Tanemura 1993: same critical point for Rd and H.
If nrd

n → λ as n → ∞, the Boolean model and continuum
percolation are related.



An “application”

Figure: The frogs can’t reach each other. Images by "Dana" and "DaPuglet" on Flikr

and "Noodle Snacks" on Wikimedia



Figure: This time they can meet



How to understand the “communication” event?



As a percolation event, via a giant component



When the pond is huge or the lilypads are tiny, does the
geometry of the boundary matter?



Let θA(λ) := P[0 is in an unbounded component of Zλ].

Proposition ((A corollary of) Penrose, 2022)
Suppose λ ̸= λc(R2). Let A = [−1/2, 1/2]2. Let V be
uniformly distributed on [−1/2, 1/2]2, then

limn→∞
nr2

n =λ

P[0 ↔ V via the Boolean model] = θRd (λ)2.

(This was for the soft RGG / random connection model.)

0 and V don’t really know that they aren’t in R2.
What about boundary effects?
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Theorem (H. and Penrose, 2024+)
Let A ⊆ Rd be bounded, A = A◦, with a C 2 boundary.
Suppose λ ̸= λc(Rd). Fix distinct x , y ∈ ∂A, then

limn→∞
nrd

n =λ

P[x ↔ y via the Boolean model] = θH(λ)2.



Boundary effects

Our theorem says: once we get away from the boundary it’s
very easy to connect.
Several techniques to deal with the boundary: osculating
spheres (good for local events) and “fitting a cylinder.”

x

To connect with high probability: renormalisation.
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Why λ ̸= λc?
It is conjectured (known in d = 2 and d ≥ 11 for Zd) that
θRd (λc) = 0.

Figure: To connect Cx and Cy we build a grid of balls, and connect
them via a path of “good” sites.



Why λ ̸= λc?

Figure: There must be a unique large component in the box, so the
paths between balls are in the same component.



Why λ ̸= λc?

We rely on a very useful result:

Theorem (Penrose and Pisztora, 1996)
Let λ > λc(Rd) and suppose ϕ : N → R satisfies
ϕ(n)/log n → ∞ as n → ∞ and ϕ(n) ≤ n for all n. Then with
high probability there exists a unique connected component of
Zλ ∩ [0, n]d of diameter at least ϕ(n) if n is large.
Extended to the soft RGG for d = 2 by Lichev, Lodewijks,
Mitsche, and Schapira (2023).

If we could replace “λ > λc” with θ(λ) > 0, then we’d be able
to prove our result at λ = λc . But that would also solve the
major open problem of determining θ(λc).
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Thank you all for a great workshop!


