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Motivation

Suppose we want to answer the question:

How far to the nearest facility in a road network?

We could consider Euclidean (“crow flies”) distance but it is
more natural to measure path distance, along the roads.

The answer will inform urban planning (the road network) as
well as the facilities, which could be static (eg charging
points) or mobile (eg taxis). There are also applications in
industrial contexts.

Other relevant research includes stochastic geometry, spatial
networks, communications.

MPLCP



Poisson point processes

In the following A ⊂ Rd is a Borel set.

A point process Φ refers either to a random point set or to the
random measure for which Φ(A) gives the number of points in A.
Λ = E(Φ) is called the intensity measure of the point process.

A Poisson point process (PPP) Φ with intensity measure Λ is a
point process satisfying

1 P(Φ(A) = k) = e−Λ(A)Λ(A)k

k!

2 {Φ(Ai )}1≤i≤n are independent if {Ai} are disjoint.

We assume that Λ is σ-finite and diffuse, which implies that the
above two statements are equivalent.
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PPP: Illustration
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Conditioning Poisson point processes

A stochastic process is stationary if the distribution is invariant
under translation.

A stationary PPP has intensity measure Λ = λνd where λ ∈ R is
the intensity and νd is d-dimensional Lebesgue measure.

Slivnyak’s theorem: For a stationary PPP, conditioning on a point
at the origin is equivalent to adding a point at the origin.

To simulate a PPP numerically: Choose a bounded region A,
defining the probability measure ΛA as

ΛA(B) =
Λ(A ∩ B)

Λ(A)

The binomial point process (BPP) is a fixed number n points iid
with respect to ΛA. For the PPP, choose n = Φ(A) ∼ Poi(Λ(A)).
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Poisson line processes

Now, consider a PPP on the space

ρ ∈ R, θ ∈ [0, π)

where each point (ρ, θ) is mapped to the line in R2 with closest
point to the origin given by (ρ, θ) in polar coordinates, that is,

y − ρ sin θ

x − ρ cos θ
= − cot θ

It can be shown that if the PPP is stationary, then so is the
corresponding Poisson line process (PLP).

Not considered here, but related: For ρ ∈ [−R,R] and fixed
number of lines: The binomial line process
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Poisson line process: Illustration
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Manhattan Poisson line processes

Simpler (and still realistic): Consider a PPP on the space

ρ ∈ R, θ ∈ {0, π
2
}

with the same mapping as the PLP.

If the PPP has a uniform intensity λl on each of the two lines, the
result is equivalent to the union of horizontal and vertical lines,
with coordinates each given by a one dimensional PPP: The
Manhattan Poisson line process (MPLP).

The line density µl is the mean line length per unit area and is
given by µl = 2λl .
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MPLP: Illustration
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Manhattan Poisson line Cox process

A Cox process is a doubly stochastic Poisson process, that is, the
intensity measure is itself random.

The Manhattan Poisson line Cox process (MPLCP) is the PPP
with intensity measure given by the MPLP.

Choose horizontal and vertical lines with coordinates given by
independent one dimensional PPPs of intensity λl . Then on each
line, form a new PPP of intensity λc , uniform and independent of
the PPP forming the MPLP and of the PPP on the other lines.

The lines in this process represent roads, and the points, facilities.
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MPLCP: Illustration and limits

When λc/λl → ∞ (left), the

Typical point has local neighbourhood a PPP of intensity λc on a
line.

Typical intersection has local neighbourhood a PPP of intensity λc

on two orthogonal lines.

When λc/λl → 0 (right), the point process approaches a PPP in
the plane with intensity 2λlλc .
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Related work

Guttorp and Thorarinsdottir (ISR, 2012) give early history of
Poisson and Cox processes.

PLP and MPLP: Goudsmit (RMP, 1945).

k-nearest neighbour distributions, binomial point processes:
Evans, Jones and Schmidt (2002).

Cox processes for Poisson-Voronoi tessellations and PLP:
Voss, Gloaguen and Schmidt (2010).

MPLCP: Baccelli and Zhang (2015).

Cox processes for PLP, MPLP, stick and lilypond models:
Jeyaraj and Haenggi (2021).

Binomial line Cox process: Shah, Ghatak, Sanyal and Haenggi
(2024).

All the above use either Euclidean distance, or a mixed model with
different line-of-sight or non-line-of sight signal attenuation.
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Spatial model and notation

Def: Shortest path distance ℓ(a,b) is the smallest sum of
distances along the lines in the process between points a and b.

The MPLP is Φl = Φlh ∪ Φlv . In addition, we denote the x-axis as
Lx and the y -axis as Ly .

Due to Slivnyak’s theorem, the origin is a

Typical point for Φl ,typ = Φl ∪ {Lx}, and
Typical intersection for Φl ,int = Φl ∪ {Lx , Ly}.
The MPLCP is denoted Φc,typ, Φc,int respectively.

We seek the distribution of the shortest path distance from the
origin to the nearest point in the MPLCP in each of these cases.
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Spatial model: Illustration
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The typical intersection

The shortest path distance is

Tm = inf
(xi ,yi )∈Φc,int

ℓ(0, (xi , yi ))

with
ℓ(0, (xi , yi )) = |xi |+ |yi |

Thus P(Tm > tm) = P(Φc,int(B) = 0) with

B = {(x , y) : |x |+ |y | < tm}

The number of horizontal and vertical lines intersecting B are
distributed as

Nh(B),Nv (B) ∼ Po(2λl tm)
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The typical intersection: Illustration
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The typical intersection: Result

Theorem 1 The CDF of Tm is

FTm(tm) = 1− exp

[
−4λctm − 4λl tm +

2λl

λc
(1− e−2λc tm)

]
Proof ideas:

Horizontal and vertical lines are iid.

Condition on Nh(B).

The number of points on horizontal lines in {Lx} ∪ Φlh are
independent

The void probability for the 1D PPP on a line of length
2tm − 2y is exp(−λc(2tm − 2y)).
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The typical intersection: Proof

FTm(tm) = 1− P(Tm > tm)

= 1− P(Np(Φl ,int ∩ B) = 0)

= 1− p2

p = P(Np((Φlh ∪ Lx) ∩ B) = 0)

= q
∞∑
n=0

P(Nh(B\Lx) = n)P(Np(Φlh ∩ B) = 0|Nh(B\Lx) = n)

= q
∞∑
n=0

P(Nh(B\Lx) = n)
n∏

j=1

P(Np(Φhj ∩ B) = 0)

= q
∞∑
n=0

e−2λl tm(2λl tm)
n

n!

(∫ tm

0
e−λc (2tm−2y) dy

tm

)n

q = P(Np(Lx ∩ B) = 0)

= e−2λc tm

MPLCP



The typical intersection: Limits

We have from Theorem 1:

FTm(tm) = 1− exp

[
−4λctm − 4λl tm +

2λl

λc
(1− e−2λc tm)

]
When λc

λl
→ ∞,

FTm(tm) ≈ 1− exp(−4λctm)

as expected for two perpendicular lines with a PPP of intensity λc .

When λc
λl

→ 0, expanding the inner exponential gives

FTm(tm) ≈ 1− exp(−4λlλct
2
m)

as expected for a PPP in the plane of intensity 2λlλc and using
Manhattan distance.
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The typical intersection: Numerics
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The typical point

Now the path distance is denoted Rm.

The shortest path may back-track in the x-direction

The shortest distance is not just the L1 norm
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The typical point: Definitions

Distance to nearest intersections along the x-axis, Sl , Sr :

fSi (si ) = λl exp(−λlsi ), 0 ≤ si < ∞, i ∈ {l , r}

Minimum and maximum:

fX1(x1) = 2λl exp(−2λlx1) X1 = min{Sl ,Sr}
fX2(x2) = 2λl exp(−λlx2)(1− exp(−λlx2)) X2 = max{Sl ,Sr}
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The typical point: More definitions

Distance to nearest point of the MPLCP on Lx in direction Xj : Dj :

fDj
(dj) = λc exp(−λcdj), j ∈ {1, 2}

Distance to the nearest point of the MPLCP on the same side of
the auxiliary line M as Xj : Rj = Xj +Wj

Events:

E1 : D1 ≤ X1,D2 > X2 Rm = D1

E2 : D1 ≤ X1,D2 ≤ X2 Rm = min(D1,D2)

E3 : D1 > X1,D2 > X2 Rm = min(R1,R2)

E4 : D1 > X1,D2 ≤ X2 Rm = min(R1,D2)

The calculations for D1 and D2 are relatively straightforward.
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The typical point: Exclusion zones

w1 ≤ x2 w1 > x2
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The typical point: Result

Theorem 2 The CDF of Rm is

FRm(rm) =

∫ ∞

0

∫ ∞

0

4∑
i=1

FRm(rm|Ei ,X1,X2)

× P(Ei |X1,X2)fX1,X2(x1, x2)dx1dx2

where each of the above nine functions is given explicitly in terms
of exponential functions. The FRm are defined piecewise for rm in
the intervals [0, x1), [x1, x2), [x2, x1 + x2), [x1 + x2,∞).
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The typical point: Numerics
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Typical intersection for k nearest neighbours

For the typical intersection, we seek the CDF of the distance to the
kth nearest neighbour

FRk
(r) = 1−

k−1∑
j=0

Pj

in terms of the probability of k facilities in B

Pk =

∫ ∞

4r

e−λc l(λc l)
k

k!
fLt (l)dl

in turn written in terms of the probability density of total length of
road in B

Lt = 4r +
N∑
i=1

L, L ∼ Unif[0, 2r ], N ∼ Po(4λl r)
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Typical intersection for k nearest neighbours: Result

Theorem 3 The moment generating function of the number of
points of the Manhattan Poisson Line Cox Process in the r -radius
Manhattan ball from the typical intersection B(r) is

MNp(Φl,int∩B)(t) = exp

(
4rλc(e

t − 1) + 4λl r

(
e2rλc (et−1) − 1

2rλc(et − 1)
− 1

))

from which (by differentiation) we find

P0 = exp(−4rλc − 4λl r(1− a))

P1 = 4P0(rλc + rλl(a− e−2rλc ))

P2 = 4P0

[
2(rλc + rλl(a− e−2rλc ))2 + λl r(a− e−2rλc − rλce

−2rλc )
]

a =
1− e−2λc r

2λc r
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Typical intersection for k nearest neighbours: Proof

MLt (t) = E(etLt )
= EN(E(etLt |N))

= EN(e
4rtML(t)

N)

= e4rtEN

((
e2rt − 1

2rt

)N
)

= exp

(
4rt + 4λl r

(
e2rt − 1

2rt
− 1

))
MNp(Φl,int∩B)(t) = E(eNp(Φl,int∩B)t)

= ELt

(
E(eNp(Φl,int∩B)t |Lt)

)
= ELt (e

λc (et−1)Lt )

= MLt (λc(e
t − 1))
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Typical intersection for k nearest neighbours: Numerics
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Typical intersection for k nearest neighbours: Real map
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Location: New York City (source: openstreetmap.org).
Blue: Simulations. Red: Theory. Black: PPP model.
λc = 1 km−1.
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Summary

We have found the path distributions for a typical intersection,
including for the kth distance and a typical point, with more
accurate results than Euclidean distance or a PPP model.

Possible extensions:

Other road layouts: PLP, perhaps with restrictions, random
tessellations.

Weighted networks (speed limits)

Directed networks (one way streets)
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