
Crossing Number
in a Projected Random Geometric Graph

Hanna Döring

Workshop Stochastic Geometry in Action
Bath, 10-13 September 2024

joint work with

Markus Chimani (Theoretical Computer Science),
Lianne de Jonge and Matthias Reitzner (Probability Theory),

University of Osnabrück

Hanna Döring Crossing Number in RGG Stochastic Geometry in Action 1 / 21



Crossing Number
Crossing number of the graph G
= minimal number of edge crossings of a plane drawing of G

Example: Crossing Number of the complete graph cr(Kn)

Picture from Crossing Numbers of Graphs by Schaefer
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Harary-Hill Conjecture/ Guy’s Conjecture 1960s

Conjecture

cr(Kn) ?= 1
4

⌊n
2

⌋⌊n − 1
2

⌋⌊n − 2
2

⌋⌊n − 3
2

⌋
Proven for n ≤ 10 in [Guy 72]
and for n ≤ 12 in [Pan and Richter 07]:

n 3 4 5 6 7 8 9 10 11 12
cr(Kn) 0 0 1 3 9 18 36 60 100 150

and for some particular cases. Known

cr(Kn) ≤ 1
4

⌊n
2

⌋⌊n − 1
2

⌋⌊n − 2
2

⌋⌊n − 3
2

⌋

Question Is there always a drawing with edges as straight line segments
and a minimal number of crossings?
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Rectilinear Crossing Number
Rectilinear crossing number of the graph G
= minimal number of edge crossings of a plane drawing of G

with edges being line segments

Rectilinear Crossing Number
cr(G)

cr(K8) = 19

Crossing Number
cr(G)

cr(K8) = 18
→ smallest complete graph with cr(Kn) < cr(Kn).

In fact, cr(Kn) = cr(Kn) for n ≤ 7 and n = 9 only!
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Crossing Numbers
Rectilinear crossing number of the graph G

see http://www.ist.tugraz.at/staff/aichholzer/crossings.html; 2015
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Computer Scientists’ View

The problem
Given a graph G , draw it in the plane with the minimal number of edge
crossings.
is NP-complete.
To find cr(G) is even harder (∃R-complete).

Efficient approximation algorithms are known only for special cases.

Interest from a computer science perspective
chip design
automatic graph drawing
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Crossing Lemma
Upper Bounds for cr(G): constructions, heuristics,...
Lower Bounds for cr(G): much harder to argue!

Crossing Lemma. Consider a graph G on n vertices and m edges.

∃c, d ≥ 0 such that if m ≥ d · n then cr(G) ≥ c m3

n2 .

[Ajtai et al. 82; Leighton 83]: d = 4, c = 1/64;
[de Klerk et al. 06]: d = 7, c = 1/20
or see the beautiful and short proof from THE BOOK in Aigner & Ziegler.

Crossing Lemma for dense graphs, m ∼ n2:
maximum no. of crossings: cr(G) ≤ O(m2)

Crossing Lemma: cr(G) ≥ c m3

n2 ∼ m2

⇒ Crossing Lemma is optimal for dense graphs.
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Random Geometric Graphs

Convex set W ⊂ Rd with vold(W ) = 1
vertices: Poisson process of intensity t
Consider radius δt dependent on t
Draw an edge between u and v if ∥v − u∥ ≤ δt

typical degree of a vertex κd tδd
t

critical scaling
for t →∞ and δt → 0
with limt→∞ tδd

t = c ∈ (0,∞).
[Penrose 03; Reitzner, Schulte, Thäle 17]
L ⊂ R2 a plane
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Projection Algorithm

W

G

L

G |L

G0 = abstract graph of G : cr(G0) ≤ cr(G0) ≤ cr(G |L)
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Crossing number

Number of crossings in G after projecting onto L

cr(G |L) = 1
8

∑
(v1,v2,v3,v4)∈V 4

̸=

1([v1, v2 ]|L

line segment after projection on L

∩ [v3, v4]|L ̸= ∅,

∥v1 − v2∥ ≤ δt , ∥v3 − v4∥ ≤ δt)

is U-statistic of order 4
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Mean crossing number

EV cr(GL)

= 1
8EV

∑
(v1,v2,v3,v4)∈V 4

̸=

1
(
[v1, v2]|L∩[v3, v4]|L ̸= ∅, ∥v1 − v2∥ ≤ δt , ∥v3 − v4∥ ≤ δt

)
= 1

8 t4
∫

W 4

1([v1, v2]|L∩[v3, v4]|L ̸= ∅, ∥v1 − v2∥ ≤ δt , ∥v3 − v4∥ ≤ δt)

by Multivariate Slivnyak-Mecke dv1dv2dv3dv4

By Fubini and substitution, the indicator equals 1 if
v2 is confined by a ball of radius δt around v1: ∼ δd

t

v3 is in a cylinder with ball δtB2 around v1 in L: ∼ δ2
t

v4 lies in a ball of radius δt around v3: ∼ δd
t

∼ δ2d+2
t
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Mean crossing number ...more precisely

EV cr(GL) = 1
8cd t4δ2d+2

t

∫
W |L

λd−2((v + L⊥) ∩W )2 dv + o(δ2d+2
t t4),

where cd = 8πκ2
d−2 B

(
3, d

2
)2

expected number of vertices EV n = t
expected number of edges EV m = κd

2 t2δd
t +O(t2δd+1

t surf(W))

For G0 the abstract graph of G , we heuristically have

c · m3

n2 ≤

Crossing Lemma

cr(G0) ≤ cr(G0) ≤ EV cr(G |L) ≤ C · m3

n2 ·
( m

n2

density)2−d
d
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Mean crossing number and LLN

Corollaries (Chimani, HD, Reitzner, 2018)
A random geometric graph G in R2 is an expected constant-factor
approximation for cr(G0) and cr(G0).

Let d and density m/n2 fixed. Picking any projection plane L for a
random geometric graph in Rd yields an expected constant-factor
approximation for cr(G0) and cr(G0).

Again by Slivnyak-Mecke formula for the variance: VV cr(GL) ∼ t7δ4d+4
t

Corollary (Chimani, HD, Reitzner, 2018) law of large numbers:
For given L, the normalized random crossing number converges in prob.
(with resp. to the PPP V ) as t →∞,

cr(GL)
t4δ2d+2

t
→ 1

8cdλd−2((v + L⊥) ∩W ).
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Crossing point process

The crossing point process is the random measure ξt defined for Borel
sets A ⊂ L by

ξt(A) = 1
8

∑
(v1,v2,v3,v4)∈V 4

̸=

1([v1, v2]|L ∩ [v3, v4]|L ∩ A ̸= ∅)
· 1(∥v1 − v2∥ ≤ δt , ∥v3 − v4∥ ≤ δt).

scaling: t2δd+1
t

t→∞−→ c > 0 part of sparse regime

Theorem (HD, de Jonge, 2024+)
Let t2δd+1

t → c > 0. Then there exists a Poisson point process ζ on L
with finite intensity measure such that

dKR(ξt , ζ) = O(δt) +O(c2 − t4δ2d+2
t ).

Convergence in distribution of ξt to ζ follows.
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Proof idea
Intensity measure of ξt : Mt(A) := Eξt(A).

Intensity measure of ζ: M(A) := 1
8cdc2

∫
A

λd−2((v + L⊥) ∩W )2dv .

Intensity measure converges:

dTV (Mt , M) = O(δt) +O(c2 − t4δ2d+2
t )

Difference of variance and expectation converges to zero:

Vξt(L)− Eξt(L) = O(δt)

Apply [Decreusefond, Schulte, Thäle ’16]:

dKR(ξt , ζ) ≤ dTV (Mt , M) + 2(Vξt(L)− Eξt(L))
= O(δt) +O(c2 − t4δ2d+2

t ).
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Stress

Based on experimental data, low-stress drawings seem to have small
crossing number... Can we prove this?

stress(G) := 1
2

∑
(v1,v2)∈V 2

̸=

w

often 1
d0(v1,v2)2

(v1, v2) ·
(

d0

desired (graph-theoretic?) distance

(v1, v2)− d1

distance in drawing

(v1, v2)
)2

Find low-stress drawings via Multidimensional Scaling (MDS):
1. Embed graph in high dimensional space, satisfying the distances
2. Seek a projection to minimize stress ← good algorithms!

If stress and crossing number positively correlated
⇒ MDS yields crossing number approximations?!

Not really (graph-theoretic ̸= our geometric distances), but close.
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Stress

stress of the projected random geometric graph

stress(G) := 1
2

∑
(v1,v2)∈V 2

̸=

1
d0(v1, v2)2 ·

(
d0(v1, v2)− d1(v1, v2)

)2

= 1
2

∑
(v1,v2)∈V 2

̸=

(
1− d1(v1, v2)

d0(v1, v2)

)2

= 1
2

∑
(v1,v2)∈V 2

̸=

(
1− dE (v1|L, v2|L)

dE (v1, v2)

)2
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Positive Correlation ... for fixed L

cr and stress are both U-statistics and increasing, i.e. Dv
(
cr(G)

)
≥ 0

and Dv
(
stress(G)

)
≥ 0

Harris-FKG inequality [Fortuin–Kasteleyn–Ginibre (1971)]:

Ef (η)g(η) ≥ Ef (η) · Eg(η),

if f , g ∈ L2(Pη) are increasing.

Theorem (Chimani, HD, Reitzner, 2018)
Let G |L be the projection of an RGG in Rd , d ≥ 3, onto a two-dimensional
plane L. Assume that stress(G) ∈ L2. Then

EV cr(G |L)stress(G) ≥ EV cr(G |L)EV stress(G)

as t →∞.

Thus the correlation of cr and stress is positive. It can be calculated
explicitly. similar result for random L for W rotational inv.
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Multivariate CLT
Theorem (HD, de Jonge, 2024+) For the covariance matrix Σ,(

cr(G |L)− E cr(G |L)
t7/2δ2d+2

t
,
stress(G , GL)− Estress(G , GL)

t3/2

)
d→ N ∼ N (0, Σ)

as t →∞ in the thermodynamic regime tδd
t → c.

Proof: Apply Malliavin-Stein method, in particular [Schulte, Yukich ’19]:

γ1 =t3
( 2∑

i,j=1

∫
W 3

√
E(D2

x1,x3
Fi )2(D2

x2,x3
Fi )2 ·

√
(E(Dx1 Fj )2(Dx2 Fj )2λ

3
d (d(x1, x2, x3))

)1/2
,

γ2 =t3
( 2∑

i,j=1

∫
W 3

√
E(D2

x1,x3
Fi )2(D2

x2,x3
Fi )2 ·

√
E(D2

x1,x3
Fj )2(D2

x2,x3
Fj )2λ

3
d (d(x1, x2, x3))

)1/2
,

γ3 =t
2∑

i=1

∫
W

E|Dx Fi |
3
λ(dx) with Dx F (V ) := F (V ∪ {x}) − F (V ).

F1 = cr(G|L)−E cr(G|L)
t7/2δ2d+2

t
and F2 = stress(G,GL)−Estress(G,GL)

t3/2 :
2γ1 + γ2 + γ3 = O

( 1√
t
)
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Wrapping up...

Summary (Markus Chimani, H. D., Matthias Reitzner 2018)
For a random geometric graph with limt→∞ tδd

t = c,. . .
1 . . . a trivial projection yields an expected crossing number

approximation with high probability.
2 . . . there is a strictly positive correlation between its crossing

number and its stress-minimum drawing.

Summary (Lianne de Jonge, H. D. 2024+)
1 The crossings of a projected random geometric graph converge in

distribution to a Poisson point process on L in the sparse regime
t2δd+1

t → c > 0 as t →∞.
2 The crossing number and the stress of a projected random geometric

graph satisfy a multivariate CLT in the thermodynamic regime.

Thank you for your attention!
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