Dynamics in geometric scale-free networks

based on joint work with Arne Grauer

Stochastic Geometry in Action

Bath, September 10-13, 2024

Structure of talk

The weight-dependent random connection model

The contact process on the weight-dependent random connection model

The dynamic weight-dependent random connection model

The weight-dependent random

connection model

The weight-dependent random connection model

• **Vertices**: a Poisson point process \mathcal{X} of unit intensity on $\mathbb{R}^d \times [0,1]$ or $\mathbb{T}^d_n \times [0,1]$.

The weight-dependent random connection model

- **Vertices**: a Poisson point process \mathcal{X} of unit intensity on $\mathbb{R}^d \times [0,1]$ or $\mathbb{T}_n^d \times [0,1]$.
- **Edges**: Given \mathcal{X} , edges are drawn independently of each other and there exists $\alpha, \kappa_1, \kappa_2 > 0$ such that, for every pair of vertices $\mathbf{x} = (x, t), \mathbf{y} = (y, s) \in \mathcal{X}$, it holds

Assumption (A1)

$$\alpha \left(1 \wedge \kappa_1 (t \wedge s)^{-\delta \gamma} |x - y|^{-\delta d} \right)$$

$$\leq \mathbb{P}_{\mathbf{x}, \mathbf{y}}(\mathbf{x} \sim \mathbf{y}) \leq$$

$$\kappa_2 (t \wedge s)^{-\delta \gamma} (t \vee s)^{\delta(\gamma - 1)} |x - y|^{-\delta d},$$

where $\gamma \in (0,1)$, $\delta > 1$, $\alpha, \kappa_1, \kappa_2 > 0$.

Set $\gamma \in (0,1)$, $\delta > 1$ and $\beta > 0$.

Set $\gamma \in (0,1)$, $\delta > 1$ and $\beta > 0$.

The age-dependent random connection model:

Let $\varphi:(0,\infty)\to [0,1]$ be a non-decreasing and satisfying $\varphi(r)\asymp r^{-\delta}$. Form edges between (x,t) and (y,s) with probability

$$\varphi(\beta^{-1}(t\wedge s)^{\gamma}(t\vee s)^{1-\gamma}|x-y|^d).$$

Set $\gamma \in (0,1)$, $\delta > 1$ and $\beta > 0$.

The age-dependent random connection model:

Let $\varphi:(0,\infty)\to [0,1]$ be a non-decreasing and satisfying $\varphi(r)\asymp r^{-\delta}$. Form edges between (x,t) and (y,s) with probability

$$\varphi(\beta^{-1}(t \wedge s)^{\gamma}(t \vee s)^{1-\gamma}|x-y|^d).$$

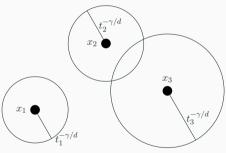
The soft Boolean model:

Let the radius distribution satisfy $\mathbb{P}(R_x>r)\asymp r^{-d/\gamma}$ as $r\to\infty$ and let X(x,y) satisfy

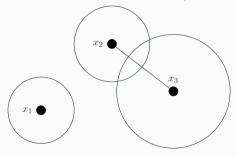
$$\mathbb{P}(X > r) \asymp r^{-\delta d} \text{ as } r \to \infty.$$

Connect to vertices when $\frac{|x-y|}{R_x+R_y} \leq X(x,y)$.

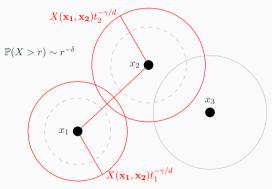
• Boolean model: $g^{\text{sum}}(s,t) = (s^{-\gamma/d} + t^{-\gamma/d})^{-d}$



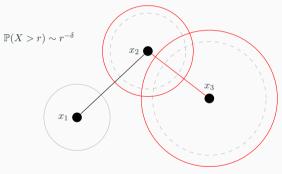
• Boolean model: $g^{\text{sum}}(s,t) = \left(s^{-\gamma/d} + t^{-\gamma/d}\right)^{-d}$



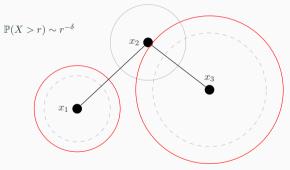
• Soft Boolean model: $g^{\text{sum}}(s,t) = \left(s^{-\gamma/d} + t^{-\gamma/d}\right)^{-d}$



• Soft Boolean model: $g^{\text{sum}}(s,t) = \left(s^{-\gamma/d} + t^{-\gamma/d}\right)^{-d}$



• Soft Boolean model: $g^{\text{sum}}(s,t) = \left(s^{-\gamma/d} + t^{-\gamma/d}\right)^{-d}$



The contact process on the weight-dependent random

connection model

The contact process

Let G = (V, E) be a locally-finite graph.

The **contact process** on G is a continuous time Markov process $(\xi_t)_{t\geq 0}$ on $\{0,1\}^V$.

For $\{x \in V : \xi_t(x) = 1\} \subset V$ we have the transition rates:

$$\begin{split} &\xi_t \to \xi_t \backslash \{x\} \quad \text{for } x \in \xi_t \text{ at rate 1, and} \\ &\xi_t \to \xi_t \cup \{x\} \quad \text{for } x \notin \xi_t \text{ at rate } \lambda \cdot \left| \{y \in \xi_t : x \sim y\} \right|. \end{split}$$

Key questions

The process has the single absorbing state equal to \emptyset .

Consequently, the natural questions concern the extinction time

$$\tau_G := \inf\{t > 0 : \xi_t = \emptyset\}.$$

- Can τ_G be infinite?
- If yes, with what probability?
- On a graph with n vertices, how does τ_G change with n?
- How does λ affect the answer?

Non-extinction probability

Let the contact process with parameter λ on $G_{(0,T_0)}$ start in the origin $(0,T_0)$. Define:

$$\Gamma(\lambda) = \mathbb{P}_{(0,T_0)} \left(\xi_t^{(0,T_0)} \neq \emptyset \ \forall t \ge 0 \right).$$

Non-extinction probability

Let the contact process with parameter λ on $G_{(0,T_0)}$ start in the origin $(0,T_0)$. Define:

$$\Gamma(\lambda) = \mathbb{P}_{(0,T_0)} \left(\xi_t^{(0,T_0)} \neq \emptyset \ \forall \ t \ge 0 \right).$$

Theorem (G. and Grauer, '24)

Let G be a general geometric random graph which satisfies Assumption (A1) for $\gamma > \frac{\delta}{\delta+1}$. Then, as $\lambda \to 0$,

$$\Gamma(\lambda) \simeq \frac{\lambda^{2/\gamma - 1}}{\log(1/\lambda)^{(1-\gamma)/\gamma}}.$$

Proof idea

Some observations:

- The contact process can survive a constant amount of time on a "star" of size at least $\sim \lambda^{-2}$. (Mountford, Valesin, and Yao, 2013)
- On a chain of disjoint stars of size at least $\sim \lambda^{-2} \log(1/\lambda)$, separated by at most bounded many steps, the contact process survives with probability at least p for some constant p>0. (Linker, Mitsche, Schapira, and Valesin, 2021)

Proof idea

Some observations:

- The contact process can survive a constant amount of time on a "star" of size at least $\sim \lambda^{-2}$. (Mountford, Valesin, and Yao, 2013)
- On a chain of disjoint stars of size at least $\sim \lambda^{-2} \log(1/\lambda)$, separated by at most bounded many steps, the contact process survives with probability at least p for some constant p>0. (Linker, Mitsche, Schapira, and Valesin, 2021)

Lower bound: A chain of star→connector→bigger star→ . . . exists *a.s.*

Upper bound: Truncated first moment bound counting argument, based on the counting argument by *G., Grauer and Mörters, 2022.*

Exponential extinction time on finite restrictions

Let G_n be the restriction of G to $\left[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}\right]^d$.

We denote by $\tau_n := \inf\{t > 0 : \xi_t^{G_n} = \emptyset\}$ the extinction time of the contact process on G_n .

Exponential extinction time on finite restrictions

Let G_n be the restriction of G to $\left[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}\right]^d$.

We denote by $\tau_n := \inf\{t > 0 : \xi_t^{G_n} = \emptyset\}$ the extinction time of the contact process on G_n .

Theorem (G. and Grauer, '24)

Let $(G_n)_{n\in\mathbb{N}}$ be the restricted finite graph sequence of a general geometric random graph which satisfies Assumption (A1) for $\gamma>\frac{\delta}{\delta+1}$, and let the graph start fully infected. For any $\lambda>0$, there exists c>0 such that

$$\lim_{n \to \infty} \mathbb{P}\{\tau_n \ge e^{cn}\} = 1.$$

Proof sketch

Proposition (G. and Grauer, '24)

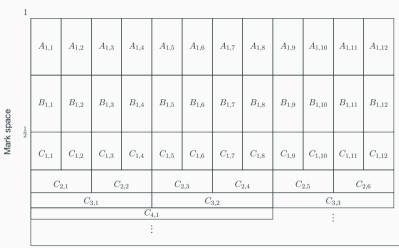
Let S>0 be given and $(G_n)_{n\in\mathbb{N}}$ the restricted finite graph sequence of a general geometric random graph which satisfies Assumption (A1) for $\gamma>\frac{\delta}{\delta+1}$. Then, there exists b>0 and $\varepsilon>0$ such that, for n sufficiently large, the probability that G_n has a connected subgraph containing $b\cdot n$ disjoint stars of at least S vertices each is larger than $1-\exp(-n^\varepsilon)$.

Proof sketch

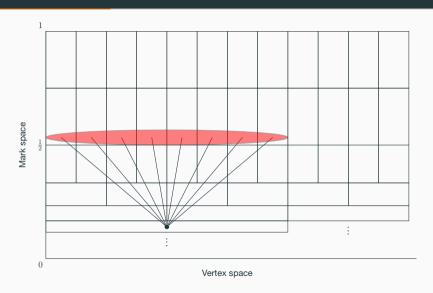
Proposition (G. and Grauer, '24)

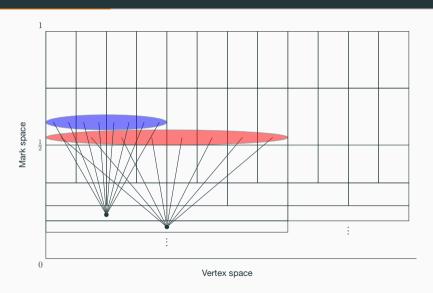
Let S>0 be given and $(G_n)_{n\in\mathbb{N}}$ the restricted finite graph sequence of a general geometric random graph which satisfies Assumption (A1) for $\gamma>\frac{\delta}{\delta+1}$. Then, there exists b>0 and $\varepsilon>0$ such that, for n sufficiently large, the probability that G_n has a connected subgraph containing $b\cdot n$ disjoint stars of at least S vertices each is larger than $1-\exp(-n^\varepsilon)$.

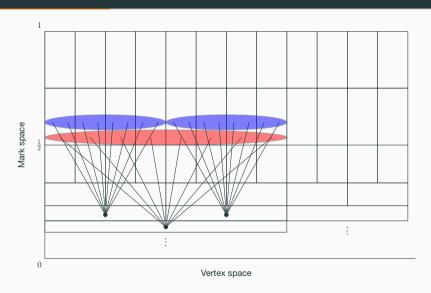
The proof by *Mountford, Mourrat, Valesin, and Yao, 2016* for the configuration model than yields the exponential extinction time claim.

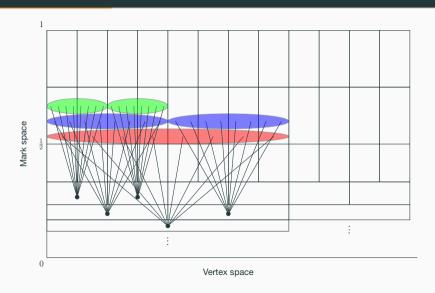


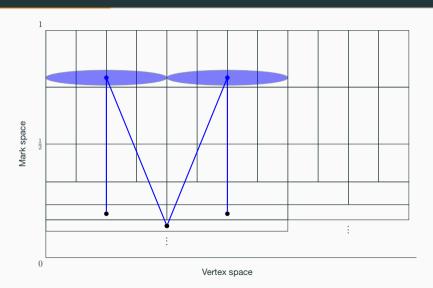
0

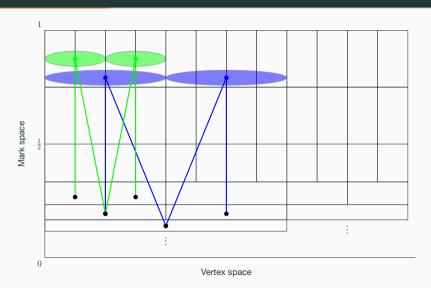


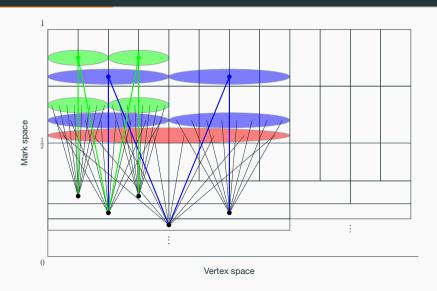












Beyond the weight-dependent random connection graph satisfying (A1)

The stated results also hold for the weight-dependent random connection model with the factor kernel, i.e.

$$\mathbb{P}_{\mathbf{x},\mathbf{y}}(\mathbf{x} \sim \mathbf{y}) \approx t^{-\delta\gamma} s^{-\delta\gamma} |x-y|^{-\delta d}$$

for $\delta > 1$ and $\gamma > \frac{1}{2}$ (Linker, Mitsche, Schapira, and Valesin, 2021).

Key difference: stars connect directly.

The dynamic weight-dependent

random connection model

Setup

• **Vertices**: a Poisson point process $\mathcal X$ of intensity λ on $\mathbb R^d \times [0,1]$ or $\mathbb T^d_n \times [0,1]$ at time t=0.

Setup

- **Vertices**: a Poisson point process $\mathcal X$ of intensity λ on $\mathbb R^d \times [0,1]$ or $\mathbb T^d_n \times [0,1]$ at time t=0.
- **Motion**: Vertices then move independently according to Brownian motions on \mathbb{R}^d (or \mathbb{T}_n^d) and we denote by \mathcal{X}_t the process at time t.

- **Vertices**: a Poisson point process $\mathcal X$ of intensity λ on $\mathbb R^d \times [0,1]$ or $\mathbb T^d_n \times [0,1]$ at time t=0.
- **Motion**: Vertices then move independently according to Brownian motions on \mathbb{R}^d (or \mathbb{T}_n^d) and we denote by \mathcal{X}_t the process at time t.
- Marks: Marks do not update*.

• Edges: Given \mathcal{X}_0 , an edge is drawn between every pair of vertices $\mathbf{x} = (x,t), \mathbf{y} = (y,s) \in \mathcal{X}$ if $U_{x,y} < \mathbb{P}_{\mathbf{x},\mathbf{y}}(\mathbf{x} \sim \mathbf{y})$, where $\mathbb{P}_{\mathbf{x},\mathbf{y}}(\mathbf{x} \sim \mathbf{y})$ satisfies (A1), where $U_{x,y} \sim \mathrm{Unif}(0,1)$, sampled independently for every pair $\{\mathbf{x},\mathbf{y}\}$.

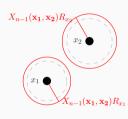
- Edges: Given \mathcal{X}_0 , an edge is drawn between every pair of vertices $\mathbf{x} = (x,t), \mathbf{y} = (y,s) \in \mathcal{X}$ if $U_{x,y} < \mathbb{P}_{\mathbf{x},\mathbf{y}}(\mathbf{x} \sim \mathbf{y})$, where $\mathbb{P}_{\mathbf{x},\mathbf{y}}(\mathbf{x} \sim \mathbf{y})$ satisfies (A1), where $U_{x,y} \sim \mathrm{Unif}(0,1)$, sampled independently for every pair $\{\mathbf{x},\mathbf{y}\}$.
- **Updating**: At times $t \in \mathbb{N}$, all edge marks $U_{x,y}$ are resampled. For $t \notin \mathbb{N}$, an edge can appear/disappear only due to vertex motion.

- Edges: Given \mathcal{X}_0 , an edge is drawn between every pair of vertices $\mathbf{x} = (x,t), \mathbf{y} = (y,s) \in \mathcal{X}$ if $U_{x,y} < \mathbb{P}_{\mathbf{x},\mathbf{y}}(\mathbf{x} \sim \mathbf{y})$, where $\mathbb{P}_{\mathbf{x},\mathbf{y}}(\mathbf{x} \sim \mathbf{y})$ satisfies (A1), where $U_{x,y} \sim \mathrm{Unif}(0,1)$, sampled independently for every pair $\{\mathbf{x},\mathbf{y}\}$.
- **Updating**: At times $t \in \mathbb{N}$, all edge marks $U_{x,y}$ are resampled. For $t \notin \mathbb{N}$, an edge can appear/disappear only due to vertex motion.
 - This ensures that **conditional** on the locations and marks of two vertices, the existence of an edge between them at times t_1 and t_2 is independent, if $\lfloor t_1 \rfloor \neq \lfloor t_2 \rfloor$.
 - The above two events are not unconditionally independent!

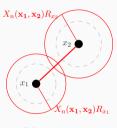
- Edges: Given \mathcal{X}_0 , an edge is drawn between every pair of vertices $\mathbf{x} = (x,t), \mathbf{y} = (y,s) \in \mathcal{X}$ if $U_{x,y} < \mathbb{P}_{\mathbf{x},\mathbf{y}}(\mathbf{x} \sim \mathbf{y})$, where $\mathbb{P}_{\mathbf{x},\mathbf{y}}(\mathbf{x} \sim \mathbf{y})$ satisfies (A1), where $U_{x,y} \sim \mathrm{Unif}(0,1)$, sampled independently for every pair $\{\mathbf{x},\mathbf{y}\}$.
- **Updating**: At times $t \in \mathbb{N}$, all edge marks $U_{x,y}$ are resampled. For $t \notin \mathbb{N}$, an edge can appear/disappear only due to vertex motion.
 - This ensures that **conditional** on the locations and marks of two vertices, the existence of an edge between them at times t_1 and t_2 is independent, if $\lfloor t_1 \rfloor \neq \lfloor t_2 \rfloor$.
 - The above two events are not unconditionally independent!

Individual edge/vertex neighbourhood updating at i.i.d. exponentially distributed random times makes the proofs more difficult, but does not change the results.

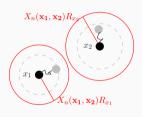
Edge updating (Example)



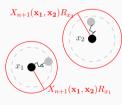
(a) Just before time n.



(b) At time n.



(c) Just before n+1.



(d) At time n + 1.

Summary

The randomness in the model comes from:

- The **starting locations** and **marks** of the vertices.
- The motion of the vertices.
- Given the above, the random occurrence of the edges.

Percolation time

Consider the dynamic scale-free geometric random graph on $\mathbb{R}^d \times (0,1)$.

We define the percolation time as

$$T_{\mathsf{perc}} := \inf\{t \geq 0 : \exists \mathbf{x} \in \mathcal{C}_{\infty}^t \text{ s.t. } \mathbf{x} \sim \mathbf{0}\},\$$

 $^{^{1}\}text{Also}$ holds for factor kernel in "robust" phase, i.e. $\gamma>\frac{1}{2}.$

Percolation time

Consider the dynamic scale-free geometric random graph on $\mathbb{R}^d \times (0,1)$.

We define the percolation time as

$$T_{\mathsf{perc}} := \inf\{t \geq 0 : \exists \mathbf{x} \in \mathcal{C}_{\infty}^t \text{ s.t. } \mathbf{x} \sim \mathbf{0}\},\$$

Theorem (G. and Grauer, '241)

Let $\gamma > \frac{\delta}{\delta+1}$. Then there exists a constant c>0 such that on the \mathbb{R}^d with $d\geq 1$, the percolation time T_{perc} satisfies

$$\mathbb{P}(T_{perc} > t) \le \exp\{-ct^{1/c}\},\,$$

for any vertex intensity $\lambda > 0$ and any t > 0 sufficiently large.

 $^{^{1}\}text{Also}$ holds for factor kernel in "robust" phase, i.e. $\gamma>\frac{1}{2}.$

Broadcast time

Let \mathbb{T}_n be the d-dimensional torus of volume n and consider the dynamic scale-free geometric random graph on $\mathbb{T}_n \times (0,1)$.

At time t=0 an arbitrary vertex starts broadcasting information to all vertices in its connected component. Every vertex that receives this broadcast begins broadcasting it further.

The *broadcast time* T_{bc} is defined as the smallest time at which every vertex of the network has received the broadcast.

Broadcast time

Let \mathbb{T}_n be the d-dimensional torus of volume n and consider the dynamic scale-free geometric random graph on $\mathbb{T}_n \times (0,1)$.

At time t=0 an arbitrary vertex starts broadcasting information to all vertices in its connected component. Every vertex that receives this broadcast begins broadcasting it further.

The broadcast time T_{bc} is defined as the smallest time at which every vertex of the network has received the broadcast.

Theorem (G. and Grauer, '242)

On the d-dimensional torus of volume n with $d \geq 1$ with $\gamma > \frac{\delta}{\delta + 1}$, the broadcast time T_{bc} is with high probability $O(\log \log n)^{\epsilon}$ for any $\epsilon > 0$ and any $\lambda > 0$.

 $^{^2}$ Also holds for factor kernel in "robust" phase, i.e. $\gamma>\frac{1}{2}.$

A few remarks

- Dynamic geometric random graphs are strongly correlated spatially and temporally.
- Since the vertex marks are not being updated, exceptionally "unlucky" vertices are possible.
- It is not a priori clear how the largest connected component evolves over time.

Static tools: Good cubes

Let $a \in (0, \frac{1}{\log 2})$ and $\Theta \in (\frac{\log 2}{\gamma + \gamma/\delta}, \log 2)$ be two constants.

Definition (t- α -dense cubes)

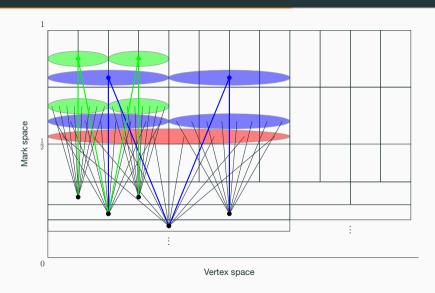
Let t>0 and $I_k:=(\frac{1}{2}e^{-(k+1)\Theta d},\frac{1}{2}e^{-k\Theta d})$, $k\in\{0,\dots,\lfloor(a\log t)/d\rfloor\}$ and $I_{-1}:=(\frac{1}{2},1).$ We say a cube $Q\subset\mathbb{R}^d$ is t- α -dense, if for every $k\in\{-1,0,\dots,\lfloor(a\log t)/d\rfloor\}$, the locations of the vertices in $Q\times I_k$ contain as a subset an independent Poisson point process of intensity $\lambda(1-\alpha)|I_k|$ on \mathbb{R}^d , with marks in I_k .

Static tools: Evenly spread subgraphs

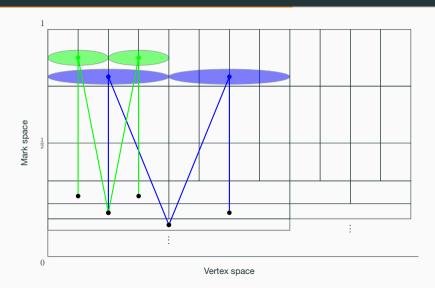
Definition (Evenly spread subgraphs)

We call a finite connected subgraph of $\mathcal G$ contained inside Q_K an evenly spread subgraph of $\mathcal G$ inside Q_K , if it contains at least $b\cdot K$ vertices for some constant b>0 and if every subcube of Q_K of the form $\times_{i=1}^d (2^{k_p}v_i, (2^{k_p}+1)v_i), \, v_i\in \mathbb Z,$ $k_p=\lfloor a\log K\rfloor$ contains a vertex with mark smaller than $\frac12 e^{-k_p\Theta d}$ belonging to the evenly spread component. We call these vertices the bottom vertices of the evenly spread component.

Evenly spread



Evenly spread



Static tools: Evenly spread subgraphs

Proposition (G. and Grauer, '24)

Fix K large enough and consider the cube $Q_K \subset \mathbb{R}^d$. Assume that Q_K is K- α -dense for some $\alpha>0$ and let $\gamma>\frac{\delta}{\delta+1}$. Then, there exists $\epsilon>0$ such that for any $\lambda>0$ and K large enough, there exists an evenly spread subgraph of $\mathcal G$ inside Q_K with probability at least

$$1 - \exp\{-K^{\epsilon}\}.$$

Static tools: Evenly spread subgraphs

Lemma (G. and Grauer, '24)

Assume that Q_K is K- α -dense for some $\alpha>0$ and let $\gamma>\frac{\delta}{\delta+1}$ and $\lambda>0$. Let furthermore G be an evenly spread subgraph of $\mathcal{G}^{1-\varepsilon}$ inside Q_K . Then, a given vertex \mathbf{x} with a mark in (0,1) and arbitrary location within Q_K belongs to the same connected component of \mathcal{G} as G with probability bounded away from 0.

Static tools: Summary

- If a cube Q_K of volume t^d is t- α -dense, an evenly spread subgraph of size K exists wep(K).
- An arbitrary vertex anywhere in the cube Q_K has probability bounded away from 0 of belonging to the same connected component as the evenly spread subgraph.

Key question

How often is the cube Q_K t- α -dense during the time interval [0,t]?

Dynamics: Decoupling of particles

Proposition (Peres, Sinclair, Sousi, and Stauffer, 2011³)

Fix $K>\ell>0$ and consider the cube $Q_{K^d}\subset\mathbb{R}^d$ tessellated into subcubes of side length ℓ . Let Π_0 be an arbitrary point process at time 0 that contains at least $\beta\ell^d$ vertices in each subcube of the tessellation for some $\beta>0$. Let Π_Δ be the point process obtained at time Δ from Π_0 after the vertices have moved for time Δ . Fix $\epsilon\in(0,1)$ and let Ψ be an independent Poisson point process of intensity $(1-\epsilon)\beta$ on Q_K . Then there exists a coupling of Ψ and Π_Δ and constants c_1,c_2,c_3 that depend on d only, such that if $\Delta\geq\frac{c_1\ell^2}{\epsilon^2}$ and $K'\leq K-c_2\sqrt{\Delta\log\epsilon^{-1}}>0$, the vertices of Ψ are a subset of the vertices Π_Δ inside the cube $Q_{K'}$ with probability at least

$$1 - \frac{K^d}{\ell^d} \exp\{-c_3 \epsilon^2 \beta \Delta^{d/2}\}.$$

³Generalisations of this result exist also for (uniformly elliptic) lattices and fractal lattices.

Dynamics: Cubes are good/dense most of the time

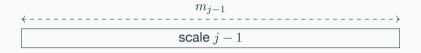
Proposition (G. and Grauer, '24)

Let t>0 be a sufficiently large integer and $\xi,\epsilon\in(0,1)$ two constants. Consider the cube Q_{L^d} , for L=t. Define for $i=0,\ldots,t$ the events

$$A_i = \{ \text{at time } i \text{ the cube } Q_{L^d} \text{ is } t\text{-}\xi\text{-dense} \}.$$

Then, there exist two positive constants c_1, c_2 such that

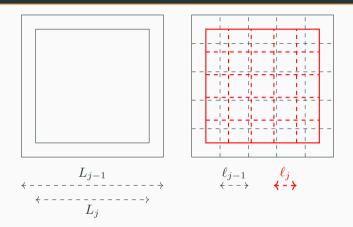
$$\mathbb{P}\left(\sum_{i=0}^{t-1} \mathbb{1}_{A_i} \ge (1-\epsilon)t\right) \ge 1 - \exp\{-c_1 t^{c_2}\}.$$



The temporal multi-scale recursion

The values are chosen as:

$$m_1=t, \quad m_j=rac{m_{j-1}-4\Delta_{j-1}}{4}, \quad ext{and} \quad rac{\Delta_j}{m_j}=rac{\epsilon}{8\kappa}.$$



The spatial multi-scale recursion

The values are chosen as: $L_1=L^2$, $L_{\kappa}=L$, $\ell_1=c\sqrt{t}$, $\ell_{j+1}=\ell_j\sqrt{\frac{1}{4}-\frac{\epsilon}{8\kappa}}$, with $\kappa=O(\log t)$.

Let D_j be the event that all subcubes of side-length ℓ_j inside the cube of side length L_j are good for a fraction of at least $(1-\frac{\epsilon_j}{2})$ time intervals of scale j.

- 1. $\mathbb{P}(D_1) \ge 1 \exp\{-c_1 t^{c_2}\}$
- 2. Set

$$E = \{ \text{at time } b' \text{ all subcubes are good for the scale } j-1 \},$$

with $b' = b - \Delta_{j-1}$. Then

$$\mathbb{P}([b, b + m_j) \text{ is good}, E|F) \ge 1 - \exp\{-c_1 t^{-a\Theta} \ell_j^d / \kappa^2\},$$

with F measurable w.r.t. events that occurred up to time b'.

3.
$$\mathbb{P}(D_j^c \cap D_{j-1}) \le \exp\{-\frac{ct^{c_4}}{\kappa^6}\}.$$

Consequently,

$$\mathbb{P}(D_{\kappa}^c) \le \mathbb{P}(D_{\kappa}^c \cap D_{\kappa-1}) + \mathbb{P}(D_{\kappa-1}^c),$$

which gives

$$\mathbb{P}(D_{\kappa}^c) \le \sum_{j=2}^{\kappa} \mathbb{P}(D_j^c \cap D_{j-1}) + \mathbb{P}(D_1^c).$$

Broadcast time

Consider a torus of volume n and let $t = C \log n (\log \log n)^{\epsilon}$.

- Tessellate the torus into cubes of side length t.
- Each such cube is dense at least $(1-\epsilon)t$ amount of time \Rightarrow Contains wep(t) evenly spread subgraph throughout this time.
- At each time, the second largest component on the torus (of size n) is wep(t) of size o(t) by *Jorritsma, Komjáthy, and Mitsche, 2024*.

Consequently, when an evenly spread subgraph exists, it is in the largest connected component of the torus.

Broadcast time

- Each vertex (including the "origin vertex") has positive (bdd. away from 0) probability of belonging to the same component as the "local" evenly spread subgraph.
 - \Rightarrow Infection enters the large component during [0,t/2) with probability greater than $1-(1-p)^{t/2}$.
- During [t/2,t], a vertex belongs to the large component at least once with probability greater than $1-(1-p)^{t/2}$.
- Since there are only $\Theta(n)$ vertices on the torus whp(n), every vertex gets the information with probability at least

$$1 - (1 + \delta)n(1 - p)^{(1 - \epsilon)t/2}.$$

Setting C large concludes the proof.

Open problems and future work

- Tightness of broadcast time bound.
- Non-robust regimes.
- Different edge updating mechanisms.
- Contact process on dynamic graph.

References i

Gracar, Peter and Arne Grauer (2024a). **Geometric scale-free random graphs on mobile vertices: broadcast and percolation times.** arXiv: 2404.15124. URL: https://arxiv.org/pdf/2404.15124.pdf.

— (2024b). "The contact process on scale-free geometric random graphs". In: Stochastic Processes and their Applications 173, page 104360. ISSN: 0304-4149. DOI: 10.1016/j.spa.2024.104360. URL: https://www.sciencedirect.com/science/article/pii/S0304414924000668.

Gracar, Peter, Arne Grauer, and Peter Mörters (2022). "Chemical Distance in Geometric Random Graphs with Long Edges and Scale-Free Degree Distribution". In: Communications in Mathematical Physics.

DOI: 10.1007/s00220-022-04445-3. URL: https://doi.org/10.1007/s00220-022-04445-3.

Jorritsma, Joost, Júlia Komjáthy, and Dieter Mitsche (2024). *Large deviations of the giant in supercritical kernel-based spatial random graphs*. arXiv: 2404.02984 [math.PR].

Linker, Amitai, Dieter Mitsche, Bruno Schapira, and Daniel Valesin (2021). "The contact process on random hyperbolic graphs: metastability and critical exponents". In: *The Annals of Probability* 49.3, pages 1480–1514. ISSN: 0091-1798. DOI: 10.1214/20-aop1489. URL: https://doi.org/10.1214/20-aop1489.

References ii

Mountford, Thomas, Jean-Christophe Mourrat, Daniel Valesin, and Qiang Yao (2016). "Exponential extinction time of the contact process on finite graphs". In: Stochastic Processes and their Applications 126.7, pages 1974–2013. ISSN: 0304-4149. DOI: 10.1016/j.spa.2016.01.001. URL: https://doi.org/10.1016/j.spa.2016.01.001.

Mountford, Thomas, Daniel Valesin, and Qiang Yao (2013). "Metastable densities for the contact process on power law random graphs". In: *Electronic Journal of Probability* 18, No. 103, 36. DOI: 10.1214/EJP.v18-2512. URL: https://doi.org/10.1214/EJP.v18-2512.

Peres, Yuval, Alistair Sinclair, Perla Sousi, and Alexandre Stauffer (2011). "Mobile Geometric Graphs: Detection, Coverage and Percolation". In: *Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms*. Society for Industrial and Applied Mathematics. DOI: 10.1137/1.9781611973082.33. URL: https://doi.org/10.1137%2F1.9781611973082.33.

Thank you for listening!4

⁴and/or being physically present.