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© Euclidean First Passage Percolation + variants
@ Definition of the model
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The model

@ We consider spatial networks on Poisson points in bounded Euclidean
domains.

© We assign edge weights = Euclidean length.

© Consider the geodesics spanning two Poisson points x, y at Euclidean
distance |x — y|. What do these look like?

(a)
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Figure: (a) A geodesic on the hrgg.
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First passage percolation on spatial networks

Figure: (a) An Erdos-Renyi random graph G(30,2/15).
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First passage percolation on spatial networks

Figure: G(30,2/15) with added i.i.d. edge weights uniform on [0,1].
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First passage percolation on spatial networks

Figure: A geodesic highlighted.
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First passage percolation on spatial networks

Figure: A geodesic highlighted.
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First passage percolation on spatial networks

It is known that in scale-invariant Euclidean geometry, we have power laws
for various statistics of T: accordingly, the fluctuation exponent x is
defined by

Var(T(x,y)) ~ x — y|*¢ (1)

as |x — y| = oo. Similarly, the deviation D(x, y) of the geodesic from the
straight line from x to y is characterised by the wandering exponent &

E(D(x,y)) ~ Ix = y[* (2)
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FPP review of results

Review of FPP on Z2, main results:

@ Cox-Durrett Shape theorem with B(t) = {z € Z? : T(0,z) < t}
1 2
TB() - BCE (3)

B is constant, symmetric, convex, non-empty, not all of R?,
Cox-Durrett, Ann. Prob. 1981.

@ Almost nothing known until Newman and Piza in 1995 give bounds
on wandering exponent.

© In 2013, Chatterjee proves xy = 2 — 1 with strong definition of

exponents. Damron-Hanson also prove this without some
assumptions on the edge-weight distribution.
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First passage percolation

Sometimes we say 7 is “time”, £ is “space”’, and yx is “fluctuation”.

Time/space/fluctuation exponents of the Kadar-Parisi-Zhang (KPZ) class
have x =1/3, £ =2/3, and 7 = 1, with

x=2-1 (4)

mary + z

from S. Chatterjee The universal relation between scaling exponents in
first-passage percolation, Ann. Maths 2013.
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Corner growth model

Example of 3:2:1 scaling:

Figure: Simulation of the corner growth model (medium and long term). The
blue curve has vertical fluctuations of order t!/3 and decorrelates spatially on
distances of order t2/3 (from I. Corwin, AMS Not. 2016).
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The KPZ fixed point
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Figure: It is believed that these ideas extend to a variety of growth processes and
directed polymer models (from I. Corwin, Symp. App. Maths 2018).
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© FPP on random spatial networks
@ Definition of models
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Four models of spatial networks

We simulate Euclidean FPP on four types of spatial network:

©@ Random geometric graph

@ k-Nearest Neighbour Graph For this graph, we connect points of X
to their k € N nearest neighbours.

© Delaunay triangulation The Delaunay triangulation of a set of
points is the dual graph of their Voronoi tessellation.

@ Beta skeleton One adds edges between two points of a point set
when a (-lens is empty of other spatial points.
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Beta skeletons: definition

(a)

(c)
(b)

y T

Figure: The geometry of the lune-based [S-skeleton for (a) 8 =1/2, (b) 8 =1,
and (c) 8 =2.
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Beta skeletons
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Figure: Geodesics of FPP on different spatial networks: (a) Hard (b) Soft (c) NN
(d) RNG (e) Gabirel (f) DT.
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Figure: FPP on different spatial networks (a) Hard (b) Soft (c) NN (d) RNG (e)
Gabirel (f) DT.
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Outline

© FPP on random spatial networks

@ Results
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What is known:

For the KPZ class, we have transversal deviation ~ |x — y|?/3, and
standard deviation of travel time ~ |x — y|'/3, abbreviated as 3:2:1
time:space:fluctuation scaling.

What is new:

New universality class (1) gives 5:3:1 scaling. This includes the soft and
hard RGG, based on neighbour connectivity.

New universality class (2) gives 10:7:4 scaling. Networks based on
skeleton formation, such as RNG, and Delaunay triangulation.
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Results

Two new universality classes:
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Figure: (Top) New class 1 with 5:3:1 scaling, containing the RGGs and the k-NN
graph. (Below) New class 2 with 10:7:4 scaling, containing the proximity graphs,

triangulations, and Euclidean FPP.
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TABLE I. Exponents & and x and passage-time distribution for the various networks considered.

Network & X Distribution of T’
Proximity graphs
Hard RGG 3/5 1/5 Normal (Conj.)
Soft RGG with Rayleigh fading 3/5 1/5 Normal (Conj.)
k-NNG 3/5 1/5 Normal
Excluded region graphs
DT 7/10 2/5 Normal
GG 7/10 2/5 Normal
B skeletons 7/10 2/5 Normal
RNG 7/10 2/5 Normal
Euclidean FPP
Witha = 3/2 7/10 2/5 Normal
Witha =5/2 7/10 2/5 Normal

FPP in RGGs




Conclusions and Open Questions

Interesting universality in spatial networks is present in their geodesics.

@ Open question 1: Can you prove anything rigourously about these
exponents?

@ Open question 2: Can you find another model with these
exponents? What is the most straightforward random growth process
that displays them?

@ Open question 3: Can you observe Tracy-Widom for any sort of
probabilistic fluctuations in a spatial network model?

Lots of comparison with actual complex networks is also interesting, with
connections to scale invariant spatial networks.
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Joint work with Carl Dettmann at Bristol University, and Marc Barthelemy
at IPhT in Paris.

Thank you.
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