
Dynamics in geometric scale-free networks

Peter Gracar,
based on joint work with Arne Grauer
Stochastic Geometry in Action
Bath, September 10-13, 2024



Structure of talk

The weight-dependent random connection model

The contact process on the weight-dependent random connection model

The dynamic weight-dependent random connection model



The weight-dependent random
connection model



The weight-dependent random connection model

• Vertices: a Poisson point process X of unit intensity on Rd × [0, 1] or
Td
n × [0, 1].

• Edges: Given X , edges are drawn independently of each other and there
exists α, κ1, κ2 > 0 such that, for every pair of vertices
x = (x, t),y = (y, s) ∈ X , it holds

Assumption (A1)

α
(
1 ∧ κ1 (t ∧ s)−δγ |x− y|−δd

)
≤ Px,y(x ∼ y) ≤
κ2 (t∧s)−δγ(t ∨ s)δ(γ−1)|x− y|−δd,

where γ ∈ (0, 1), δ > 1, α, κ1, κ2 > 0.
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Examples of the weight-dependent random connection model

Set γ ∈ (0, 1), δ > 1 and β > 0.

• The age-dependent random connection model:
Let φ : (0,∞) → [0, 1] be a non-decreasing and satisfying φ(r) ≍ r−δ. Form
edges between (x, t) and (y, s) with probability

φ
(
β−1(t ∧ s)γ(t ∨ s)1−γ |x− y|d

)
.

• The soft Boolean model:
Let the radius distribution satisfy P(Rx > r) ≍ r−d/γ as r → ∞ and let X(x, y)

satisfy
P(X > r) ≍ r−δd as r → ∞.

Connect to vertices when |x−y|
Rx+Ry

≤ X(x, y).
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Examples of the weight-dependent random connection model

•

Soft

Boolean model: gsum(s, t) =
(
s−γ/d + t−γ/d

)−d

x1
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Examples of the weight-dependent random connection model
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The contact process on the
weight-dependent random
connection model



The contact process

Let G = (V,E) be a locally-finite graph.

The contact process on G is a continuous time Markov process (ξt)t≥0 on
{0, 1}V .

For {x ∈ V : ξt(x) = 1} ⊂ V we have the transition rates:

ξt → ξt\{x} for x ∈ ξt at rate 1, and
ξt → ξt ∪ {x} for x /∈ ξt at rate λ ·

∣∣{y ∈ ξt : x ∼ y}
∣∣.



Key questions

The process has the single absorbing state equal to ∅.

Consequently, the natural questions concern the extinction time

τG := inf{t > 0 : ξt = ∅}.

• Can τG be infinite?
• If yes, with what probability?
• On a graph with n vertices, how does τG change with n?
• How does λ affect the answer?



Non-extinction probability

Let the contact process with parameter λ on G(0,T0)
start in the origin (0, T0).

Define:
Γ(λ) = P(0,T0)

(
ξ
(0,T0)

t ̸= ∅ ∀ t ≥ 0
)
.

Theorem (G. and Grauer, ’24)
Let G be a general geometric random graph which satisfies Assumption (A1) for
γ > δ

δ+1 . Then, as λ → 0,

Γ(λ) ≍ λ2/γ−1

log(1/λ)(1−γ)/γ
.
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Proof idea

Some observations:

• The contact process can survive a constant amount of time on a “star” of
size at least ∼ λ−2. (Mountford, Valesin, and Yao, 2013)

• On a chain of disjoint stars of size at least ∼ λ−2 log(1/λ), separated by at
most bounded many steps, the contact process survives with probability at
least p for some constant p > 0. (Linker, Mitsche, Schapira, and Valesin,
2021)

Lower bound: A chain of star→connector→bigger star→ . . . exists a.s.
Upper bound: Truncated first moment bound counting argument, based on the

counting argument by G., Grauer and Mörters, 2022.
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Exponential extinction time on finite restrictions

Let Gn be the restriction of G to
[
− n1/d

2 , n
1/d

2

]d.
We denote by τn := inf{t > 0 : ξGn

t = ∅} the extinction time of the contact process
on Gn.

Theorem (G. and Grauer, ’24)
Let (Gn)n∈N be the restricted finite graph sequence of a general geometric
random graph which satisfies Assumption (A1) for γ > δ

δ+1 , and let the graph
start fully infected. For any λ > 0, there exists c > 0 such that

lim
n→∞

P{τn ≥ ecn} = 1.
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Proof sketch

Proposition (G. and Grauer, ’24)
Let S > 0 be given and (Gn)n∈N the restricted finite graph sequence of a general
geometric random graph which satisfies Assumption (A1) for γ > δ

δ+1 . Then,
there exists b > 0 and ε > 0 such that, for n sufficiently large, the probability that
Gn has a connected subgraph containing b · n disjoint stars of at least S vertices
each is larger than 1− exp(−nε).

The proof by Mountford, Mourrat, Valesin, and Yao, 2016 for the configuration
model than yields the exponential extinction time claim.
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Proof sketch (Subgraph construction)
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Beyond the weight-dependent random connection graph satisfying (A1)

The stated results also hold for the weight-dependent random connection model
with the factor kernel, i.e.

Px,y(x ∼ y) ≍ t−δγs−δγ |x− y|−δd

for δ > 1 and γ > 1
2 (Linker, Mitsche, Schapira, and Valesin, 2021).

Key difference: stars connect directly.



The dynamic weight-dependent
random connection model



Setup

• Vertices: a Poisson point process X of intensity λ on Rd × [0, 1] or Td
n × [0, 1]

at time t = 0.

• Motion: Vertices then move independently according to Brownian motions
on Rd (or Td

n) and we denote by Xt the process at time t.
• Marks: Marks do not update∗.
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Setup

• Edges: Given X0, an edge is drawn between every pair of vertices
x = (x, t),y = (y, s) ∈ X if Ux,y < Px,y(x ∼ y), where Px,y(x ∼ y) satisfies
(A1), where Ux,y ∼ Unif(0, 1), sampled independently for every pair {x,y}.

• Updating: At times t ∈ N, all edge marks Ux,y are resampled. For t ̸∈ N, an
edge can appear/disappear only due to vertex motion.

• This ensures that conditional on the locations and marks of two vertices, the
existence of an edge between them at times t1 and t2 is independent, if
⌊t1⌋ ̸= ⌊t2⌋.

• The above two events are not unconditionally independent!
Individual edge/vertex neighbourhood updating at i.i.d. exponentially
distributed random times makes the proofs more difficult, but does not
change the results.
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Edge updating (Example)

x1

x2

Xn−1(x1,x2)Rx1

Xn−1(x1,x2)Rx2

(a) Just before time n.

x1

x2

Xn(x1,x2)Rx1

Xn(x1,x2)Rx2

(b) At time n.

x1

x2

Xn(x1,x2)Rx1

Xn(x1,x2)Rx2

(c) Just before n+ 1.

x1

x2

Xn+1(x1,x2)Rx1

Xn+1(x1,x2)Rx2

(d) At time n+ 1.



Summary

The randomness in the model comes from:

• The starting locations and marks of the vertices.
• The motion of the vertices.
• Given the above, the random occurrence of the edges.



Percolation time

Consider the dynamic scale-free geometric random graph on Rd × (0, 1).

We define the percolation time as

Tperc := inf{t ≥ 0 : ∃x ∈ Ct
∞ s.t. x ∼ 0},

Theorem (G. and Grauer, ’241)
Let γ > δ

δ+1 . Then there exists a constant c > 0 such that on the Rd with d ≥ 1,
the percolation time Tperc satisfies

P(Tperc > t) ≤ exp{−ct1/c},

for any vertex intensity λ > 0 and any t > 0 sufficiently large.

1Also holds for factor kernel in “robust” phase, i.e. γ > 1
2
.
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Broadcast time

Let Tn be the d-dimensional torus of volume n and consider the dynamic
scale-free geometric random graph on Tn × (0, 1).

At time t = 0 an arbitrary vertex starts broadcasting information to all vertices in
its connected component. Every vertex that receives this broadcast begins
broadcasting it further.

The broadcast time Tbc is defined as the smallest time at which every vertex of
the network has received the broadcast.

Theorem (G. and Grauer, ’24)

On the d-dimensional torus of volume n with d ≥ 1 with γ > δ
δ+1 , the broadcast

time Tbc is with high probability O(log n(log log n)ϵ) for any ϵ > 0 and any λ > 0.
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A few remarks

• Dynamic geometric random graphs are strongly correlated spatially and
temporally.

• Since the vertex marks are not being updated, exceptionally “unlucky”
vertices are possible.

• It is not a priori clear how the largest connected component evolves over
time.



Static tools: Good cubes

Let a ∈ (0, 1
log 2) and Θ ∈ ( log 2

γ+γ/δ , log 2) be two constants.

Definition (t-α-dense cubes)

Let t > 0 and Ik := (12e
−(k+1)Θd, 12e

−kΘd), k ∈ {0, . . . , ⌊(a log t)/d⌋} and
I−1 := (12 , 1). We say a cube Q ⊂ Rd is t-α-dense, if for every
k ∈ {−1, 0, . . . , ⌊(a log t)/d⌋}, the locations of the vertices in Q× Ik contain as a
subset an independent Poisson point process of intensity λ(1− α)|Ik| on Rd,
with marks in Ik.



Static tools: Evenly spread subgraphs

Definition (Evenly spread subgraphs)

We call a finite connected subgraph of G contained inside QK an evenly spread
subgraph of G inside QK , if it contains at least b ·K vertices for some constant
b > 0 and if every subcube of QK of the form ×d

i=1(2
kpvi, (2

kp + 1)vi), vi ∈ Z,
kp = ⌊a logK⌋ contains a vertex with mark smaller than 1

2e
−kpΘd belonging to the

evenly spread component. We call these vertices the bottom vertices of the
evenly spread component.



Evenly spread
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Static tools: Evenly spread subgraphs

Proposition (G. and Grauer, ’24)

Fix K large enough and consider the cube QK ⊂ Rd. Assume that QK is
K-α-dense for some α > 0 and let γ > δ

δ+1 . Then, there exists ϵ > 0 such that
for any λ > 0 and K large enough, there exists an evenly spread subgraph of G
inside QK with probability at least

1− exp{−Kϵ}.



Static tools: Evenly spread subgraphs

Lemma (G. and Grauer, ’24)

Assume that QK is K-α-dense for some α > 0 and let γ > δ
δ+1 and λ > 0. Let

furthermore G be an evenly spread subgraph of G1−ε inside QK . Then, a given
vertex x with a mark in (0, 1) and arbitrary location within QK belongs to the
same connected component of G as G with probability bounded away from 0.



Static tools: Summary

• If a cube QK of volume td is t-α-dense, an evenly spread subgraph of size K

exists wep(K).
• An arbitrary vertex anywhere in the cube QK has probability bounded away
from 0 of belonging to the same connected component as the evenly spread
subgraph.

Key question
How often is the cube QK t-α-dense during the time interval [0, t]?



Dynamics: Decoupling of particles

Proposition (Peres, Sinclair, Sousi, and Stauffer, 20113)

Fix K > ℓ > 0 and consider the cube QKd ⊂ Rd tessellated into subcubes of side length ℓ. Let Π0

be an arbitrary point process at time 0 that contains at least βℓd vertices in each subcube of the
tessellation for some β > 0. Let Π∆ be the point process obtained at time ∆ from Π0 after the
vertices have moved for time ∆. Fix ϵ ∈ (0, 1) and let Ψ be an independent Poisson point process
of intensity (1− ϵ)β on QK . Then there exists a coupling of Ψ and Π∆ and constants c1, c2, c3 that
depend on d only, such that if ∆ ≥ c1ℓ

2

ϵ2
and K′ ≤ K − c2

√
∆log ϵ−1 > 0, the vertices of Ψ are a

subset of the vertices Π∆ inside the cube QK′ with probability at least

1− Kd

ℓd
exp{−c3ϵ

2β∆d/2}.

3Generalisations of this result exist also for (uniformly elliptic) lattices and fractal lattices.



Dynamics: Cubes are good/dense most of the time

Proposition (G. and Grauer, ’24)

Let t > 0 be a sufficiently large integer and ξ, ϵ ∈ (0, 1) two constants. Consider
the cube QLd , for L = t. Define for i = 0, . . . , t the events

Ai = {at time i the cube QLd is t-ξ-dense}.

Then, there exist two positive constants c1, c2 such that

P

(
t−1∑
i=0

1Ai ≥ (1− ϵ)t

)
≥ 1− exp{−c1t

c2}.



Dynamics: Proof of proposition (sketch)

scale j − 1

mj−1

∆j−1

scale j

mj

∆j−1

scale j

mj

∆j−1

scale j

mj

∆j−1

scale j

mj

The temporal multi-scale recursion

The values are chosen as:

m1 = t, mj =
mj−1 − 4∆j−1

4
, and ∆j

mj
=

ϵ

8κ
.



Dynamics: Proof of proposition (sketch)

Lj−1

Lj

ℓj−1 ℓj

The spatial multi-scale recursion

The values are chosen as: L1 = L2, Lκ = L, ℓ1 = c
√
t, ℓj+1 = ℓj

√
1
4 − ϵ

8κ , with
κ = O(log t).



Dynamics: Proof of proposition (sketch)

Let Dj be the event that all subcubes of side-length ℓj inside the cube of side
length Lj are good for a fraction of at least (1− ϵj

2 ) time intervals of scale j.

1. P(D1) ≥ 1− exp{−c1t
c2}

2. Set
E = {at time b′ all subcubes are good for the scale j − 1},

with b′ = b−∆j−1. Then

P([b, b+mj) is good, E|F ) ≥ 1− exp{−c1t
−aΘℓdj/κ

2},

with F measurable w.r.t. events that occurred up to time b′.
3. P(Dc

j ∩Dj−1) ≤ exp{− ctc4
κ6 }.



Dynamics: Proof of proposition (sketch)

Consequently,
P(Dc

κ) ≤ P(Dc
κ ∩Dκ−1) + P(Dc

κ−1),

which gives

P(Dc
κ) ≤

κ∑
j=2

P(Dc
j ∩Dj−1) + P(Dc

1).



Broadcast time

Consider a torus of volume n and let t = C log n(log log n)ϵ.

• Tessellate the torus into cubes of side length t.
• Each such cube is dense at least (1− ϵ)t amount of time ⇒ Contains wep(t)

evenly spread subgraph throughout this time.
• At each time, the second largest component on the torus (of size n) is wep(t)

of size o(t) by Jorritsma, Komjáthy, and Mitsche, 2024.

Consequently, when an evenly spread subgraph exists, it is in the largest
connected component of the torus.



Broadcast time

• Each vertex (including the “origin vertex”) has positive (bdd. away from 0)
probability of belonging to the same component as the “local” evenly spread
subgraph.
⇒ Infection enters the large component during [0, t/2) with probability
greater than 1− (1− p)t/2.

• During [t/2, t], a vertex belongs to the large component at least once with
probability greater than 1− (1− p)t/2.

• Since there are only Θ(n) vertices on the torus whp(n), every vertex gets the
information with probability at least

1− (1 + δ)n(1− p)(1−ϵ)t/2.

Setting C large concludes the proof.



Open problems and future work

• Tightness of broadcast time bound.
• Non-robust regimes.
• Different edge updating mechanisms.
• Contact process on dynamic graph.
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Thank you for listening!4

4and/or being physically present.
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