The support function of high-dimensional random polytopes

Pierre Calka

September 13, 2024, Bath Stochastic Geometry in Action

Outline

Random polytopes in high dimension: state of the art

Results on the support function process

Sketch of proof

Joint work with Benjamin Dadoun

Outline

Random polytopes in high dimension: state of the art

Results on the support function process

Sketch of proof

Conjectures of asymptotic convex geometry

Hyperplane conjecture

There exists a universal constant c>0 such that for every d-dimensional convex body K with volume 1, there is a section of K with (d-1)-dimensional volume greater than c.

Reference. J. Hörrmann, D. Hug, M. Reitzner & C. Thäle (2015)

The zero-cell of a parametric class of hyperplane tessellations depending on a distance exponent bd^{α} for some b>0 and $\alpha>1/2$ satisfies the hyperplane conjecture with high probability.

Conjectures of asymptotic convex geometry

Hirsch conjecture

The edge-vertex graph of the boundary of a d-dimensional convex polytope with n facets has a graph diameter at most (n - d).

Reference. G. Bonnet, D. Dadush, U. Grupel, S. Huiberts and G. Livshyts (2022)

The zero-cell of a hyperplane tessellation generated by a Poisson number of points on the unit sphere satisfies the polynomial Hirsch conjecture with high probability.

Information theory

One-bit compressed sensing

Recover a signal from the knowledge of belonging to half-spaces for sufficiently many half-spaces

Reference. F. Baccelli and E. O'Reilly (2019)

Asymptotic study of several characteristics of cells from a Poisson hyperplane tessellation with intensity ρd^{α} for some $\rho>0$ and $\alpha\geq 0$ (inradius, circumscribed radius, mean volume)

Information theory

Thin-shell concentration

The norm of a radial random vector with log-concave density is concentrated around its mean.

References. O. Guédon & E. Milman (2011), E. O'Reilly (2020)

The zero-cell of a stationary hyperplane tessellation satisfies the thin-shell concentration.

Percolation in high dimension

Poisson-Voronoi percolation

The critical probability has a precise equivalent for large d.

References. P. N. Balister & B. Bollobás (2010), R. Conijn, M. Irlbeck, Z. Kabluchko & T. Müller (2024+)

Random convex hull in the unit ball

- $ightharpoonup \mathbb{B}^d := d$ -dimensional unit ball of volume $\kappa_d := rac{\pi^{rac{d}{2}}}{\Gamma(rac{d}{2}+1)}$
- $holdsymbol{\mathcal{P}}_{\lambda}:=$ homogeneous Poisson point process in \mathbb{R}^d of intensity $\lambda:=\lambda(d)$
- lacksquare $\mathcal{K}^d_{\lambda}:=\mathsf{convex}\;\mathsf{hull}\;\mathsf{of}\;\mathcal{P}_{\lambda}\cap\mathbb{B}^d$
- ▶ Mean number of Poisson points inside $\mathbb{B}^d = \lambda \kappa_d$

Random convex hull in the unit ball: volume

Reference. G. Bonnet, Z. Kabluchko & N. Turchi (2021)

 $Vol_d := d$ -dimensional Lebesgue measure, $\kappa_d = Vol_d(\mathbb{B}^d)$

$\log(\lambda \kappa_d)$	$\ll \frac{d}{2} \log d$	$\sim \frac{d}{2}\log\frac{d}{2x}$	$\gg \frac{d}{2} \log d$
$\lim_{d,\lambda\to\infty}\mathbb{E}\frac{Vol_d(K_\lambda^d)}{Vol_d(\mathbb{B}^d)}$	0	e ^{-x}	1

Extension to the beta polytope

The uniform distribution in \mathbb{B}^d is replaced by the distribution with density proportional to $(1-\|x\|^2)^{\beta}$ if $\beta>-1$ and the uniform distribution on the unit sphere if $\beta=-1$.

Random convex hull in the unit ball: typical facet height

Reference. G. Bonnet & E. O'Reilly (2022)

 $P_n^d :=$ convex hull of n uniform points X_1, \cdots, X_n on the unit sphere $H_{\text{typ}} :=$ height of the facet generated by X_1, \cdots, X_d conditional on the event $\{X_1, \cdots, X_d \text{ generates a facet}\}$

$\log(n)$	≪ d	\sim xd	≫ d
H_{typ}	$\stackrel{\mathbb{P}}{\sim} \sqrt{\frac{2}{d}\log(\frac{n}{d})}$	$\stackrel{\mathbb{P}}{\to} \sqrt{1-e^{-2x}}$	$\stackrel{\mathbb{P}}{\sim} 1$

Outline

Random polytopes in high dimension: state of the art

Results on the support function process

Sketch of proof

Support function and radius-vector function

 $\mathcal{K}^d_\lambda := \mathsf{convex} \ \mathsf{hull} \ \mathsf{of} \ \mathcal{P}_\lambda \cap \mathbb{B}^d \ \mathsf{with} \ \mathcal{P}_\lambda \ \mathsf{of} \ \mathsf{intensity} \ \lambda$

Support function of K^d_{λ}

$$h_{\lambda}^{d}(u):=\sup\{\langle x,u\rangle:x\in \mathcal{K}_{\lambda}^{d}\},\ u\in\mathbb{S}^{d-1}$$

Radius-vector function of K^d_{λ}

$$\rho_{\lambda}^{d}(u) := \sup\{r > 0 : ru \in K_{\lambda}^{d}\}, \quad u \in \mathbb{S}^{d-1}$$

Properties

The support function of K_{λ}^{d} is the radius-vector function of the flower $\bigcup_{x \in \mathbb{Z}} B\left(\frac{x}{2}, \frac{\|x\|}{2}\right)$.

Both functions h^d_λ and r^d_λ characterize the convex polytope K^d_λ .

Containing the origin

Reminder on Wendel's calculation (1962)

 $\{X_n:n\geq 1\}:=$ sequence of i.i.d. r.v. with a symmetric distribution

$$\mathbb{P}(0 \in \mathsf{Conv}(X_1, \cdots, X_N)) = \mathbb{P}(S_{N-1} \geq d)$$

where $S_{N-1} \stackrel{D}{=} Binomial(n, \frac{1}{2})$.

$$\begin{array}{c|c} & 2d \\ \hline & & \lambda \kappa_d \\ \hline \\ \text{If } \limsup_{d \to \infty} \frac{\lambda \kappa_d}{d} < 2, \\ & \lim_{d \to \infty} \mathbb{P}(0 \in \mathcal{K}_{\lambda}^d) = 0 \end{array} \qquad \begin{array}{c|c} \text{If } \liminf_{d \to \infty} \frac{\lambda \kappa_d}{d} > 2, \\ & \lim_{d \to \infty} \mathbb{P}(0 \in \mathcal{K}_{\lambda}^d) = 1 \end{array}$$

The support function in one direction

Equivalent of $h_{\lambda}^{d}(u)$ when $d \to \infty$

$\log(\lambda \kappa_d)$	≪ d	$\sim dx$	≫ d
$h_{\lambda}^{d}(u)$	$\stackrel{\mathbb{P}}{\sim} \sqrt{\frac{2}{d}\log(\lambda\kappa_d)}$	$\stackrel{\mathbb{P}}{\to} \sqrt{1 - e^{-2x}}$	$\stackrel{\mathbb{P}}{\sim} 1 - rac{1}{2} (\lambda \kappa_d)^{-rac{2}{d+1}}$

Convergence in distribution of the rescaled support function

$$d\left(\log\frac{1}{\sqrt{1-\left(h_{\lambda}^{d}(u)\right)^{2}}}-\frac{1}{d+1}\log\lambda\kappa_{d}\right)+\log\sqrt{\mathfrak{m}(d)}\overset{D}{\longrightarrow}\mathsf{Gumbel}$$
 where
$$\frac{\log(\lambda\kappa_{d})\|\ll d}{\mathfrak{m}(d)\|4\pi\log(\lambda\kappa_{d})}\frac{d}{2\pi d(1-e^{-2x})}\frac{d}{2\pi d\left(1-(\lambda\kappa_{d})^{-\frac{2}{d+1}}\right)}$$

Comparison with the results on the mean volume

Reference. G. Bonnet, Z. Kabluchko & N. Turchi (2021)

$\log(\lambda \kappa_d)$	$\ll \frac{d}{2} \log d$	$\sim \frac{d}{2}\log\frac{d}{2x}$	$\gg \frac{d}{2} \log d$
$\lim_{d,\lambda\to\infty}\mathbb{E}\frac{Vol_d(K^d_\lambda)}{Vol_d(\mathbb{B}^d)}$	0	e^{-x}	1

$\log(\lambda \kappa_d)$	≪ d	$\sim dx$	≫ d
$h_{\lambda}^{d}(u)$	$\stackrel{\mathbb{P}}{\sim} \sqrt{\frac{2}{d}\log(\lambda\kappa_d)}$	$\stackrel{\mathbb{P}}{\to} \sqrt{1 - e^{-2x}}$	$ ho \sim 1 - rac{1}{2} (\lambda \kappa_d)^{-rac{2}{d+1}}$

The support function in several directions

For $m \leq d$ fixed,

$$h_{\lambda}^{d,m} := \inf_{u \in \mathbb{S}^{d-1} \cap \mathbb{R}^m} h_{\lambda}^d(u)$$

$\log(\lambda \kappa_d)$	≪ d	$\sim dx$	≫ d
$h_{\lambda}^{d,m}$	$\stackrel{\mathbb{P}}{\sim} \sqrt{\frac{2}{d}\log(\lambda\kappa_d)}$	$\stackrel{\mathbb{P}}{\to} \sqrt{1 - e^{-2x}}$	$\stackrel{\mathbb{P}}{\sim} 1 - rac{1}{2} (\lambda \kappa_d)^{-rac{2}{d+1}}$

$$\mathfrak{a}(d;m) - \mathfrak{b}(d;m) \log \frac{1}{\sqrt{1 - (h_{\lambda}^{d,m})^2}} \xrightarrow{D} \mathsf{Gumbel}$$

where

$$\mathfrak{a}(d;m) = (m-1)\mathfrak{s}(d)\log\frac{A_m\lambda\kappa_d}{\mathfrak{s}(d)} - (m-1)\mathfrak{s}(d)^2 - (m-1)\log\mathfrak{s}(d) - \log B_m,$$

$$\mathfrak{b}(d;m)=(m-1)d\,\mathfrak{s}(d) \text{ and } \mathfrak{s}(d)=\log\sqrt{d\left((\lambda\kappa_d)^{rac{2}{d}}-1
ight)}.$$

Outline

Random polytopes in high dimension: state of the ar

Results on the support function process

Sketch of proof

Distribution tail of the support function in one direction

$$\mathbb{P}\left(h_{\lambda}^{d}(u) \leq r\right) = \mathbb{P}(\mathcal{P}_{\lambda} \cap \mathcal{C}^{d}(r, u) = \emptyset) = e^{-\lambda \mathsf{Vol}_{d}(\mathcal{C}^{d}(r, u))}$$
$$= \exp\left(-\frac{\lambda \kappa_{d-1}}{2} \mathrm{B}\left(1 - r^{2}; \frac{d+1}{2}, \frac{1}{2}\right)\right),$$

where $\mathrm{B}(x;p,q):=\int_0^x v^{p-1}(1-v)^{q-1}\,\mathrm{d} v,\quad x\in(0,1),\,p,q>0,$ lower incomplete beta function

Asymptotics of the incomplete beta function

$$B(x; p, q) := \int_0^x v^{p-1} (1-v)^{q-1} dv, \quad x \in (0, 1), \ p, q > 0$$

If
$$p\gg rac{|q-1|x}{1-x}$$
, then
$$\mathrm{B}(x;p,q)=rac{x^p(1-x)^{q-1}}{p}\left[1+O\left(rac{|q-1|x}{p(1-x)}
ight)\right].$$
 If $p\gg rac{|q-1|}{1-x}$, then
$$rac{\mathrm{B}(x;p,q)}{\mathrm{B}(1;p,q)}=rac{x^p[(1-x)p]^{q-1}}{\Gamma(q)}\left[1+O\left(rac{|q-1|}{p(1-x)}
ight)\right].$$

Reference. Temme (1996)

Proof of the one-dimensional result

$$\mathbb{P}\left(h_{\lambda}^{d}(u) \leq r\right) = \exp\left(-\frac{\lambda \kappa_{d-1}}{2} \mathrm{B}\left(1 - r^{2}; \frac{d+1}{2}, \frac{1}{2}\right)\right)$$

Step 1. Combine previous estimates with Stirling's formula to get

$$-\log \mathbb{P}\left(h_{\lambda}^{d}(u) \leq r\right) = \exp\left(\log \lambda \kappa_{d} + \frac{d+1}{2}\log(1-r^{2}) - \log r\sqrt{2\pi d} + o(1)\right)$$

Step 2. Calibrate $r := r(d, \tau)$ so that

$$\log \lambda \kappa_d + \frac{d+1}{2} \log(1-r^2) - \log r \sqrt{2\pi d} = -\tau.$$

The calculation depends on $\lim_{d\to\infty}\frac{1}{d}\log \lambda \kappa_d$.

Bonus: consequence for the radius-vector function

$$\rho_{\lambda}^{d}(u):=\sup\{r>0: ru\in \mathcal{K}_{\lambda}^{d}\}, \ u\in \mathbb{S}^{d-1}, \ u\in \mathbb{S}^{d-1}$$

Step 0. Naturally, $\rho_{\lambda}^d(u) \leq h_{\lambda}^d(u)$

Step 1. Geometric observation

If ru is in the convex hull of the projection of the Poisson points from the cap $\mathcal{C}^d(r,u)$ onto the cap basis, then $\rho_{\lambda}^d(u) \geq r$.

Step 2. Estimate such probability thanks to Wendel's formula.

When
$$\log(\lambda \kappa_d) \gg d$$
, $(\lambda \kappa_d)^{\frac{2}{d+1}} \Big(1 - \rho_\lambda^d(u)\Big) \stackrel{\mathbb{P}}{\longrightarrow} \frac{1}{2}$

For $m \leq d$ fixed, $h_{\lambda}^{d,m} := \inf_{u \in \mathbb{S}^{d-1} \cap \mathbb{R}^m} h_{\lambda}^d(u)$

Geometric condition for having $h_{\lambda}^{d,m} \geq r$?

For $m \leq d$ fixed, $h_{\lambda}^{d,m} := \inf_{u \in \mathbb{S}^{d-1} \cap \mathbb{R}^m} h_{\lambda}^d(u)$

Geometric condition for having $h_{\lambda}^{d,m} \geq r$?

For $m \leq d$ fixed, $h_{\lambda}^{d,m} := \inf_{u \in \mathbb{S}^{d-1} \cap \mathbb{R}^m} h_{\lambda}^d(u)$

Geometric condition for having $h_{\lambda}^{d,m} \geq r$?

For $m \leq d$ fixed, $h_{\lambda}^{d,m} := \inf_{u \in \mathbb{S}^{d-1} \cap \mathbb{R}^m} h_{\lambda}^d(u)$

Geometric condition for having $h_{\lambda}^{d,m} \geq r$?

 $h_{\lambda}^{d,m} \geq r \iff$ the min of the support function of the blue convex hull is $\geq r$

Geometric observation

 $h_{\lambda}^{d,m} \geq r$ iff the sphere $r\mathbb{S}^{m-1}$ is covered by random spherical caps

- with centers X_i' , $i \ge 1$, at the projections of the points X_i , $i \ge 1$, from $\mathbb{B}^m \setminus r\mathbb{B}^m$ onto $r\mathbb{S}^{m-1}$
- with geodesic radii $R_i = \arccos \frac{r}{\|X_i\|}, i \ge 1$.

Probabilistic observation

- ► Each X_i is the projection of a point uniformly distributed into $\mathbb{B}^d \setminus \{x \in \mathbb{B}^d : x_1^2 + \cdots + x_m^2 \ge r^2\}.$
- ▶ The set of X_i' along the sphere $r\mathbb{S}^{m-1}$ is a homogeneous Poisson point process with explicit intensity $\underset{d\to\infty}{\longrightarrow} \infty$.
- ▶ The common distribution of the independent geodesic radii R_i is explicit and $R_i \longrightarrow 0$.

Janson's covering result

Reference. Janson (1986)

Cover the sphere \mathbb{S}^{m-1} with spherical patches

- whose centers are at points of a homogeneous Poisson point process along \mathbb{S}^{m-1} of intensity Λ ,
- whose geodesic radii are εR_i with $\{R_i, i \geq 1\}$ sequence of i.i.d. variables with fixed law and finite $(m + \eta)$ -th moment,
- ightharpoonup such that Λ and ε satisfy the asymptotic relation

$$c_1 \varepsilon^{m-1} \Lambda + (m-1) \log(\varepsilon) - (m-1) \log(-\log(\varepsilon)) + c_2 \longrightarrow \tau.$$

Then the probability of covering \mathbb{S}^{m-1} converges to $e^{-e^{-\tau}}$.

Strategy

Step 1. Calculate the intensity Λ

$$\Lambda = \lambda \kappa_d \cdot \frac{\mathrm{B}\left(1 - r^2; 1 + \frac{d - m}{2}, \frac{m}{2}\right)}{\mathrm{B}\left(1 + \frac{d - m}{2}, \frac{m}{2}\right)}$$

Step 2. Calculate ε and the common distribution of the rescaled geodesic radii

$$\varepsilon = \frac{1}{\sqrt{d}} \frac{\sqrt{1 - r^2}}{r}$$

Step 3. Calibrate r so that the asymptotic relation is satisfied.

Strategy

Step 1. Calculate the intensity Λ

$$\Lambda = \lambda \kappa_d \cdot \frac{\mathrm{B}\left(1 - r^2; 1 + \frac{d - m}{2}, \frac{m}{2}\right)}{\mathrm{B}\left(1 + \frac{d - m}{2}, \frac{m}{2}\right)}$$

Step 2. Calculate ε and the common distribution of the rescaled geodesic radii

$$\varepsilon = \frac{1}{\sqrt{d}} \frac{\sqrt{1 - r^2}}{r}$$

Step 3. Calibrate r so that the asymptotic relation is satisfied.

Problem! The distribution of the rescaled geodesic radii still depends on ε .

Slight refinement of Janson's result

Keep the same assumptions as in Janson's theorem

BUT with geodesic radii equal to $\varepsilon R_i^{(\varepsilon)}$ where the r.v. $R_i^{(\varepsilon)}$ are i.i.d. and $\stackrel{D}{=} R^{(\varepsilon)}$.

Assume that there exists a r.v. R such that for every w > 0,

$$\sup_{\rho>0} \frac{\mathbb{P}(R^{(\varepsilon)}>\rho)}{\mathbb{P}\left(\left[1+\frac{w}{\log\frac{1}{\varepsilon}}\right]R>\rho\right)}\leq 1$$

and

$$W_1\left(\log R^{(\varepsilon)},\log R\right) \underset{\varepsilon \to 0}{=} o\left(rac{1}{\log^2 rac{1}{\varepsilon}}
ight).$$

Then the same conclusion for the coverage probability holds.

