The shape of shortest paths in random spatial networks Stochastic Geometry in Action, University of Bath

Alexander Giles
Faculty of the Built Envrionment, The Bartlett, UCL

September 2024

1/25

Outline

- Introduction
- 2 Euclidean First Passage Percolation + variants
 - Definition of the model
- 3 FPP on random spatial networks
 - Definition of models
 - Results
- 4 Conclusions

Outline

- Introduction
- 2 Euclidean First Passage Percolation + variants
 - Definition of the model
- FPP on random spatial networks
 - Definition of models
 - Results
- 4 Conclusions

The model

- We consider spatial networks on Poisson points in bounded Euclidean domains.
- We assign edge weights = Euclidean length.
- **3** Consider the geodesics spanning two Poisson points x, y at Euclidean distance |x y|. What do these look like?

Figure: (a) A geodesic on the hrgg.

Figure: (a) An Erdos-Renyi random graph G(30, 2/15).

A. P. Giles (UCL) FPP in RGGs September 2024 5/25

Figure: G(30, 2/15) with added i.i.d. edge weights uniform on [0,1].

A. P. Giles (UCL) FPP in RGGs September 2024 6 / 25

Figure: A geodesic highlighted.

Figure: A geodesic highlighted.

It is known that in scale-invariant Euclidean geometry, we have power laws for various statistics of T: accordingly, the *fluctuation exponent* χ is defined by

$$Var(T(x,y)) \sim |x-y|^{2\chi} \tag{1}$$

as $|x-y| \to \infty$. Similarly, the deviation D(x,y) of the geodesic from the straight line from x to y is characterised by the wandering exponent ξ

$$\mathbb{E}(D(x,y)) \sim |x-y|^{\xi} \tag{2}$$

A. P. Giles (UCL) FPP in RGGs September 2024 9 / 25

FPP review of results

Review of FPP on \mathbb{Z}^2 , main results:

① Cox-Durrett Shape theorem with $B(t) = \{z \in \mathbb{Z}^2 : T(0, z) \le t\}$

$$\frac{1}{t}B(t)\to\mathcal{B}\subset\mathbb{R}^2\tag{3}$$

 ${\cal B}$ is constant, symmetric, convex, non-empty, not all of ${\mathbb R}^2$, Cox-Durrett, Ann. Prob. 1981.

- Almost nothing known until Newman and Piza in 1995 give bounds on wandering exponent.
- **1** In 2013, Chatterjee proves $\chi=2\xi-1$ with strong definition of exponents. Damron-Hanson also prove this without some assumptions on the edge-weight distribution.

A. P. Giles (UCL) FPP in RGGs September 2024 10 / 25

First passage percolation

Sometimes we say τ is "time", ξ is "space", and χ is "fluctuation".

Time/space/fluctuation exponents of the Kadar-Parisi-Zhang (KPZ) class have $\chi=1/3,~\xi=2/3,$ and $\tau=1,$ with

$$\chi = 2\xi - 1 \tag{4}$$

from S. Chatterjee *The universal relation between scaling exponents in first-passage percolation*, Ann. Maths 2013.

Corner growth model

Example of 3:2:1 scaling:

Figure: Simulation of the corner growth model (medium and long term). The blue curve has vertical fluctuations of order $t^{1/3}$ and decorrelates spatially on distances of order $t^{2/3}$ (from I. Corwin, AMS Not. 2016).

12 / 25

A. P. Giles (UCL) FPP in RGGs September 2024

The KPZ fixed point

Figure: It is believed that these ideas extend to a variety of growth processes and directed polymer models (from I. Corwin, Symp. App. Maths 2018).

A. P. Giles (UCL) FPP in RGGs September 2024 13 / 25

Outline

- Introduction
- 2 Euclidean First Passage Percolation + variants
 - Definition of the model
- 3 FPP on random spatial networks
 - Definition of models
 - Results
- 4 Conclusions

Four models of spatial networks

We simulate Euclidean FPP on four types of spatial network:

- Random geometric graph
- **Q k-Nearest Neighbour Graph** For this graph, we connect points of \mathcal{X} to their $k \in \mathbb{N}$ nearest neighbours.
- Delaunay triangulation The Delaunay triangulation of a set of points is the dual graph of their Voronoi tessellation.
- **9 Beta skeleton** One adds edges between two points of a point set when a β -lens is empty of other spatial points.

15 / 25

Beta skeletons: definition

Figure: The geometry of the lune-based β -skeleton for (a) $\beta=1/2$, (b) $\beta=1$, and (c) $\beta=2$.

→ □ ト → □ ト → 三 ト → 三 → つへの

16 / 25

A. P. Giles (UCL) FPP in RGGs September 2024

Beta skeletons

Figure: Geodesics of FPP on different spatial networks: (a) Hard (b) Soft (c) NN (d) RNG (e) Gabirel (f) DT.

Figure: FPP on different spatial networks (a) Hard (b) Soft (c) NN (d) RNG (e) Gabirel (f) DT.

Outline

- Introduction
- 2 Euclidean First Passage Percolation + variants
 - Definition of the model
- 3 FPP on random spatial networks
 - Definition of models
 - Results
- 4 Conclusions

Results

What is known:

For the **KPZ class**, we have transversal deviation $\sim |x-y|^{2/3}$, and standard deviation of travel time $\sim |x-y|^{1/3}$, abbreviated as 3:2:1 time:space:fluctuation scaling.

What is new:

New universality class (1) gives 5:3:1 scaling. This includes the soft and hard RGG, based on neighbour connectivity.

New universality class (2) gives 10:7:4 scaling. Networks based on skeleton formation, such as RNG, and Delaunay triangulation.

21/25

A. P. Giles (UCL) FPP in RGGs September 2024

Results

Two new universality classes:

Figure: (Top) New class 1 with 5:3:1 scaling, containing the RGGs and the k-NN graph. (Below) New class 2 with 10:7:4 scaling, containing the proximity graphs, triangulations, and Euclidean FPP.

Results

TABLE I. Exponents ξ and χ and passage-time distribution for the various networks considered.

Network	ξ	χ	Distribution of T
	Proximity graphs		
Hard RGG	3/5	1/5	Normal (Conj.)
Soft RGG with Rayleigh fading	3/5	1/5	Normal (Conj.)
k-NNG	3/5	1/5	Normal
	Excluded region graphs		
DT	7/10	2/5	Normal
GG	7/10	2/5	Normal
β skeletons	7/10	2/5	Normal
RNG	7/10	2/5	Normal
	Euclidean FPP		
With $\alpha = 3/2$	7/10	2/5	Normal
With $\alpha = 5/2$	7/10	2/5	Normal

A. P. Giles (UCL) FPP in RGGs September 2024

Conclusions and Open Questions

Interesting universality in spatial networks is present in their geodesics.

- **Open question 1**: Can you prove anything rigourously about these exponents?
- **Open question 2**: Can you find another model with these exponents? What is the most straightforward random growth process that displays them?
- Open question 3: Can you observe Tracy-Widom for any sort of probabilistic fluctuations in a spatial network model?

Lots of comparison with actual complex networks is also interesting, with connections to scale invariant spatial networks.

A. P. Giles (UCL) FPP in RGGs September 2024 24 / 25

Thank you

Joint work with Carl Dettmann at Bristol University, and Marc Barthelemy at IPhT in Paris.

Thank you.