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Motivation |

Let X a spatial point process observed on W c R<.

Brown trouts in the UK Trees in a tropical rain forest
Aim: Estimate the intensity \(z), z € R?, where
A(z) ~ P(X has a point at z).

Formally: VA C R, E(X(A)) = [, AM(z)dz
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Motivation Il

Sometimes we observe several covariates 2z : R — R? on W.

Elevation
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Usual methods

Usual methods to estimate A(z) = f(z(x)):

Without covariates (z(z) = z): kernel smoothing, i.e.

Mx)= >~ kulle— ul).

ueXNW

With covariates:

- parametric approach: assume log \(z) = ¢'z(z) and get 6.
* non-parametric approach : assume A(z) = f(z(z)) and

Az) = Y kalllz(z) — 2(w)]).

ueXNW
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Standard regression random forest in a nutshell

Aim: Predict an output y given covariates z € R?.

Data: input/output, (z;,v:),i=1,...n.
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Standard regression random forest in a nutshell

Aim: Predict an output y given covariates z € R?.
Data: input/output, (z;,v:),i=1,...n.
Regression tree:
+ Build a partition 7 = {I;} of the covariates’ space,
* Prediction for a new z € I;: average all y;'s such that z; € I;;.
Random Forest: Build M/ "diverse” trees :

+ bootstrap the data before building each tree,

+ build the partition with randomly selected covariates.

The random forest predictor is an average of the M tree predictors.
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Standard regression random Forest in a nutshell

Advantages:

+ Applies to a wide range of prediction problems
+ Several "success stories”

+ Built-in selection of hyperparameters by "Out-Of-Bag” (O0B).
+ Assess importance of covariates: "Variable Importance” (VIP).

But: Challenging theory (and other flaws not covered here)
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Standard regression random Forest in a nutshell

Advantages:

+ Applies to a wide range of prediction problems

+ Several "success stories”

+ Built-in selection of hyperparameters by "Out-Of-Bag” (O0B).

+ Assess importance of covariates: "Variable Importance” (VIP).

But: Challenging theory (and other flaws not covered here)

One exception: if the partitions are built independently of the data.
+ We then say that the RF is a purely random forest.
+ (Rarely the case in practice)

= J. Mourtada, S. Gaiffas and E. Scornet. Minimax optimal rates for
Mondrian trees and forests. AOS (2020)

= E. O'Reilly and N. Mai Tran. Minimax Rates for High-Dimensional Random
Tessellation Forests. JMLR (2024).
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Random forest approach

— We want to estimate \(z) = f(z2(z)).
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Random forest approach

— We want to estimate \(z) = f(z2(z)).

We first need an “intensity tree” estimator.

* Let 7 = {I;} be a finite partition of z( ).
s Letd; =N L)NW.

Thus
(W)= |5 and  W=|]A4;

Let z € W and denote A(z): the cell 4; that contains z.

Then we define an intensity tree estimate by

X(l)( )= X (A(x)) _ number of points in the cell
K |A(z)] volume of the cell
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Random forest approach

Consider M different partition of z( ).
Denote the corresponding intensity tree estimators by A, ..., X(M),

We define the random forest intensity estimator by

RF) Z /\(1)
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How can we generate partitions of z(17)?




We split the presentation in two cases:

1. No covariate : only the spatial coordinates are available
Equivalently z(z) = z, sothat z(W) = W

2. With covariates.
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1st Case — No covariate
2(z) =z, 2(W)=W




Tessellations

A partition of W <= A tessellation on W.
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Tessellations

A partition of W <= A tessellation on W.

We consider independent random tessellations, that can be:

+ Poisson Voronoi

+ Poisson Delaunay

+ Poisson hyperplane

+ STIT tessellations (including the Mondrian process)

TITALT T

These tessellations depend on an intensity parameter A~ ¢.

Remark: The RF is a genuine pure RF.
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Example — One tree
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Example — RF (100 trees)
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Example — Kernel smoothing versus RF
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2st Case — With covariates




Tree

We need a partition of z( W) = z (W) x - -+ x z,( W) where z; (W) C R.
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Tree

We need a partition of z( W) = z (W) x - -+ x z,( W) where z; (W) C R.

+ We can generate a Voronoi tessellation of z( W), as above.
Then the RF will be a purely RF.

« Or, in the spirit of standard RF, we can construct an “optimal”
tessellation, in relation with the output (here, the intensity).
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Tree, in the spirit of standard RF

First step: fori=1,...,p,

¢ Let m; = Median(z;(W))
+ Consider the possible split:

L; = {zi(z) < m;} and R; = {z(z) > m;}.
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Tree, in the spirit of standard RF

First step: fori=1,...,p,

¢ Let m; = Median(z;(W))
+ Consider the possible split:

L; = {zi(z) < m;} and R; = {z(z) > m;}.

Choose the best split out of these p possible splits.

— The score of each split L U R is based on the Poisson likelihood:

ny — 1 ng — 1
nr, log <L|L| ) + nglog (RR| ) .

And so on, until a stopping criterion.

— We choose a minimal number of points per cell (minpts).
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Tree to Forest

To build the forest, consider M “diverse” trees, by
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Tree to Forest

To build the forest, consider M “diverse” trees, by
Resampling: Each tree is based on a bootstrapped version of X

Pick variables: at each node, miry covariates are used, at random.

Like for standard RF:

- Out-of-Bags cross-validation (based on the Poisson likelihood
score) is available.

+ We can also compute the VIP (variable importance) of each
variable.
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Simulation Study




Simulation Study

p = 15 covariates: z = (z1,..., 215)-

We simulate an inhomogeneous Poisson point process with intensity:

Az) = f(z10(z))

with 500 points in average.
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True intensity

0.003

0 0.001

17/34




Realisation
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True intensity vs Random Forest estimate

0.003

0 0.001 0.003 ‘

0 0.001

19/34




Choosing the number of trees
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Choosing minpts
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Choosing mtry
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064004 .-------------

Mhn Cu B Al Ca Mg Fe K N pH gad P Zn N_min elev

Mn is clearly detected as the most important one.
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Summary of the methodology

Benefits:

+ Works with any window shape (possibly not connected)
+ Works with high number of covariates

+ OOB cross-validation available

+ VIP available

+ Hyperparameters to choose (M, minpts, mtry)
+ VIP sensitive to correlation between covariates
+ Can be computationally involved

+ Theory more involved than for purely RF
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Some theory




We want to study the performance of A(2F)(z) based on a single
realisation of X in W.

Questions:
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2
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We want to study the performance of A(2F)(z) based on a single
realisation of X in W.

Questions:

. What asymptotic framework do we consider ?
. What point process models do we consider ?

1
2

3. Is the procedure consistent ? minimax ?

4. What is the interest to leverage on covariates ?
5

. What is the advantage of an RF over a single tree ?

We will assume that our RF are purely random forests.
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1. The asymptotic regime

Setting:
X = X, is observed on W,, with intensity \,, = a,\ with a,, > 0.

— We want to estimate .
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X = X, is observed on W,, with intensity \,, = a,\ with a,, > 0.

— We want to estimate .

Remark:

E(X,(W,)) = /W An(z)dr = an/w ANz)de < an,| W

Increasing the number of observations means a, | W,,| — .
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1. The asymptotic regime

Setting:
X = X, is observed on W,, with intensity \,, = a,\ with a,, > 0.

— We want to estimate .

Remark:

B(X(Wa)) = [

A (z)dz = an/ ANz)de < an,| W
Wa

Wﬂ

Increasing the number of observations means a, | W,,| — .

Different possible asymptotic regimes:

 Infill: W,, = W is fixed but a,, — oo
* Increasing domain: a,, = 1 but |W,,| — oo
+ Intermediate regimes: a,, — oc and | W,,| — oc.
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2. Point process models

Concerning the dependence structure of X,,, we assume that

Vn,YAC Wa,  an / \gn(2, ) — 1] dedy < c|A), )
A2

where g, is the pair correlation function of X,.
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Typically, if for a certain underlying pcf ¢,
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then (1) is ok whenever sup,, [p. |9(z, y) — 1]dz < co.
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2. Point process models

Concerning the dependence structure of X,,, we assume that

Vn,VA C W,, an/ |gn (2, y) — 1|dzdy < c|A|, (M
A2
where g, is the pair correlation function of X,.
Typically, if for a certain underlying pcf ¢,

1
gn(xv y) = g(anm, a'ny) or gn(a?, y) —1= 7(9('737 Z/) - 1)7

an

then (1) is ok whenever sup,, [p. |9(z, y) — 1]dz < co.

This is a mild assumption satisfied for most usual models:
+ Inhomogeneous Poisson point process,
+ Neyman-Scott point process,
+ LGCP with suitable mean and covariance functions,
+ Matern hardcore point process (type | and Il),

- Standard DPPs (Gaussian, Ginibre,...).
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Assume \(z) =
2 Wa) = 1In
« I,(z) =the ceII I,, ; that contains z(z)
© Ap(z) = 27 (In(z)) N Wy

f(z ( )) where f is continuous at z(z) and let

Theorem
For a purely RF intensity estimator, if

(1) diam(Z,(z)) — 0 in probability,
(2) E(1/(an|An(2)])) = 0,

Then E [(5\<RF)(J:) — /\(m))z} — 0.

(1) : I,,(z) must concentrate around z(z) (bias — 0)

(2) : number of points in 4,,(z) must tend to infinity (variance — 0)
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3. Consistency: the case without covariate

When are the assumptions satisfied ?

(1) diam(Zy(z)) — 0 and (2) E (1/(an|An(z)])) — O.
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For a regular tessellation of W, (say Voronoi) with intensity 4. ¢,
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3. Consistency: the case without covariate

When are the assumptions satisfied ?

(1) diam(I,(z)) = 0 and (2) E(1/(an|An(2)])) = 0.

Without covariate: z(z) = z and I,(z) = A, ()

For a regular tessellation of W, (say Voronoi) with intensity 4. ¢,
A (z) = I,(x) is the zero cell of the tessellation and we have:

diam(I,(z)) = O(h,) and E(1/|An(2)]) = by

Therefore:
(1) is ok whenever h,, — 0
(2) depends on the asymptotic regime:

« if a,, — oo (infill or intermediate), then ok whenever a,,h¢ — oo
« if a,, = 1 (increasing domain): no consistency
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3. Consistency: the case with covariates

When are the assumptions satisfied ?

(1) diam(Ip(z)) — 0 and  (2) E (1/(an|An(z)])) — 0.

With covariates:
For a regular tessellation of z( W,,) with intensity 4,7,
(1) ok if h, — 0 since diam(7,(x)) = O(hy,).

(2) A,(z) ~ level set of z at z(z).
If ~ takes often the value z(z), then |A,,(z)| can be “large”

Example : z is binary, z(W,,) = {0, 1} for n large. Say z(z) = 0.
Then A, (z) = 2=1(0) N W, and typically |A,,(z)| — oo
—> consistency in all asymptotics regimes

Other examples: z periodic or z realisation of an ergodic process
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In \(z) = f(2(z)), assume that z is a-Holder continuous and that f is
B-Holder continuous, so that A is a3-Holder continuous. Then

(7) fora pure RF based on a “regular tessellation” of z( W,,) with
intensity A7

n !

E {(WF)(I) - A(z)ﬂ <c (anhlg/a + hfﬁ) .

(77) pure RF based on a “regular tessellation” of ¥,, with intensity

" E [(%RF)(J;) _ A(x)ﬂ <ec (a:hg + hfﬁﬁ) .

In both cases the minimax rate a;, 2*%/?*%+4) is achieved when

a, — oo for a proper choice of h, 0.
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4. What is the interest to leverage on covariates?

Conclusion : for Holder-continuous functions, the optimal rate is
minimax when a,, — oo whether or not we use the covariates.
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4. What is the interest to leverage on covariates?

Conclusion : for Holder-continuous functions, the optimal rate is
minimax when a,, — oo whether or not we use the covariates.

What is the interest to leverage on covariates?

e If a,, = 1 (increasing domain):

- \(z) is not consistent if we do not use covariates

+ \(z) is consistent if we use the covariates 2 and z is “ergodic”.

e If a,, — oo (infill or intermediate regime): the rate when using
covariates can be faster in some cases.

Example: If 2 is binary and continuous at z then

+ with covariates: E {(Wﬂ(m) . A(g;)ﬂ < ¢/ (an| Wa)),
« without covariates: E |:<5\(RF)(I) — )\(x))Q} < ¢/(anhd).
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5. Benefits of a RF over a single tree
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5. Benefits of a RF over a single tree

We may prove that for a pure RF
. 2 . 1
B | (A1) - a@) | < B [VAO@lin)] + V(B + BB,

where B, = E (5&”(9:)\772”) — M\(z): conditional bias of a single tree.

For a single tree, the bias can be large, i.e. V(B,,) may be large.

Consequently,

« For a single tree (M = 1), the rate can be sub-optimal when
a,, — oo (this happens for instance if \ is C; and )\ is 3-Holder)

+ For a pure RF with M large enough, we recover the minimax rate.
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Conclusion

RF approach adapts nicely to point process intensity estimation

Without covariate:

- Based oni.i.d. tessellations
+ Works with any window shape

+ Pure RF — Theory pretty exhaustive

With covariates:

« Similar as standard RF: same benefits, same flaws
+ Our theory is restricted to pure RF
+ It is generally beneficial to leverage on covariates
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Thank you




