Non-parametric intensity estimation of spatial point processes by random forests

Christophe A. N. Biscio joint work with Frédéric Lavancier (CREST, ENSAI, Rennes)

Motivation I

Let X a spatial point process observed on $W \subset \mathbb{R}^d$.

Brown trouts in the UK

Trees in a tropical rain forest

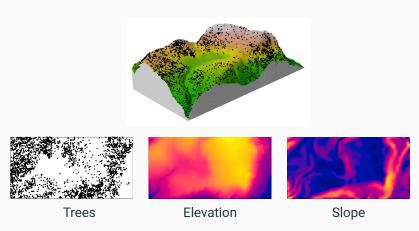
<u>Aim:</u> Estimate the intensity $\lambda(x)$, $x \in \mathbb{R}^d$, where

 $\lambda(x) \approx \mathbb{P}(X \text{ has a point at } x).$

Formally: $\forall A \subset \mathbb{R}^d, \ \mathbb{E}(X(A)) = \int_A \lambda(x) dx.$

Motivation II

Sometimes we observe several covariates $\underline{z} : \mathbb{R}^d \to \mathbb{R}^p$ on W.



In which case, we assume $\underline{\lambda(x) = f(z(x))}$.

Usual methods

Usual methods to estimate $\lambda(x) = f(z(x))$:

Without covariates (z(x) = x): kernel smoothing, i.e.

$$\widehat{\lambda}(x) = \sum_{u \in X \cap W} k_h(\|x - u\|).$$

With covariates:

- parametric approach: assume $\log \lambda(x) = \theta' z(x)$ and get $\hat{\theta}$.
- non-parametric approach : assume $\lambda(x) = f(z(x))$ and

$$\widehat{\lambda}(x) = \sum_{u \in X \cap W} k_h(\|z(x) - z(u)\|).$$

Standard regression random forest in a nutshell

Aim: Predict an output y given covariates $x \in \mathbb{R}^p$.

Data: input/output, (x_i, y_i) , $i = 1, \dots n$.

Standard regression random forest in a nutshell

Aim: Predict an output y given covariates $x \in \mathbb{R}^p$.

Data: input/output, (x_i, y_i) , i = 1, ... n.

Regression tree:

- Build a partition $\pi = \{I_i\}$ of the covariates' space,
- Prediction for a new $\tilde{x} \in I_{j_0}$: average all y_i 's such that $x_i \in I_{j_0}$.

Standard regression random forest in a nutshell

Aim: Predict an output y given covariates $x \in \mathbb{R}^p$.

Data: input/output, (x_i, y_i) , i = 1, ... n.

Regression tree:

- Build a partition $\pi = \{I_i\}$ of the covariates' space,
- Prediction for a new $\tilde{x} \in I_{j_0}$: average all y_i 's such that $x_i \in I_{j_0}$.

Random Forest: Build M "diverse" trees :

- bootstrap the data before building each tree,
- build the partition with randomly selected covariates.

The random forest predictor is an average of the ${\it M}$ tree predictors.

Standard regression random Forest in a nutshell

Advantages:

- Applies to a wide range of prediction problems
- · Several "success stories"
- Built-in selection of hyperparameters by "Out-Of-Bag" (OOB).
- · Assess importance of covariates: "Variable Importance" (VIP).

But: Challenging theory (and other flaws not covered here)

Standard regression random Forest in a nutshell

Advantages:

- Applies to a wide range of prediction problems
- · Several "success stories"
- Built-in selection of hyperparameters by "Out-Of-Bag" (OOB).
- Assess importance of covariates: "Variable Importance" (VIP).

But: Challenging theory (and other flaws not covered here)

One exception: if the partitions are built independently of the data.

- We then say that the RF is a purely random forest.
- (Rarely the case in practice)
- J. Mourtada, S. Gaïffas and E. Scornet. *Minimax optimal rates for Mondrian trees and forests*. AOS (2020)
- E. O'Reilly and N. Mai Tran. *Minimax Rates for High-Dimensional Random Tessellation Forests*. JMLR (2024).

Setting: we observe the point process X on W and z(x) for all $x \in W$

 \longrightarrow We want to estimate $\lambda(x) = f(z(x))$.

<u>Setting</u>: we observe the point process X on W and z(x) for all $x \in W$

$$\longrightarrow$$
 We want to estimate $\lambda(x) = f(z(x))$.

We first need an "intensity tree" estimator.

- Let $\pi = \{I_j\}$ be a finite partition of z(W).
- Let $A_j = z^{-1}(I_j) \cap W$.

Thus

$$z(W) = \bigsqcup I_j$$
 and $W = \bigsqcup A_j$.

<u>Setting</u>: we observe the point process X on W and z(x) for all $x \in W$

$$\longrightarrow$$
 We want to estimate $\lambda(x) = f(z(x))$.

We first need an "intensity tree" estimator.

- Let $\pi = \{I_j\}$ be a finite partition of z(W).
- Let $A_j = z^{-1}(I_j) \cap W$.

Thus

$$z(W) = \bigsqcup I_j$$
 and $W = \bigsqcup A_j$.

Let $x \in W$ and denote A(x): the cell A_j that contains x.

<u>Setting</u>: we observe the point process X on W and z(x) for all $x \in W$

$$\longrightarrow$$
 We want to estimate $\lambda(x) = f(z(x))$.

We first need an "intensity tree" estimator.

- Let $\pi = \{I_i\}$ be a finite partition of z(W).
- Let $A_i = z^{-1}(I_i) \cap W$.

Thus

$$z(W) = \bigsqcup I_j$$
 and $W = \bigsqcup A_j$.

Let $x \in W$ and denote A(x): the cell A_j that contains x.

Then we define an intensity tree estimate by

$$\widehat{\lambda}^{(1)}(x) = \frac{X\left(A(x)\right)}{|A(x)|} = \frac{\text{number of points in the cell}}{\text{volume of the cell}}.$$

Consider M different partition of z(W).

Denote the corresponding intensity tree estimators by $\widehat{\lambda}^{(1)},\dots,\widehat{\lambda}^{(M)}.$

We define the random forest intensity estimator by

$$\widehat{\lambda}^{(RF)}(x) = \frac{1}{M} \sum_{i=1}^{M} \widehat{\lambda}^{(i)}(x).$$

How can we generate partitions of $z(\mathit{W})$?

We split the presentation in two cases:

- 1. No covariate : only the spatial coordinates are available Equivalently z(x)=x, so that z(W)=W
- 2. With covariates.

 $\overline{z(x)} = x$, z(W) = W

Tessellations

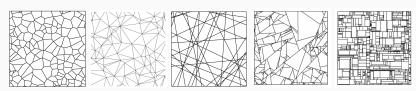
A partition of $W \iff$ A tessellation on W.

Tessellations

A partition of $W \iff$ A tessellation on W.

We consider independent random tessellations, that can be:

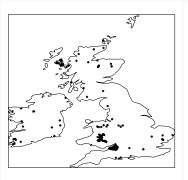
- Poisson Voronoï
- · Poisson Delaunay
- · Poisson hyperplane
- STIT tessellations (including the Mondrian process)

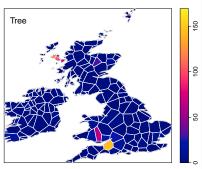


These tessellations depend on an intensity parameter h^{-d} .

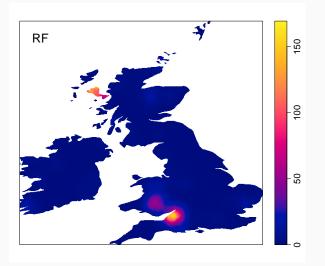
Remark: The RF is a genuine pure RF.

Example – One tree

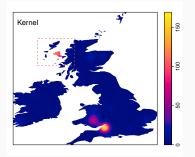


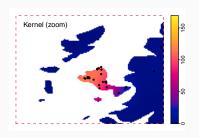


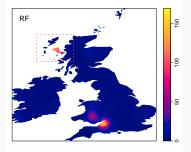
Example - RF (100 trees)



Example - Kernel smoothing versus RF







2st Case - With covariates

Tree

We need a partition of $z(W) = z_1(W) \times \cdots \times z_p(W)$ where $z_i(W) \subset \mathbb{R}$.

Tree

We need a partition of $z(W) = z_1(W) \times \cdots \times z_p(W)$ where $z_i(W) \subset \mathbb{R}$.

• We can generate a Voronoï tessellation of z(W), as above. Then the RF will be a purely RF.

Tree

We need a partition of $z(W) = z_1(W) \times \cdots \times z_p(W)$ where $z_i(W) \subset \mathbb{R}$.

- We can generate a Voronoï tessellation of z(W), as above. Then the RF will be a purely RF.
- Or, in the spirit of standard RF, we can construct an "optimal" tessellation, in relation with the output (here, the intensity).

Tree, in the spirit of standard RF

First step: for $i = 1, \ldots, p$,

- Let $m_i = \text{Median}(z_i(W))$
- · Consider the possible split:

$$L_i = \{z_i(x) < m_i\} \text{ and } R_i = \{z_i(x) \ge m_i\}.$$

Tree, in the spirit of standard RF

First step: for $i = 1, \ldots, p$,

- Let $m_i = \text{Median}(z_i(W))$
- · Consider the possible split:

$$L_i = \{z_i(x) < m_i\} \text{ and } R_i = \{z_i(x) \ge m_i\}.$$

Choose the best split out of these p possible splits.

 \longrightarrow The score of each split $L \cup R$ is based on the Poisson likelihood:

$$n_L \log \left(\frac{n_L - 1}{|L|} \right) + n_R \log \left(\frac{n_R - 1}{|R|} \right).$$

Tree, in the spirit of standard RF

First step: for $i = 1, \ldots, p$,

- Let $m_i = \text{Median}(z_i(W))$
- · Consider the possible split:

$$L_i = \{z_i(x) < m_i\} \text{ and } R_i = \{z_i(x) \ge m_i\}.$$

Choose the best split out of these p possible splits.

 \longrightarrow The score of each split $L \cup R$ is based on the Poisson likelihood:

$$n_L \log \left(\frac{n_L - 1}{|L|} \right) + n_R \log \left(\frac{n_R - 1}{|R|} \right).$$

And so on, until a stopping criterion.

 \longrightarrow We choose a minimal number of points per cell (minpts).

To build the forest, consider M "diverse" trees, by

To build the forest, consider M "diverse" trees, by

Resampling: Each tree is based on a bootstrapped version of \boldsymbol{X}

To build the forest, consider M "diverse" trees, by

Resampling: Each tree is based on a bootstrapped version of X

Pick variables: at each node, mtry covariates are used, at random.

To build the forest, consider M "diverse" trees, by

Resampling: Each tree is based on a bootstrapped version of X

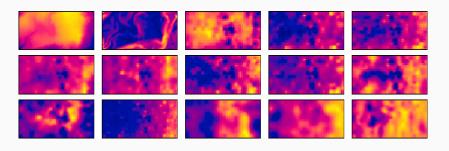
Pick variables: at each node, *mtry* covariates are used, at random.

Like for standard RF:

- Out-of-Bags cross-validation (based on the Poisson likelihood score) is available.
- We can also compute the VIP (variable importance) of each variable.

Simulation Study

$$p = 15$$
 covariates: $z = (z_1, \dots, z_{15})$.

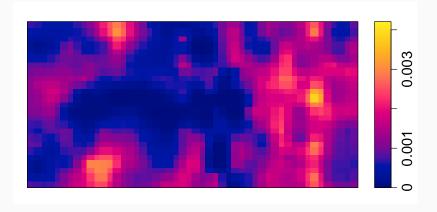


We simulate an inhomogeneous Poisson point process with intensity:

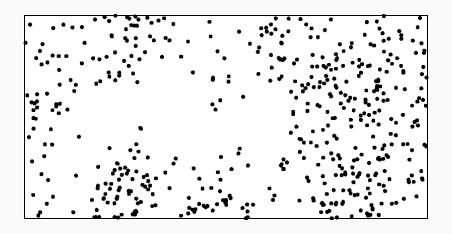
$$\lambda(x) = f(z_{10}(x))$$

with 500 points in average.

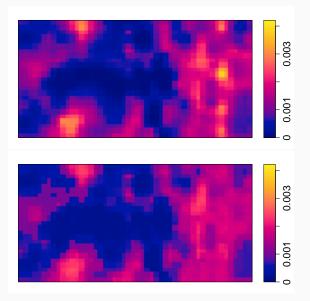
True intensity



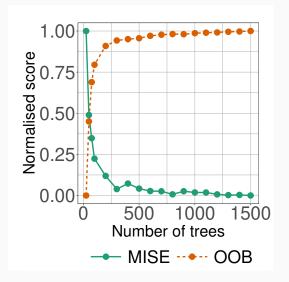
Realisation



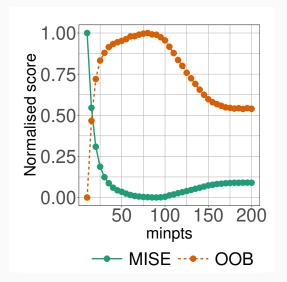
True intensity vs Random Forest estimate



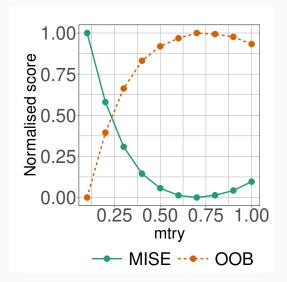
Choosing the number of trees

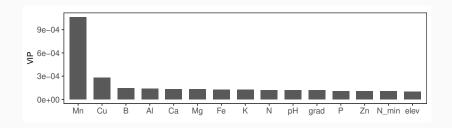


${\bf Choosing}\ minpts$



Choosing mtry





Mn is clearly detected as the most important one.

Summary of the methodology

Benefits:

- Works with any window shape (possibly not connected)
- · Works with high number of covariates
- OOB cross-validation available
- VIP available

Flaws:

- Hyperparameters to choose (M, minpts, mtry)
- VIP sensitive to correlation between covariates
- · Can be computationally involved
- · Theory more involved than for purely RF

We want to study the performance of $\hat{\lambda}^{(RF)}(x)$ based on a single realisation of X in W.

We want to study the performance of $\hat{\lambda}^{(RF)}(x)$ based on a single realisation of X in W.

Questions:

1. What asymptotic framework do we consider?

We want to study the performance of $\hat{\lambda}^{(RF)}(x)$ based on a single realisation of X in W.

- 1. What asymptotic framework do we consider?
- 2. What point process models do we consider?

We want to study the performance of $\hat{\lambda}^{(RF)}(x)$ based on a single realisation of X in W.

- 1. What asymptotic framework do we consider?
- 2. What point process models do we consider?
- 3. Is the procedure consistent? minimax?

We want to study the performance of $\hat{\lambda}^{(RF)}(x)$ based on a single realisation of X in W.

- 1. What asymptotic framework do we consider?
- 2. What point process models do we consider?
- 3. Is the procedure consistent? minimax?
- 4. What is the interest to leverage on covariates?

We want to study the performance of $\hat{\lambda}^{(RF)}(x)$ based on a single realisation of X in W.

- 1. What asymptotic framework do we consider?
- 2. What point process models do we consider?
- 3. Is the procedure consistent? minimax?
- 4. What is the interest to leverage on covariates?
- 5. What is the advantage of an RF over a single tree?

We want to study the performance of $\hat{\lambda}^{(RF)}(x)$ based on a single realisation of X in W.

Questions:

- 1. What asymptotic framework do we consider?
- 2. What point process models do we consider?
- 3. Is the procedure consistent? minimax?
- 4. What is the interest to leverage on covariates?
- 5. What is the advantage of an RF over a single tree?

We will assume that our RF are purely random forests.

1. The asymptotic regime

Setting:

 $X=X_n$ is observed on W_n with intensity $\lambda_n=a_n\lambda$ with $a_n>0$.

 \longrightarrow We want to estimate λ .

1. The asymptotic regime

Setting:

 $X=X_n$ is observed on W_n with intensity $\lambda_n=a_n\lambda$ with $a_n>0$.

 \longrightarrow We want to estimate λ .

Remark:

$$\mathbb{E}(X_n(W_n)) = \int_{W_n} \lambda_n(x) dx = a_n \int_{W_n} \lambda(x) dx \times a_n |W_n|.$$

Increasing the number of observations means $a_n|W_n|\to\infty$.

1. The asymptotic regime

Setting:

 $X=X_n$ is observed on W_n with intensity $\lambda_n=a_n\lambda$ with $a_n>0$.

 \longrightarrow We want to estimate λ .

Remark:

$$\mathbb{E}(X_n(W_n)) = \int_{W_n} \lambda_n(x) dx = a_n \int_{W_n} \lambda(x) dx \times a_n |W_n|.$$

Increasing the number of observations means $a_n |W_n| \to \infty$.

Different possible asymptotic regimes:

- Infill: $W_n = W$ is fixed but $a_n \to \infty$
- Increasing domain: $a_n = 1$ but $|W_n| \to \infty$
- Intermediate regimes: $a_n \to \infty$ and $|W_n| \to \infty$.

2. Point process models

Concerning the dependence structure of X_n , we assume that

$$\forall n, \forall A \subset W_n, \quad a_n \int_{A^2} |g_n(x, y) - 1| dx dy \le c|A|,$$
 (1)

where g_n is the pair correlation function of X_n .

2. Point process models

Concerning the dependence structure of X_n , we assume that

$$\forall n, \forall A \subset W_n, \quad a_n \int_{A^2} |g_n(x,y) - 1| dx dy \le c|A|,$$
 (1)

where g_n is the pair correlation function of X_n .

Typically, if for a certain underlying pcf g,

$$g_n(x,y) = g(a_n x, a_n y)$$
 or $g_n(x,y) - 1 = \frac{1}{a_n} (g(x,y) - 1),$

then (1) is ok whenever $\sup_y \int_{\mathbb{R}^d} |g(x,y) - 1| dx < \infty$.

2. Point process models

Concerning the dependence structure of X_n , we assume that

$$\forall n, \forall A \subset W_n, \quad a_n \int_{A^2} |g_n(x,y) - 1| dx dy \le c|A|,$$
 (1)

where g_n is the pair correlation function of X_n .

Typically, if for a certain underlying pcf g,

$$g_n(x,y) = g(a_n x, a_n y)$$
 or $g_n(x,y) - 1 = \frac{1}{a_n} (g(x,y) - 1),$

then (1) is ok whenever $\sup_y \int_{\mathbb{R}^d} |g(x,y)-1| dx < \infty.$

This is a mild assumption satisfied for most usual models:

- Inhomogeneous Poisson point process,
- · Neyman-Scott point process,
- LGCP with suitable mean and covariance functions,
- Matern hardcore point process (type I and II),
- Standard DPPs (Gaussian, Ginibre,...).

3. Consistency

Assume $\lambda(x) = f(z(x))$ where f is continuous at z(x) and let

- $z(W_n) = \coprod I_{n,j}$
- $I_n(x)$ = the cell $I_{n,j}$ that contains z(x)
- $A_n(x) = z^{-1}(I_n(x)) \cap W_n$

Theorem

For a purely RF intensity estimator, if

- (1) diam $(I_n(x)) \to 0$ in probability,
- (2) $\mathbb{E}(1/(a_n|A_n(x)|)) \to 0$,

Then
$$\mathbb{E}\left[\left(\hat{\lambda}^{(RF)}(x) - \lambda(x)\right)^2\right] \to 0.$$

- (1): $I_n(x)$ must concentrate around z(x) (bias $\to 0$)
- (2) : number of points in $A_n(x)$ must tend to infinity ($variance \rightarrow 0$)

3. Consistency: the case without covariate

When are the assumptions satisfied?

$$(1) \operatorname{diam}(I_n(x)) \to 0$$
 and $(2) \mathbb{E}(1/(a_n|A_n(x)|)) \to 0$.

3. Consistency: the case without covariate

When are the assumptions satisfied?

(1)
$$\operatorname{diam}(I_n(x)) \to 0$$
 and (2) $\mathbb{E}(1/(a_n|A_n(x)|)) \to 0$.

Without covariate: z(x) = x and $I_n(x) = A_n(x)$

For a regular tessellation of $\,W_n$ (say Voronoï) with intensity $\,h_n^{-\,d}$,

 $A_n(x) = I_n(x)$ is the zero cell of the tessellation and we have:

$$\operatorname{diam}(I_n(x)) = O(h_n)$$
 and $\mathbb{E}(1/|A_n(x)|) = h_n^{-d}$.

3. Consistency: the case without covariate

When are the assumptions satisfied?

(1)
$$\operatorname{diam}(I_n(x)) \to 0$$
 and (2) $\mathbb{E}(1/(a_n|A_n(x)|)) \to 0$.

Without covariate: z(x) = x and $I_n(x) = A_n(x)$

For a regular tessellation of $\,W_n$ (say Voronoï) with intensity $\,h_n^{-\,d}$,

 $A_n(x) = I_n(x)$ is the zero cell of the tessellation and we have:

$$\operatorname{diam}(I_n(x)) = O(h_n)$$
 and $\mathbb{E}(1/|A_n(x)|) = h_n^{-d}$.

Therefore:

- (1) is ok whenever $h_n \to 0$
- (2) depends on the asymptotic regime:
 - if $a_n o \infty$ (infill or intermediate), then ok whenever $a_n h_n^d o \infty$
 - if $a_n = 1$ (increasing domain): no consistency

3. Consistency: the case with covariates

When are the assumptions satisfied?

$$(1) \operatorname{diam}(I_n(x)) \to 0$$
 and $(2) \mathbb{E}(1/(a_n|A_n(x)|)) \to 0$.

With covariates:

For a regular tessellation of $z(W_n)$ with intensity h_n^{-p} ,

- (1) ok if $h_n \to 0$ since $\operatorname{diam}(I_n(x)) = O(h_n)$.
- (2) $A_n(x) \approx$ level set of z at z(x). If z takes often the value z(x), then $|A_n(x)|$ can be "large"

Other examples: z periodic or z realisation of an ergodic process

3. Minimax rates

3. Minimax rates

In $\lambda(x)=f(z(x))$, assume that z is α -Hölder continuous and that f is β -Hölder continuous, so that λ is $\alpha\beta$ -Hölder continuous. Then

(i) for a pure RF based on a "regular tessellation" of $z(W_n)$ with intensity h_n^{-p} ,

$$\mathbb{E}\left[\left(\hat{\lambda}^{(RF)}(x) - \lambda(x)\right)^{2}\right] \leq c\left(\frac{1}{a_{n}h_{n}^{d/\alpha}} + h_{n}^{2\beta}\right).$$

(ii) pure RF based on a <u>"regular tessellation" of W_n </u> with intensity h_n^{-d} ,

$$\mathbb{E}\left[\left(\hat{\lambda}^{(RF)}(x) - \lambda(x)\right)^2\right] \le c\left(\frac{1}{a_n h_n^d} + h_n^{2\alpha\beta}\right).$$

In both cases the minimax rate $a_n^{-2\alpha\beta/(2\alpha\beta+d)}$ is achieved when $\underline{a_n\to\infty}$ for a proper choice of $h_n\to 0$.

Conclusion : for Hölder-continuous functions, the optimal rate is minimax when $a_n \to \infty$ whether or not we use the covariates.

Conclusion : for Hölder-continuous functions, the optimal rate is minimax when $a_n \to \infty$ whether or not we use the covariates.

What is the interest to leverage on covariates?

Conclusion : for Hölder-continuous functions, the optimal rate is minimax when $a_n \to \infty$ whether or not we use the covariates.

What is the interest to leverage on covariates?

- If $a_n = 1$ (increasing domain):
 - $\hat{\lambda}(x)$ is not consistent if we do not use covariates
 - $\hat{\lambda}(x)$ is consistent if we use the covariates z and z is "ergodic".

Conclusion : for Hölder-continuous functions, the optimal rate is minimax when $a_n \to \infty$ whether or not we use the covariates.

What is the interest to leverage on covariates?

- If $a_n = 1$ (increasing domain):
 - $\hat{\lambda}(x)$ is not consistent if we do not use covariates
 - $\hat{\lambda}(x)$ is consistent if we use the covariates z and z is "ergodic".
- If $a_n \to \infty$ (infill or intermediate regime): the rate when using covariates can be faster in some cases.

Example: If z is binary and continuous at x then

- with covariates: $\mathbb{E}\left[\left(\hat{\lambda}^{(RF)}(x) \lambda(x)\right)^2\right] \leq c/(a_n|W_n|)$,
- without covariates: $\mathbb{E}\left[\left(\hat{\lambda}^{(RF)}(x) \lambda(x)\right)^2\right] \leq c/(a_n h_n^d).$

5. Benefits of a RF over a single tree

5. Benefits of a RF over a single tree

We may prove that for a pure RF

$$\mathbb{E}\left[\left(\hat{\lambda}^{(RF)}(x) - \lambda(x)\right)^{2}\right] \leq \mathbb{E}\left[\mathbb{V}(\hat{\lambda}^{(1)}(x)|\pi_{n}^{(1)})\right] + \frac{1}{M}\mathbb{V}(B_{n}) + \mathbb{E}(B_{n})^{2},$$

where $B_n = \mathbb{E}\left(\hat{\lambda}^{(1)}(x)|\pi_n^{(1)}\right) - \lambda(x)$: conditional bias of a single tree.

For a single tree, the bias can be large, i.e. $V(B_n)$ may be large.

Consequently,

- For a single tree (M=1), the rate can be sub-optimal when $a_n\to\infty$ (this happens for instance if λ is \mathcal{C}_1 and λ' is β -Hölder)
- $\bullet\,$ For a pure RF with M large enough, we recover the minimax rate.

Conclusion

RF approach adapts nicely to point process intensity estimation

Without covariate:

- · Based on i.i.d. tessellations
- · Works with any window shape
- Pure RF \longrightarrow Theory pretty exhaustive

With covariates:

- Similar as standard RF: same benefits, same flaws
- · Our theory is restricted to pure RF
- It is generally beneficial to leverage on covariates

