Connectivity in the 1-D random connection model

Ayalvadi Ganesh University of Bristol

Joint work with Carl Dettmann and Michael Wilsher

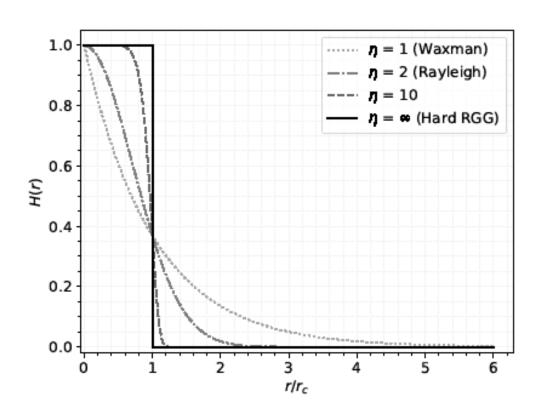
Model and notation

- Domain is interval [0, L] with endpoints identified.
- Nodes form a Poisson process of unit intensity.
- Connection function $H(\cdot)$: edge between nodes a circular distance r apart present with probability H(r), independent of other edges.
- Scaled connection functions: $H^L(r) = H(r/R_L)$
- Asymptotic regime: $L, R_L \to \infty$, $R_L/L \to 0$
- Question: Is the resulting random graph connected?

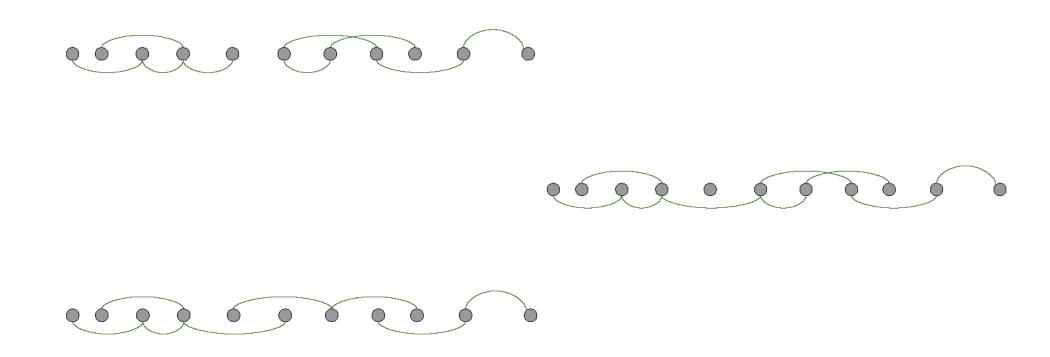
Remarks

- Assumption: $||H||_1 := \int_0^\infty H(x) dx < \infty$.
- Mean number of nodes is L.
- Mean degree tends to $||H||_1$ (unscaled) or is asymptotic to $R_L ||H||_1$ (scaled), as $L \to \infty$.
- Examples:
 - (Hard) Random geometric graph: $H(r) = 1(r < r_c)$
 - Waxman: $H(r) = \exp(-r/r_c)$
 - Rayleigh: $H(r) = \exp(-(r/r_c)^2)$

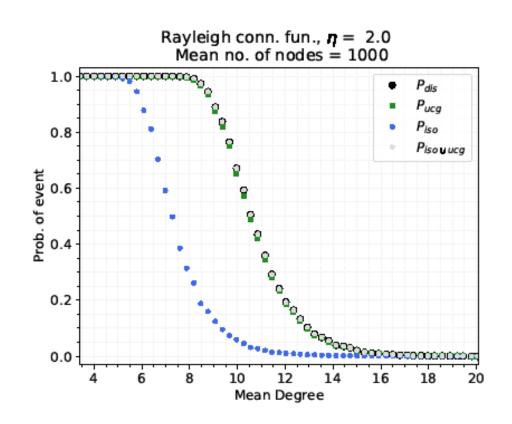
Examples of connection functions

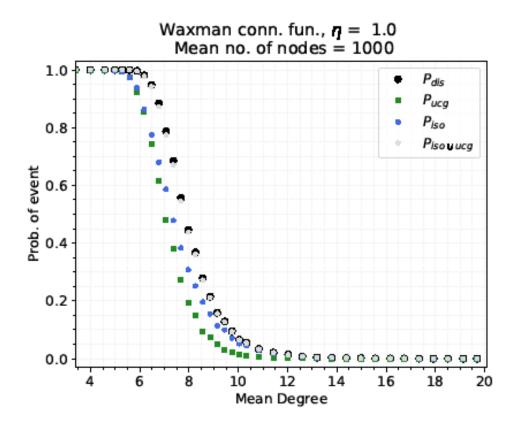


Possible causes of disconnection

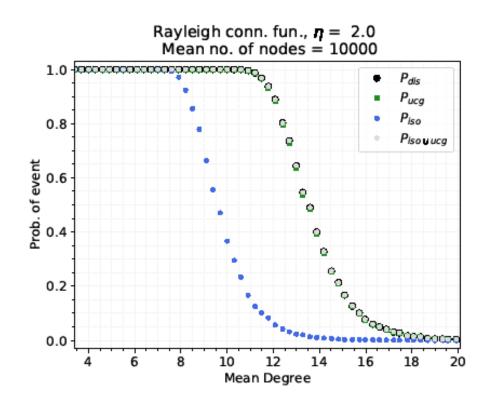


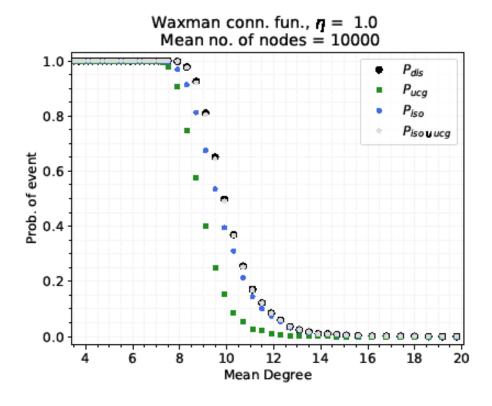
What determines connectivity?





What determines connectivity?





Results: Isolated nodes

• Theorem (Wilsher, Dettmann, G, 2020):

Take $R_L = \gamma \log L$, so that the mean degree is $2\gamma \|H\|_1 \log L$. Then,

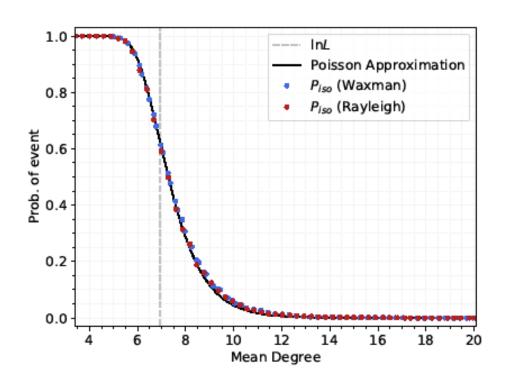
$$P(N_{iso} = 0) \rightarrow \begin{cases} 0, & 2\gamma ||H||_1 < 1, \\ 1, & 2\gamma ||H||_1 > 1. \end{cases}$$

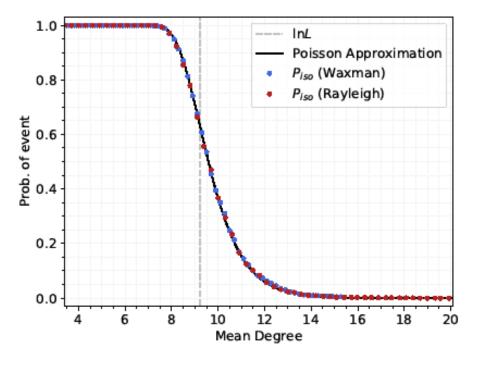
• Theorem (WDG, 2022):

If the mean degree minus $\log L$ tends to a constant, c, then

$$P(N_{iso} = 0) \rightarrow \exp(-\exp(-c))$$

Simulation vs. theory





Results: Uncrossed gaps

• Theorem (WDG, 2020): Suppose, further, that H is monotone decreasing and has unbounded support. Take $R_L = \gamma \log L$. Then, for any $\gamma > 0$,

$$P(N_{ucg}=0) \rightarrow 1$$

- Remarks: The theorem says that, at the threshold at which isolated nodes appear, there are no uncrossed gaps, whp.
- Hence, we conjecture that the probability of disconnection is asymptotically the same as the probability of isolated nodes being present.

Threshold for uncrossed gaps

• Consider the generalized Rayleigh connection function,

$$H(r) = \exp(-(r/r_c)^{\eta})$$

• Then, the threshold for the emergence of uncrossed gaps is

$$R_L = \frac{\log L}{C (\log \log L)^{\theta}} ,$$

• where C and θ depend on η .

References

- Wilsher, Dettmann, Ganesh, Connectivity in one-dimensional soft random geometric graphs, *Phys. Rev. E*, 2020.
- Wilsher, Dettmann, Ganesh, The distribution of the number of isolated nodes in the 1-Dimensional soft random geometric graph, *Stat. and Prob. Letters*, 2022.