Crossing Number in a Projected Random Geometric Graph

Hanna Döring

Workshop Stochastic Geometry in Action

Bath, 10-13 September 2024

joint work with

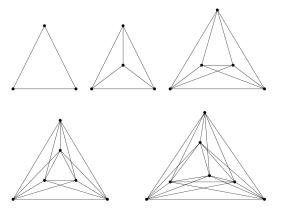
Markus Chimani (Theoretical Computer Science), Lianne de Jonge and Matthias Reitzner (Probability Theory), University of Osnabrück

Crossing Number

Crossing number of the graph G

= minimal number of edge crossings of a plane drawing of G

Example: Crossing Number of the complete graph $cr(K_n)$



Picture from Crossing Numbers of Graphs by Schaefer

Harary-Hill Conjecture/ Guy's Conjecture 1960s

Conjecture

$$\operatorname{cr}(K_n) \stackrel{?}{=} \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$

Proven for $n \le 10$ in [Guy 72] and for $n \le 12$ in [Pan and Richter 07]:

and for some particular cases. Known

$$\operatorname{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$

Harary-Hill Conjecture / Guy's Conjecture 1960s

Conjecture

$$\operatorname{cr}(K_n) \stackrel{?}{=} \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$

Proven for $n \le 10$ in [Guy 72] and for $n \le 12$ in [Pan and Richter 07]:

and for some particular cases. Known

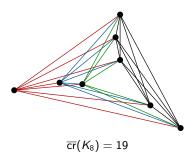
$$\operatorname{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$

Question Is there always a drawing with edges as straight line segments and a minimal number of crossings?

Rectilinear crossing number of the graph G

= minimal number of edge crossings of a plane drawing of G with edges being line segments

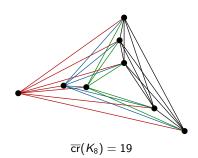
Rectilinear Crossing Number $\overline{cr}(G)$



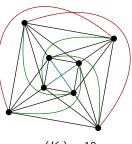
Rectilinear crossing number of the graph G

= minimal number of edge crossings of a plane drawing of G with edges being line segments

Rectilinear Crossing Number $\overline{cr}(G)$



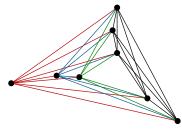
Crossing Number cr(G)



Rectilinear crossing number of the graph G

= minimal number of edge crossings of a plane drawing of *G* with edges being line segments

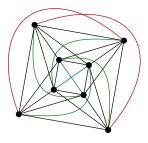
Rectilinear Crossing Number $\overline{cr}(G)$



 $\overline{\operatorname{cr}}(K_8)=19$

 \rightarrow smallest complete graph with $\operatorname{cr}(K_n) < \overline{\operatorname{cr}}(K_n)$.

Crossing Number cr(G)

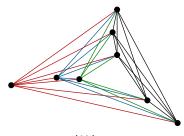


$$\operatorname{cr}(K_8) = 18$$

Rectilinear crossing number of the graph G

= minimal number of edge crossings of a plane drawing of *G* with edges being line segments

Rectilinear Crossing Number $\overline{cr}(G)$

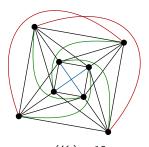


 $\overline{\operatorname{cr}}(K_8)=19$

 \rightarrow smallest complete graph with $\operatorname{cr}(K_n) < \overline{\operatorname{cr}}(K_n)$.

In fact, $cr(K_n) = \overline{cr}(K_n)$ for $n \le 7$ and n = 9 only!

Crossing Number cr(G)



$$\operatorname{cr}(K_8) = 18$$

Crossing Numbers

Rectilinear crossing number of the graph G

Number n of		min. crossings
Vertices	bound	(so far)
3	0	0
4	0	0
5	1	1
6	3	3
7	9	9
8	19	19
9	36	36
10	62	62
11	102	102
12	153	153
13	229	229
14	324	324
15	447	447
16	603	603
17	798	798
18	1029	1029
19	1318	1318
20	1657	1657
21	2055	2055
22	2528	2528
23	3077	3077
24	3699	3699
25	4430	4430
26	5250	5250
27	6180	6180

28	7233	7234
29	8421	8423
30	9726	9726
31	11207	11213
32	12830	12836
33	14626	14634
34	16613	16620
35	18796	18808
36	21164	21175
37	23785	23803
38	26621	26635
39	29691	29715
40	33048	33071
41	36674	36700

see http://www.ist.tugraz.at/staff/aichholzer/crossings.html; 2015

Computer Scientists' View

The problem

Given a graph G, draw it in the plane with the minimal number of edge crossings.

is NP-complete.

To find $\overline{\operatorname{cr}}(G)$ is even harder $(\exists \mathbb{R}\text{-complete})$.

Computer Scientists' View

The problem

Given a graph G, draw it in the plane with the minimal number of edge crossings.

is NP-complete.

To find $\overline{\operatorname{cr}}(G)$ is even harder $(\exists \mathbb{R}\text{-complete})$.

Efficient approximation algorithms are known only for special cases.

Computer Scientists' View

The problem

Given a graph G, draw it in the plane with the minimal number of edge crossings.

is NP-complete.

To find $\overline{\operatorname{cr}}(G)$ is even harder $(\exists \mathbb{R}\text{-complete})$.

Efficient approximation algorithms are known only for special cases.

Interest from a computer science perspective

- chip design
- automatic graph drawing

Crossing Lemma

Upper Bounds for cr(G): constructions, heuristics,...

Lower Bounds for cr(G): much harder to argue!

Crossing Lemma

Upper Bounds for cr(G): constructions, heuristics,... **Lower Bounds** for cr(G): much harder to argue!

Crossing Lemma. Consider a graph G on n vertices and m edges.

$$\exists c, d \geq 0$$
 such that if $m \geq d \cdot n$ then $\operatorname{cr}(G) \geq c \frac{m^3}{n^2}$.

[Ajtai et al. 82; Leighton 83]: d=4, c=1/64; [de Klerk et al. 06]: d=7, c=1/20 or see the beautiful and short proof from THE BOOK in Aigner & Ziegler.

Crossing Lemma

Upper Bounds for cr(G): constructions, heuristics,...

Lower Bounds for cr(G): much harder to argue!

Crossing Lemma. Consider a graph G on n vertices and m edges.

$$\exists c, d \geq 0$$
 such that if $m \geq d \cdot n$ then $\operatorname{cr}(G) \geq c \frac{m^3}{n^2}$.

[Ajtai et al. 82; Leighton 83]: d = 4, c = 1/64;

[de Klerk et al. 06]: d = 7, c = 1/20

or see the beautiful and short proof from THE BOOK in Aigner & Ziegler.

Crossing Lemma for dense graphs, $m \sim n^2$:

- maximum no. of crossings: $cr(G) \leq \mathcal{O}(m^2)$
- Crossing Lemma: $\operatorname{cr}(G) \geq c \frac{m^3}{n^2} \sim m^2$
- ⇒ Crossing Lemma is **optimal** for dense graphs.

Random Geometric Graphs

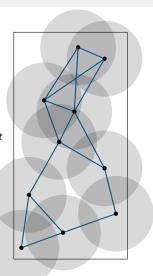
- Convex set $W \subset \mathbb{R}^d$ with $\operatorname{vol}_d(W) = 1$
- vertices: Poisson process of intensity t
- Consider radius δ_t dependent on tDraw an edge between u and v if $\|v - u\| \leq \delta_t$
- ullet typical degree of a vertex $\kappa_d t \delta_t^d$

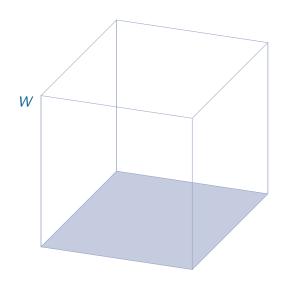
Random Geometric Graphs

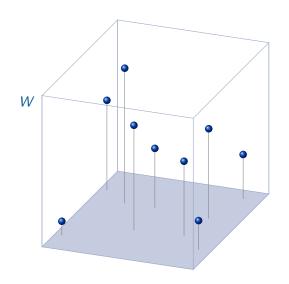
- ullet Convex set $W\subset \mathbb{R}^d$ with $\operatorname{vol}_d(W)=1$
- vertices: Poisson process of intensity t
- Consider radius δ_t dependent on tDraw an edge between u and v if $\|v-u\| \leq \delta_t$
- ullet typical degree of a vertex $\kappa_d t \delta_t^d$
- critical scaling

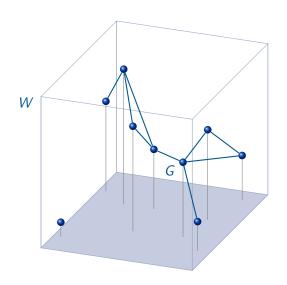
for
$$t \to \infty$$
 and $\delta_t \to 0$
with $\lim_{t \to \infty} t \delta_t^d = c \in (0, \infty)$.
[Penrose 03; Reitzner, Schulte, Thäle 17]

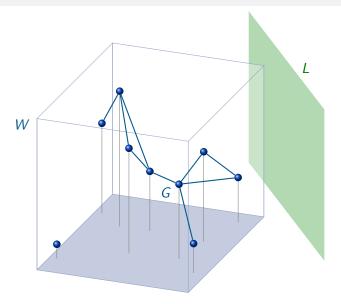
ullet $L\subset\mathbb{R}^2$ a plane

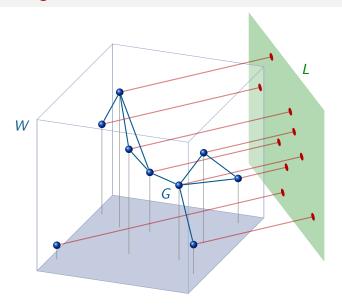


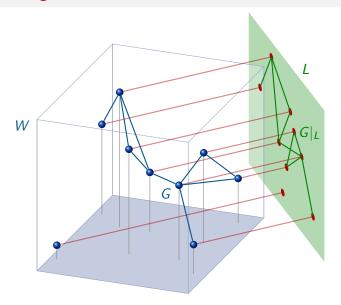


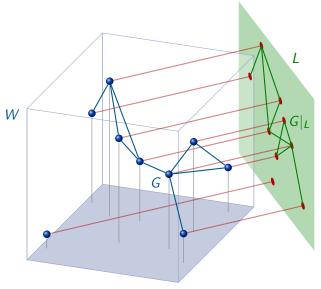












 G_0 = abstract graph of G: $\operatorname{cr}(G_0) \leq \overline{\operatorname{cr}}(G_0) \leq \overline{\operatorname{cr}}(G|_L)$

Crossing number

Number of crossings in G after projecting onto L

line segment after projection on
$$L$$

$$\overline{\operatorname{cr}}(G|_L) = \frac{1}{8} \sum_{(v_1, v_2, v_3, v_4) \in V_{\neq}^4} \mathbb{1}([v_1, v_2]|_L \cap [v_3, v_4]|_L \neq \emptyset, \\ \|v_1 - v_2\| \leq \delta_t, \|v_3 - v_4\| \leq \delta_t)$$

is U-statistic of order 4

$$\begin{split} &\mathbb{E}_{V} \, \overline{\mathrm{cr}}(G_{L}) \\ &= \frac{1}{8} \mathbb{E}_{V} \sum_{(v_{1}, v_{2}, v_{3}, v_{4}) \in V_{\neq}^{4}} \mathbb{1}([v_{1}, v_{2}]|_{L} \cap [v_{3}, v_{4}]|_{L} \neq \emptyset, \ \|v_{1} - v_{2}\| \leq \delta_{t}, \|v_{3} - v_{4}\| \leq \delta_{t}) \\ &= \frac{1}{8} \, t^{4} \, \int \mathbb{1}([v_{1}, v_{2}]|_{L} \cap [v_{3}, v_{4}]|_{L} \neq \emptyset, \ \|v_{1} - v_{2}\| \leq \delta_{t}, \|v_{3} - v_{4}\| \leq \delta_{t}) \end{split}$$

by Multivariate Slivnyak-Mecke

 $dv_1 dv_2 dv_3 dv_4$

$$\begin{split} &\mathbb{E}_{V} \, \overline{\mathrm{cr}}(G_{L}) \\ &= \frac{1}{8} \mathbb{E}_{V} \sum_{(v_{1}, v_{2}, v_{3}, v_{4}) \in V_{\neq}^{4}} \mathbb{1}([v_{1}, v_{2}]|_{L} \cap [v_{3}, v_{4}]|_{L} \neq \emptyset, \ \|v_{1} - v_{2}\| \leq \delta_{t}, \|v_{3} - v_{4}\| \leq \delta_{t}) \\ &= \frac{1}{8} t^{4} \int \mathbb{1}([v_{1}, v_{2}]|_{L} \cap [v_{3}, v_{4}]|_{L} \neq \emptyset, \ \|v_{1} - v_{2}\| \leq \delta_{t}, \|v_{3} - v_{4}\| \leq \delta_{t}) \end{split}$$

by Multivariate Slivnyak-Mecke

 $dv_1dv_2dv_3dv_4$

By Fubini and substitution, the indicator equals 1 if

ullet v_2 is confined by a ball of radius δ_t around v_1 : $\sim \delta_t^d$

$$\begin{split} &\mathbb{E}_{V} \, \overline{\mathrm{cr}}(G_{L}) \\ &= \frac{1}{8} \mathbb{E}_{V} \sum_{(v_{1}, v_{2}, v_{3}, v_{4}) \in V_{\neq}^{4}} \mathbb{1}([v_{1}, v_{2}]|_{L} \cap [v_{3}, v_{4}]|_{L} \neq \emptyset, \ \|v_{1} - v_{2}\| \leq \delta_{t}, \|v_{3} - v_{4}\| \leq \delta_{t}) \\ &= \frac{1}{8} t^{4} \int \mathbb{1}([v_{1}, v_{2}]|_{L} \cap [v_{3}, v_{4}]|_{L} \neq \emptyset, \ \|v_{1} - v_{2}\| \leq \delta_{t}, \|v_{3} - v_{4}\| \leq \delta_{t}) \end{split}$$

by Multivariate Slivnyak-Mecke

 $dv_1dv_2dv_3dv_4$

By Fubini and substitution, the indicator equals 1 if

- ullet v_2 is confined by a ball of radius δ_t around v_1 : $\sim \delta_t^d$
- v_3 is in a cylinder with ball $\delta_t B_2$ around v_1 in L: $\sim \delta_t^2$

$$\begin{split} &\mathbb{E}_{V} \, \overline{\mathrm{cr}}(G_{L}) \\ &= \frac{1}{8} \mathbb{E}_{V} \sum_{(v_{1}, v_{2}, v_{3}, v_{4}) \in V_{\neq}^{4}} \mathbb{1}([v_{1}, v_{2}]|_{L} \cap [v_{3}, v_{4}]|_{L} \neq \emptyset, \ \|v_{1} - v_{2}\| \leq \delta_{t}, \|v_{3} - v_{4}\| \leq \delta_{t}) \\ &= \frac{1}{8} t^{4} \int \mathbb{1}([v_{1}, v_{2}]|_{L} \cap [v_{3}, v_{4}]|_{L} \neq \emptyset, \ \|v_{1} - v_{2}\| \leq \delta_{t}, \|v_{3} - v_{4}\| \leq \delta_{t}) \end{split}$$

by Multivariate Slivnyak-Mecke

 $dv_1 dv_2 dv_3 dv_4$

By Fubini and substitution, the indicator equals 1 if

- ullet v_2 is confined by a ball of radius δ_t around v_1 : $\sim \delta_t^d$
- ullet v_3 is in a cylinder with ball $\delta_t B_2$ around v_1 in L: $\sim \delta_t^2$
- v_4 lies in a ball of radius δ_t around v_3 : $\sim \delta_t^d$

 $\sim \delta_t^{2d+2}$

Mean crossing number ...more precisely

$$\mathbb{E}_{V} \,\overline{\mathrm{cr}}(G_{L}) = \frac{1}{8} c_{d} \, t^{4} \delta_{t}^{2d+2} \int_{W|_{L}} \lambda_{d-2} ((v + L^{\perp}) \cap W)^{2} \, dv + o(\delta_{t}^{2d+2} t^{4}),$$

where
$$c_d = 8\pi\kappa_{d-2}^2 \mathbf{B} \big(3, \frac{d}{2}\big)^2$$

Mean crossing number ...more precisely

$$\mathbb{E}_{V} \, \overline{\mathrm{cr}}(G_{L}) = \frac{1}{8} c_{d} \, t^{4} \delta_{t}^{2d+2} \int_{W|_{L}} \lambda_{d-2} ((v + L^{\perp}) \cap W)^{2} \, dv + o(\delta_{t}^{2d+2} t^{4}),$$

where
$$c_d = 8\pi\kappa_{d-2}^2 \mathbf{B}(3, \frac{d}{2})^2$$

expected number of vertices $\mathbb{E}_V n = t$ expected number of edges $\mathbb{E}_V m = \frac{\kappa_d}{2} t^2 \delta_t^d + \mathcal{O}(t^2 \delta_t^{d+1} \mathrm{surf}(\mathbf{W}))$

For G_0 the abstract graph of G, we heuristically have

Crossing Lemma
$$c \cdot \frac{m^3}{n^2} \stackrel{|}{\leq} \operatorname{cr}(G_0) \leq \overline{\operatorname{cr}}(G_0) \leq \mathbb{E}_V \, \overline{\operatorname{cr}}(G|_L) \leq C \cdot \frac{m^3}{n^2} \cdot \left(\frac{m}{n^2}\right)^{\frac{2-d}{d}}$$

Corollaries (Chimani, HD, Reitzner, 2018)

• A random geometric graph G in \mathbb{R}^2 is an expected constant-factor approximation for $cr(G_0)$ and $\overline{cr}(G_0)$.

Corollaries (Chimani, HD, Reitzner, 2018)

- A random geometric graph G in \mathbb{R}^2 is an expected constant-factor approximation for $cr(G_0)$ and $\overline{cr}(G_0)$.
- Let d and density m/n^2 fixed. Picking **any** projection plane L for a random geometric graph in \mathbb{R}^d yields an **expected constant-factor** approximation for $\operatorname{cr}(G_0)$ and $\overline{\operatorname{cr}}(G_0)$.

Corollaries (Chimani, HD, Reitzner, 2018)

- A random geometric graph G in \mathbb{R}^2 is an expected constant-factor approximation for $cr(G_0)$ and $\overline{cr}(G_0)$.
- Let d and density m/n^2 fixed. Picking **any** projection plane L for a random geometric graph in \mathbb{R}^d yields an **expected constant-factor** approximation for $cr(G_0)$ and $\overline{cr}(G_0)$.

Again by Slivnyak-Mecke formula for the variance: $\mathbb{V}_V \, \overline{\mathrm{cr}}(\mathit{G}_L) \sim t^7 \delta_t^{4d+4}$

Corollaries (Chimani, HD, Reitzner, 2018)

- A random geometric graph G in \mathbb{R}^2 is an expected constant-factor approximation for $cr(G_0)$ and $\overline{cr}(G_0)$.
- Let d and density m/n^2 fixed. Picking **any** projection plane L for a random geometric graph in \mathbb{R}^d yields an **expected constant-factor** approximation for $cr(G_0)$ and $\overline{cr}(G_0)$.

Again by Slivnyak-Mecke formula for the variance: $\mathbb{V}_V \, \overline{\mathrm{cr}}(\mathit{G}_L) \sim t^7 \delta_t^{4d+4}$

Corollary (Chimani, HD, Reitzner, 2018) law of large numbers: For given L, the normalized random crossing number converges in prob. (with resp. to the PPP V) as $t \to \infty$,

$$rac{\overline{\operatorname{cr}}(G_L)}{t^4\delta_t^{2d+2}} \ o \ rac{1}{8}c_d\lambda_{d-2}((v+L^\perp)\cap W).$$

Crossing point process

• The *crossing point process* is the random measure ξ_t defined for Borel sets $A \subset L$ by

$$\xi_{t}(A) = \frac{1}{8} \sum_{(v_{1}, v_{2}, v_{3}, v_{4}) \in V_{\neq}^{4}} \mathbb{1}([v_{1}, v_{2}]|_{L} \cap [v_{3}, v_{4}]|_{L} \cap A \neq \emptyset) \\ \cdot \mathbb{1}(||v_{1} - v_{2}|| \leq \delta_{t}, ||v_{3} - v_{4}|| \leq \delta_{t}).$$

ullet scaling: $t^2\delta_t^{d+1} \stackrel{t \to \infty}{\longrightarrow} c > 0$ part of sparse regime

Theorem (HD, de Jonge, 2024+)

Let $t^2\delta_t^{d+1}\to c>0$. Then there exists a Poisson point process ζ on L with finite intensity measure such that

$$d_{KR}(\xi_t,\zeta) = \mathcal{O}(\delta_t) + \mathcal{O}(c^2 - t^4 \delta_t^{2d+2}).$$

Convergence in distribution of ξ_t to ζ follows.

Crossing point process

Theorem (HD, de Jonge, 2024+)

Let $t^2\delta_t^{d+1}\to c>0$. Then there exists a Poisson point process ζ on L with finite intensity measure such that

$$d_{KR}(\xi_t,\zeta) = \mathcal{O}(\delta_t) + \mathcal{O}(c^2 - t^4 \delta_t^{2d+2}).$$

Convergence in distribution of ξ_t to ζ follows.

Crossing point process

Theorem (HD, de Jonge, 2024+)

Let $t^2\delta_t^{d+1}\to c>0$. Then there exists a Poisson point process ζ on L with finite intensity measure such that

$$d_{KR}(\xi_t,\zeta) = \mathcal{O}(\delta_t) + \mathcal{O}(c^2 - t^4 \delta_t^{2d+2}).$$

Convergence in distribution of ξ_t to ζ follows.

with Kantorovich-Rubinstein distance

$$d_{KR}(\xi,\zeta) = \inf_{\mathbf{C} \text{ a coupling of } \xi \text{ and } \zeta} \int d_{TV}(\omega_1,\omega_2) \mathbf{C} d(\omega_1,\omega_2)$$

 $\geq d_{TV}(\xi,\zeta)$

Proof idea

Intensity measure of ξ_t : $\mathbf{M}_t(A) := \mathbb{E}\xi_t(A)$.

Intensity measure of $\zeta\colon \mathbf{M}(A) := \frac{1}{8} c_d c^2 \int_A \lambda_{d-2} ((v+L^\perp) \cap W)^2 dv$.

• Intensity measure converges:

$$d_{TV}(\mathbf{M}_t, \mathbf{M}) = \mathcal{O}(\delta_t) + \mathcal{O}(c^2 - t^4 \delta_t^{2d+2})$$

• Difference of variance and expectation converges to zero:

$$\mathbb{V}\xi_t(L) - \mathbb{E}\xi_t(L) = \mathcal{O}(\delta_t)$$

Apply [Decreusefond, Schulte, Thäle '16]:

$$d_{KR}(\xi_t, \zeta) \leq d_{TV}(\mathbf{M}_t, \mathbf{M}) + 2(\mathbb{V}\xi_t(L) - \mathbb{E}\xi_t(L))$$

= $\mathcal{O}(\delta_t) + \mathcal{O}(c^2 - t^4 \delta_t^{2d+2}).$

Based on **experimental** data, low-stress drawings **seem** to have small crossing number... **Can we prove this?**

Based on **experimental** data, low-stress drawings **seem** to have small crossing number... **Can we prove this?**

$$\mathsf{stress}(\mathit{G}) := \frac{1}{2} \sum_{\substack{(v_1, v_2) \in V_{\neq}^2 \\ \mathsf{desired} \ (\mathsf{graph-theoretic?})}} \mathsf{distance} \ \mathsf{in} \ \mathsf{drawing} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \$$

Based on **experimental** data, low-stress drawings **seem** to have small crossing number... **Can we prove this?**

$$\mathsf{stress}(\mathit{G}) := \frac{1}{2} \sum_{\substack{(v_1, v_2) \in V_{\neq}^2 \\ \mathsf{desired} \ (\mathsf{graph-theoretic?})}} \mathsf{distance} \ \mathsf{in} \ \mathsf{drawing} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \\ \mathsf{distance} \ \mathsf{distance} \ \mathsf{distance} \$$

Find low-stress drawings via Multidimensional Scaling (MDS):

- 1. Embed graph in high dimensional space, satisfying the distances
- 2. Seek a projection to minimize stress \leftarrow good algorithms!

Based on **experimental** data, low-stress drawings **seem** to have small crossing number... **Can we prove this?**

$$\mathsf{stress}(\mathit{G}) := \frac{1}{2} \sum_{\substack{(v_1, v_2) \in V_{\neq}^2 \\ \mathsf{desired} \ (\mathsf{graph-theoretic?})}} \mathsf{distance} \ \mathsf{in} \ \mathsf{drawing} \\ \mathsf{distance} \ \mathsf{in} \ \mathsf{drawing} \\ \mathsf{distance} \ \mathsf{in} \ \mathsf{drawing} \\ \mathsf{desired} \ (\mathsf{graph-theoretic?}) \ \mathsf{distance}$$

Find low-stress drawings via Multidimensional Scaling (MDS):

- 1. Embed graph in high dimensional space, satisfying the distances
- 2. Seek a projection to minimize stress \leftarrow good algorithms!

If stress and crossing number positively correlated

 \Rightarrow MDS yields crossing number approximations?!

Not really (graph-theoretic \neq our geometric distances), but close.

• stress of the projected random geometric graph

$$\begin{split} \mathsf{stress}(G) &:= \frac{1}{2} \sum_{(v_1, v_2) \in V_{\neq}^2} \frac{1}{d_0(v_1, v_2)^2} \cdot \left(d_0(v_1, v_2) - d_1(v_1, v_2) \right)^2 \\ &= \frac{1}{2} \sum_{(v_1, v_2) \in V_{\neq}^2} \left(1 - \frac{d_1(v_1, v_2)}{d_0(v_1, v_2)} \right)^2 \\ &= \frac{1}{2} \sum_{(v_1, v_2) \in V_{\neq}^2} \left(1 - \frac{d_E(v_1|_L, v_2|_L)}{d_E(v_1, v_2)} \right)^2 \end{split}$$

- $\overline{\text{cr}}$ and stress are both U-statistics and increasing, i.e. $D_{\nu}(\overline{\text{cr}}(G)) \geq 0$ and $D_{\nu}(\text{stress}(G)) \geq 0$
- Harris-FKG inequality [Fortuin–Kasteleyn–Ginibre (1971)]:

$$\mathbb{E}f(\eta)g(\eta) \geq \mathbb{E}f(\eta) \cdot \mathbb{E}g(\eta),$$

if $f,g\in L^2(\mathbb{P}_\eta)$ are increasing.

- $\overline{\text{cr}}$ and stress are both U-statistics and increasing, i.e. $D_{\nu}(\overline{\text{cr}}(G)) \geq 0$ and $D_{\nu}(\text{stress}(G)) \geq 0$
- Harris-FKG inequality [Fortuin-Kasteleyn-Ginibre (1971)]:

$$\mathbb{E}f(\eta)g(\eta) \geq \mathbb{E}f(\eta) \cdot \mathbb{E}g(\eta),$$

if $f,g\in L^2(\mathbb{P}_\eta)$ are increasing.

Theorem (Chimani, HD, Reitzner, 2018)

Let $G|_L$ be the projection of an RGG in \mathbb{R}^d , $d \geq 3$, onto a two-dimensional plane L. Assume that $stress(G) \in L^2$. Then

$$\mathbb{E}_V \overline{\operatorname{cr}}(G|_L)\operatorname{stress}(G) \geq \mathbb{E}_V \overline{\operatorname{cr}}(G|_L) \mathbb{E}_V \operatorname{stress}(G)$$

as $t \to \infty$.

- $\overline{\text{cr}}$ and stress are both U-statistics and increasing, i.e. $D_{\nu}(\overline{\text{cr}}(G)) \geq 0$ and $D_{\nu}(\text{stress}(G)) \geq 0$
- Harris-FKG inequality [Fortuin-Kasteleyn-Ginibre (1971)]:

$$\mathbb{E} f(\eta) g(\eta) \geq \mathbb{E} f(\eta) \cdot \mathbb{E} g(\eta),$$

if $f,g\in L^2(\mathbb{P}_\eta)$ are increasing.

Theorem (Chimani, HD, Reitzner, 2018)

Let $G|_L$ be the projection of an RGG in \mathbb{R}^d , $d \geq 3$, onto a two-dimensional plane L. Assume that $\operatorname{stress}(G) \in L^2$. Then

$$\mathbb{E}_V \overline{\operatorname{cr}}(G|_L)\operatorname{stress}(G) \geq \mathbb{E}_V \overline{\operatorname{cr}}(G|_L)\mathbb{E}_V\operatorname{stress}(G)$$

as $t \to \infty$.

ullet Thus the correlation of \overline{cr} and stress is positive. It can be calculated explicitly.

- $\overline{\text{cr}}$ and stress are both U-statistics and increasing, i.e. $D_{\nu}(\overline{\text{cr}}(G)) \geq 0$ and $D_{\nu}(\text{stress}(G)) \geq 0$
- Harris-FKG inequality [Fortuin-Kasteleyn-Ginibre (1971)]:

$$\mathbb{E} f(\eta) g(\eta) \geq \mathbb{E} f(\eta) \cdot \mathbb{E} g(\eta),$$

if $f,g\in L^2(\mathbb{P}_\eta)$ are increasing.

Theorem (Chimani, HD, Reitzner, 2018)

Let $G|_L$ be the projection of an RGG in \mathbb{R}^d , $d \geq 3$, onto a two-dimensional plane L. Assume that $stress(G) \in L^2$. Then

$$\mathbb{E}_V \overline{\operatorname{cr}}(G|_L)\operatorname{stress}(G) \geq \mathbb{E}_V \overline{\operatorname{cr}}(G|_L)\mathbb{E}_V\operatorname{stress}(G)$$

as $t \to \infty$.

• Thus the correlation of \overline{cr} and stress is positive. It can be calculated explicitly. similar result for random L for W rotational inv.

Multivariate CLT

Theorem (HD, de Jonge, 2024+) For the covariance matrix Σ ,

$$\left(\frac{\overline{\mathrm{cr}}(G|_L) - \mathbb{E}\,\overline{\mathrm{cr}}(G|_L)}{t^{7/2}\delta_t^{2d+2}}, \frac{\mathsf{stress}(G,G_L) - \mathbb{E}\mathsf{stress}(G,G_L)}{t^{3/2}}\right) \overset{d}{\to} \mathsf{N} \sim \mathcal{N}(0,\Sigma)$$

as $t \to \infty$ in the thermodynamic regime $t\delta_t^d \to c$.

Multivariate CLT

Theorem (HD, de Jonge, 2024+) For the covariance matrix Σ ,

$$\left(\frac{\overline{\mathrm{cr}}(G|_L) - \mathbb{E}\,\overline{\mathrm{cr}}(G|_L)}{t^{7/2}\delta_t^{2d+2}}, \frac{\mathsf{stress}(G,G_L) - \mathbb{E}\mathsf{stress}(G,G_L)}{t^{3/2}}\right) \overset{d}{\to} N \sim \mathcal{N}(0,\Sigma)$$

as $t \to \infty$ in the thermodynamic regime $t \delta_t^d \to c$.

Proof: Apply Malliavin-Stein method, in particular [Schulte, Yukich '19]: $\mathcal{H}_m^{(3)} = \text{class of all } C^3\text{-functions } h: \mathbb{R}^m \to \mathbb{R} \text{ such that the absolute values}$

of the 2nd and 3rd partial derivatives are bounded by 1.

Let $F = (F_1, F_2)$ be a vector of Poisson functionals with $EF_i = 0$ and

$$d_3(F, Z) := \sup_{h \in \mathcal{H}_m^{(3)}} |\mathbb{E}h(F) - \mathbb{E}h(Z)|$$

$$\leq \sum_{i,j=1}^{2} |\sigma_{ij} - \mathsf{Cov}(F_i, F_j)| + 2\gamma_1 + \gamma_2 + \gamma^3$$

for Z a 2-dim. centered Gaussian random vector with cov. matrix $(\sigma_{ij})_{i,j}$.

Multivariate CLT

Theorem (HD, de Jonge, 2024+) For the covariance matrix Σ ,

$$\left(\frac{\overline{\mathrm{cr}}(G|_L) - \mathbb{E}\,\overline{\mathrm{cr}}(G|_L)}{t^{7/2}\delta_t^{2d+2}}, \frac{\mathsf{stress}(G,G_L) - \mathbb{E}\mathsf{stress}(G,G_L)}{t^{3/2}}\right) \overset{d}{\to} \mathsf{N} \sim \mathcal{N}(0,\Sigma)$$

as $t \to \infty$ in the thermodynamic regime $t\delta_t^d \to c$.

Proof: Apply Malliavin-Stein method, in particular [Schulte, Yukich '19]:

$$\begin{split} \gamma_1 = & t^3 \bigg(\sum_{i,j=1}^2 \int_{W^3} \sqrt{\mathbb{E}(D_{x_1,x_3}^2 F_i)^2 (D_{x_2,x_3}^2 F_i)^2} \cdot \sqrt{(\mathbb{E}(D_{x_1} F_j)^2 (D_{x_2} F_j)^2} \, \lambda_d^3 (d(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3)) \bigg)^{1/2}, \\ \gamma_2 = & t^3 \bigg(\sum_{i,j=1}^2 \int_{W^3} \sqrt{\mathbb{E}(D_{x_1,x_3}^2 F_i)^2 (D_{x_2,x_3}^2 F_i)^2} \cdot \sqrt{\mathbb{E}(D_{x_1,x_3}^2 F_j)^2 (D_{x_2,x_3}^2 F_j)^2} \, \lambda_d^3 (d(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3)) \bigg)^{1/2}, \\ \gamma_3 = & t \sum_{i=1}^2 \int_W \mathbb{E}|D_x F_i|^3 \lambda(d\mathbf{x}) \quad \text{with } D_x F(V) := F(V \cup \{x\}) - F(V). \\ F_1 = & \frac{\overline{\operatorname{cr}}(G|_L) - \mathbb{E} \, \overline{\operatorname{cr}}(G|_L)}{t^{7/2} \delta_x^2 d + 2} \quad \text{and} \quad F_2 = \frac{\operatorname{stress}(G, G_L) - \mathbb{E}\operatorname{stress}(G, G_L)}{t^{3/2}} : \end{split}$$

$$F_1 = \frac{\overline{\operatorname{cr}(G|_L)} - \mathbb{E}\overline{\operatorname{cr}(G|_L)}}{t^{7/2}\delta_t^{2d+2}} \text{ and } F_2 = \frac{\operatorname{stress}(G, G_L) - \mathbb{E}\operatorname{stress}(G, G_L)}{t^{3/2}}$$
$$2\gamma_1 + \gamma_2 + \gamma^3 = \mathcal{O}\big(\frac{1}{\sqrt{t}}\big)$$

Wrapping up...

Summary (Markus Chimani, H. D., Matthias Reitzner 2018) For a **random geometric graph** with $\lim_{t\to\infty} t\delta_t^d = c,...$

- ...a trivial projection yields an expected crossing number approximation with high probability.
- Output
 ...there is a strictly positive correlation between its crossing number and its stress-minimum drawing.

Wrapping up...

Summary (Markus Chimani, H. D., Matthias Reitzner 2018) For a random geometric graph with $\lim_{t\to\infty} t\delta_t^d = c, \dots$

- ...a trivial projection yields an expected crossing number approximation with high probability.
- 2 ... there is a strictly positive correlation between its crossing **number** and its **stress**-minimum drawing.

Summary (Lianne de Jonge, H. D. 2024+)

- **1** The **crossings** of a projected random geometric graph converge in distribution to a **Poisson point process** on L in the sparse regime $t^2 \delta_t^{d+1} \to c > 0$ as $t \to \infty$.
- The crossing number and the stress of a projected random geometric graph satisfy a multivariate CLT in the thermodynamic regime.

Wrapping up...

Summary (Markus Chimani, H. D., Matthias Reitzner 2018) For a **random geometric graph** with $\lim_{t\to\infty} t\delta_t^d = c,...$

- ...a trivial projection yields an expected crossing number approximation with high probability.
- 2 ... there is a strictly positive correlation between its crossing number and its stress-minimum drawing.

Summary (Lianne de Jonge, H. D. 2024+)

- **1** The **crossings** of a projected random geometric graph converge in distribution to a **Poisson point process** on L in the sparse regime $t^2 \delta_t^{d+1} \to c > 0$ as $t \to \infty$.
- The crossing number and the stress of a projected random geometric graph satisfy a multivariate CLT in the thermodynamic regime.

Thank you for your attention!