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Conjectures of asymptotic convex geometry

Hyperplane conjecture
There exists a universal constant c > 0 such that for every
d-dimensional convex body K with volume 1, there is a section of
K with (d − 1)-dimensional volume greater than c.

Reference. J. Hörrmann, D. Hug, M. Reitzner & C. Thäle (2015)

The zero-cell of a parametric class of hyperplane tessellations
depending on a distance exponent bdα for some b > 0 and
α > 1/2 satisfies the hyperplane conjecture with high probability.
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Conjectures of asymptotic convex geometry

Hirsch conjecture
The edge-vertex graph of the boundary of a d-dimensional convex
polytope with n facets has a graph diameter at most (n − d).

Reference. G. Bonnet, D. Dadush, U. Grupel, S. Huiberts and G.
Livshyts (2022)

The zero-cell of a hyperplane tessellation generated by a Poisson
number of points on the unit sphere satisfies the polynomial Hirsch
conjecture with high probability.
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Information theory

One-bit compressed sensing
Recover a signal from the knowledge of belonging to half-spaces
for sufficiently many half-spaces

Reference. F. Baccelli and E. O’Reilly (2019)

Asymptotic study of several characteristics of cells from a Poisson
hyperplane tessellation with intensity ρdα for some ρ > 0 and
α ≥ 0 (inradius, circumscribed radius, mean volume)
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Information theory

Thin-shell concentration
The norm of a radial random vector with log-concave density is
concentrated around its mean.

References. O. Guédon & E. Milman (2011), E. O’Reilly (2020)

The zero-cell of a stationary hyperplane tessellation satisfies the
thin-shell concentration.

c©O. Guédon
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Percolation in high dimension

Poisson-Voronoi percolation
The critical probability has a precise equivalent for large d.

References. P. N. Balister & B. Bollobás (2010), R. Conijn, M.
Irlbeck, Z. Kabluchko & T. Müller (2024+)
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Random convex hull in the unit ball

I Bd := d-dimensional unit ball of volume κd := π
d
2

Γ( d
2

+1)

I Pλ := homogeneous Poisson point process in Rd of intensity
λ := λ(d)

I Kd
λ := convex hull of Pλ ∩ Bd

I Mean number of Poisson points inside Bd = λκd



default
Random convex hull in the unit ball: volume

Reference. G. Bonnet, Z. Kabluchko & N. Turchi (2021)

Vold := d-dimensional Lebesgue measure, κd = Vold(Bd)

log(λκd) � d
2 log d ∼ d

2 log d
2x � d

2 log d

lim
d ,λ→∞

E
Vold(Kd

λ )

Vold(Bd)
0 e−x 1

Extension to the beta polytope

The uniform distribution in Bd is replaced by the distribution with
density proportional to (1− ‖x‖2)β if β > −1 and the uniform
distribution on the unit sphere if β = −1.
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Random convex hull in the unit ball: typical facet height

Reference. G. Bonnet & E. O’Reilly (2022)

Pd
n := convex hull of n uniform points X1, · · · ,Xn on the unit sphere

Htyp := height of the facet generated by X1, · · · ,Xd conditional on
the event {X1, · · · ,Xd generates a facet}

log(n) � d ∼ xd � d

Htyp

P∼
√

2
d log( n

d )
P→
√

1− e−2x P∼ 1

0

Height of the facet
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Support function and radius-vector function

Kd
λ := convex hull of Pλ ∩ Bd with Pλ of intensity λ

Support function of Kd
λ

hd
λ(u) := sup{〈x , u〉 : x ∈ Kd

λ }, u ∈ Sd−1

Radius-vector function of Kd
λ

ρdλ(u) := sup{r > 0 : ru ∈ Kd
λ }, u ∈ Sd−1

Properties
The support function of Kd

λ is the radius-vector function of the

flower
⋃

x∈Pλ∩Bd

B

(
x

2
,
‖x‖

2

)
.

Both functions hd
λ and rdλ characterize the convex polytope Kd

λ .
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Containing the origin

Reminder on Wendel’s calculation (1962)

{Xn : n ≥ 1} := sequence of i.i.d. r.v. with a symmetric distribution

P(0 ∈ Conv(X1, · · · ,XN)) = P(SN−1 ≥ d)

where SN−1
D
= Binomial(n, 1

2 ).

λκdCritical point for P (0 ∈ Kd
λ)

0 2d

If lim sup
d→∞

λκd
d

< 2,

lim
d→∞

P(0 ∈ Kd
λ ) = 0

If lim inf
d→∞

λκd
d

> 2,

lim
d→∞

P(0 ∈ Kd
λ ) = 1
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The support function in one direction

Equivalent of hd
λ(u) when d →∞

log(λκd) � d ∼ dx � d

hd
λ(u)

P∼
√

2
d log(λκd)

P→
√

1− e−2x P∼ 1− 1
2 (λκd)−

2
d+1

Convergence in distribution of the rescaled support function

d

log
1√

1− (hd
λ(u))

2
− 1

d + 1
log λκd

+log
√

m(d)
D−→ Gumbel

where

log(λκd) � d ∼ dx � d

m(d) 4π log(λκd) 2πd(1− e−2x) 2πd
(

1− (λκd)−
2

d+1

)
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Comparison with the results on the mean volume

Reference. G. Bonnet, Z. Kabluchko & N. Turchi (2021)

log(λκd) � d
2 log d ∼ d

2 log d
2x � d

2 log d

lim
d ,λ→∞

E
Vold(Kd

λ )

Vold(Bd)
0 e−x 1

log(λκd) � d ∼ dx � d

hd
λ(u)

P∼
√

2
d log(λκd))

P→
√

1− e−2x P∼ 1− 1
2 (λκd)−

2
d+1

log(λκd)Critical point for hdλ Critical point for Vold(K
d
λ)

0 d
d
2 log d

c©O. Guédon
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The support function in several directions

For m ≤ d fixed,

hd ,m
λ := inf

u∈Sd−1∩Rm
hd
λ(u)

log(λκd) � d ∼ dx � d

hd ,m
λ

P∼
√

2
d log(λκd))

P→
√

1− e−2x P∼ 1− 1
2 (λκd)−

2
d+1

a(d ; m)− b(d ; m) log
1√

1− (hd ,m
λ )

2

D−→ Gumbel

where

a(d ; m) = (m − 1)s(d) log Am λκd
s(d) − (m − 1)s(d)2 − (m − 1) log s(d)− log Bm,

b(d ; m) = (m − 1)d s(d) and s(d) = log

√
d
(

(λκd)
2
d − 1

)
.
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Distribution tail of the support function in one direction

u

0

r Cd(r, u)

P
(
hd
λ(u) ≤ r

)
= P(Pλ ∩ Cd(r , u) = ∅) = e−λVold (Cd (r ,u))

= exp

(
−λκd−1

2
B
(
1− r 2; d+1

2 , 1
2

))
,

where

B(x ; p, q) :=

∫ x

0
vp−1(1− v)q−1 dv , x ∈ (0, 1), p, q > 0,

lower incomplete beta function
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Asymptotics of the incomplete beta function

B(x ; p, q) :=

∫ x

0
vp−1(1− v)q−1 dv , x ∈ (0, 1), p, q > 0

If p � |q − 1|x
1− x

, then

B(x ; p, q) =
xp(1− x)q−1

p

[
1 + O

(
|q − 1|x
p(1− x)

)]
.

If p � |q − 1|
1− x

, then

B(x ; p, q)

B(1; p, q)
=

xp[(1− x)p]q−1

Γ(q)

[
1 + O

(
|q − 1|

p(1− x)

)]
.

Reference. Temme (1996)
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Proof of the one-dimensional result

P
(
hd
λ(u) ≤ r

)
= exp

(
−λκd−1

2
B
(
1− r 2;

d + 1

2
,

1

2

))
Step 1. Combine previous estimates with Stirling’s formula to get

−logP
(
hd
λ(u) ≤ r

)
= exp

(
log λκd + d+1

2 log(1− r 2)− log r
√

2πd + o(1)
)

Step 2. Calibrate r := r(d , τ) so that

log λκd +
d + 1

2
log(1− r 2)− log r

√
2πd = −τ.

The calculation depends on lim
d→∞

1

d
log λκd .



default
Bonus: consequence for the radius-vector function

ρdλ(u) := sup{r > 0 : ru ∈ Kd
λ }, u ∈ Sd−1, u ∈ Sd−1

Step 0. Naturally, ρdλ(u) ≤ hd
λ(u)

Step 1. Geometric observation

If ru is in the convex hull of the projection
of the Poisson points from the cap Cd(r , u)
onto the cap basis, then ρdλ(u) ≥ r .

u

1− r
ru

Cd(r, u)

Step 2. Estimate such probability thanks to Wendel’s formula.

When log(λκd)� d , (λκd)
2

d+1

(
1− ρdλ(u)

)
P−→ 1

2
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The support function in several dimensions: geometric
interpretation

For m ≤ d fixed, hd ,m
λ := infu∈Sd−1∩Rm hd

λ(u)

Geometric condition for having hd ,m
λ ≥ r?

r
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default
The support function in several dimensions: geometric
interpretation

For m ≤ d fixed, hd ,m
λ := infu∈Sd−1∩Rm hd

λ(u)

Geometric condition for having hd ,m
λ ≥ r?

r

hd ,m
λ ≥ r ⇐⇒ the min of the support function of the blue convex hull is ≥ r
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1− r
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1− r

Xi

X ′iRi
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Link with the coverage of the sphere

Geometric observation

hd ,m
λ ≥ r iff the sphere rSm−1 is covered by random spherical caps

I with centers X ′i , i ≥ 1, at the projections of the points Xi ,
i ≥ 1, from Bm \ rBm onto rSm−1

I with geodesic radii Ri = arccos r
‖Xi‖ , i ≥ 1.

Probabilistic observation

I Each Xi is the projection of a point uniformly distributed into
Bd \ {x ∈ Bd : x2

1 + · · ·+ x2
m ≥ r 2}.

I The set of X ′i along the sphere rSm−1 is a homogeneous
Poisson point process with explicit intensity −→

d→∞
∞.

I The common distribution of the independent geodesic radii Ri

is explicit and Ri −→
d→∞

0.
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Janson’s covering result

Reference. Janson (1986)

Cover the sphere Sm−1 with spherical patches

I whose centers are at points of a homogeneous Poisson point
process along Sm−1 of intensity Λ,

I whose geodesic radii are εRi with {Ri , i ≥ 1} sequence of i.i.d.
variables with fixed law and finite (m + η)-th moment,

I such that Λ and ε satisfy the asymptotic relation

c1ε
m−1Λ + (m − 1) log(ε)− (m − 1) log(− log(ε)) + c2 −→ τ.

Then the probability of covering Sm−1 converges to e−e
−τ

.
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Strategy

Step 1. Calculate the intensity Λ

Λ = λκd ·
B
(
1− r 2; 1 + d−m

2 , m2
)

B
(
1 + d−m

2 , m2
)

Step 2. Calculate ε and the common distribution of the rescaled
geodesic radii

ε =
1√
d

√
1− r 2

r

Step 3. Calibrate r so that the asymptotic relation is satisfied.



default
Strategy

Step 1. Calculate the intensity Λ

Λ = λκd ·
B
(
1− r 2; 1 + d−m

2 , m2
)

B
(
1 + d−m

2 , m2
)

Step 2. Calculate ε and the common distribution of the rescaled
geodesic radii

ε =
1√
d

√
1− r 2

r

Step 3. Calibrate r so that the asymptotic relation is satisfied.

Problem! The distribution of the rescaled geodesic radii still
depends on ε.
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Slight refinement of Janson’s result

Keep the same assumptions as in Janson’s theorem

BUT with geodesic radii equal to εR
(ε)
i

where the r.v. R
(ε)
i are i.i.d. and

D
= R(ε).

Assume that there exists a r.v. R such that for every w > 0,

sup
ρ>0

P(R(ε) > ρ)

P
([

1 + w
log 1

ε

]
R > ρ

) ≤ 1

and

W1

(
log R(ε), log R

)
=
ε→0

o

(
1

log2 1
ε

)
.

Then the same conclusion for the coverage probability holds.
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Thank you for your attention!
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