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Motivation I

Let X a spatial point process observed on W ⊂ Rd.

Brown trouts in the UK Trees in a tropical rain forest

Aim: Estimate the intensity λ(x), x ∈ Rd , where

λ(x) ≈ P(X has a point at x).

Formally: ∀A ⊂ Rd, E(X(A)) =
∫

A λ(x)dx.
1/34



Motivation II

Sometimes we observe several covariates z : Rd → Rp on W .

Trees Elevation Slope

In which case, we assume λ(x) = f (z(x)).
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Usual methods

Usual methods to estimate λ(x) = f (z(x)):

Without covariates (z(x) = x): kernel smoothing, i.e.

λ̂(x) =
∑

u∈X∩W
kh(‖x − u‖).

With covariates:

• parametric approach: assume log λ(x) = θ′z(x) and get θ̂.

• non-parametric approach : assume λ(x) = f (z(x)) and

λ̂(x) =
∑

u∈X∩W
kh(‖z(x)− z(u)‖).
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Standard regression random forest in a nutshell

Aim: Predict an output y given covariates x ∈ Rp.

Data: input/output, (xi, yi), i = 1, . . .n.

Regression tree:

• Build a partition π = {Ij} of the covariates’ space,

• Prediction for a new x̃ ∈ Ij0 : average all yi ’s such that xi ∈ Ij0 .

Random Forest: Build M ”diverse” trees :

• bootstrap the data before building each tree,

• build the partition with randomly selected covariates.

The random forest predictor is an average of the M tree predictors.
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Standard regression random Forest in a nutshell

Advantages:

• Applies to a wide range of prediction problems
• Several ”success stories”
• Built-in selection of hyperparameters by ”Out-Of-Bag” (OOB).
• Assess importance of covariates: ”Variable Importance” (VIP).

But: Challenging theory (and other flaws not covered here)

One exception: if the partitions are built independently of the data.
• We then say that the RF is a purely random forest.
• (Rarely the case in practice)

+ J. Mourtada, S. Gaïffas and E. Scornet. Minimax optimal rates for
Mondrian trees and forests. AOS (2020)

+ E. O’Reilly and N. Mai Tran. Minimax Rates for High-Dimensional Random
Tessellation Forests. JMLR (2024).
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Random forest approach

Setting: we observe the point process X on W and z(x) for all x ∈ W

−→ We want to estimate λ(x) = f (z(x)).

We first need an “intensity tree” estimator.

• Let π = {Ij} be a finite partition of z(W ).
• Let Aj = z−1(Ij) ∩ W .

Thus
z(W ) =

⊔
Ij and W =

⊔
Aj.

Let x ∈ W and denote A(x): the cell Aj that contains x.

Then we define an intensity tree estimate by

λ̂(1)(x) = X (A(x))
|A(x)|

=
number of points in the cell

volume of the cell
.
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Random forest approach

Consider M different partition of z(W ).

Denote the corresponding intensity tree estimators by λ̂(1), . . . , λ̂(M).

We define the random forest intensity estimator by

λ̂(RF)(x) = 1
M

M∑
i=1

λ̂(i)(x).
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How can we generate partitions of z(W )?
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We split the presentation in two cases:

1. No covariate : only the spatial coordinates are available

Equivalently z(x) = x , so that z(W ) = W

2. With covariates.
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1st Case – No covariate

z(x) = x , z(W ) = W
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Tessellations

A partition of W ⇐⇒ A tessellation on W .

We consider independent random tessellations, that can be:

• Poisson Voronoï
• Poisson Delaunay
• Poisson hyperplane
• STIT tessellations (including the Mondrian process)

These tessellations depend on an intensity parameter h−d.

Remark: The RF is a genuine pure RF.
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Example – One tree
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Example – RF (100 trees)
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Example – Kernel smoothing versus RF
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2st Case – With covariates

12/34



Tree

We need a partition of z(W ) = z1(W )× · · ·× zp(W ) where zi(W ) ⊂ R.

• We can generate a Voronoï tessellation of z(W ), as above.
Then the RF will be a purely RF.

• Or, in the spirit of standard RF, we can construct an “optimal”
tessellation, in relation with the output (here, the intensity).
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Tree, in the spirit of standard RF

First step: for i = 1, . . . , p,

• Let mi = Median(zi(W ))

• Consider the possible split:

Li = {zi(x) < mi} and Ri = {zi(x) ≥ mi}.

Choose the best split out of these p possible splits.

−→ The score of each split L ∪ R is based on the Poisson likelihood:

nL log

(
nL − 1
|L|

)
+ nR log

(
nR − 1
|R|

)
.

And so on, until a stopping criterion.

−→ We choose a minimal number of points per cell (minpts).
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Tree to Forest

To build the forest, consider M “diverse” trees, by

Resampling: Each tree is based on a bootstrapped version of X

Pick variables: at each node, mtry covariates are used, at random.

Like for standard RF:

• Out-of-Bags cross-validation (based on the Poisson likelihood
score) is available.

• We can also compute the VIP (variable importance) of each
variable.
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Simulation Study
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Simulation Study

p = 15 covariates: z = (z1, . . . , z15).

We simulate an inhomogeneous Poisson point process with intensity:

λ(x) = f (z10(x))

with 500 points in average.

16/34



True intensity
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Realisation
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True intensity vs Random Forest estimate
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Choosing the number of trees
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Choosing minpts
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Choosing mtry
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VIP
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Mn is clearly detected as the most important one.
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Summary of the methodology

Benefits:

• Works with any window shape (possibly not connected)

• Works with high number of covariates

• OOB cross-validation available

• VIP available

Flaws:

• Hyperparameters to choose (M , minpts, mtry)
• VIP sensitive to correlation between covariates

• Can be computationally involved

• Theory more involved than for purely RF
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Some theory
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Some theory

We want to study the performance of λ̂(RF)(x) based on a single
realisation of X in W .

Questions:

1. What asymptotic framework do we consider ?

2. What point process models do we consider ?

3. Is the procedure consistent ? minimax ?

4. What is the interest to leverage on covariates ?

5. What is the advantage of an RF over a single tree ?

We will assume that our RF are purely random forests.
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1. The asymptotic regime

Setting:

X = Xn is observed on Wn with intensity λn = anλ with an > 0.

−→ We want to estimate λ.

Remark:

E(Xn(Wn)) =

∫
Wn

λn(x)dx = an

∫
Wn

λ(x)dx � an|Wn|.

Increasing the number of observations means an|Wn| → ∞.

Different possible asymptotic regimes:

• Infill: Wn = W is fixed but an → ∞
• Increasing domain: an = 1 but |Wn| → ∞
• Intermediate regimes: an → ∞ and |Wn| → ∞.
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2. Point process models

Concerning the dependence structure of Xn , we assume that

∀n,∀A ⊂ Wn, an

∫
A2

|gn(x, y)− 1|dxdy ≤ c|A|, (1)

where gn is the pair correlation function of Xn.

Typically, if for a certain underlying pcf g,

gn(x, y) = g(anx, any) or gn(x, y)− 1 =
1
an

(g(x, y)− 1),

then (1) is ok whenever supy
∫
Rd |g(x, y)− 1|dx < ∞.

This is a mild assumption satisfied for most usual models:
• Inhomogeneous Poisson point process,
• Neyman-Scott point process,
• LGCP with suitable mean and covariance functions,
• Matern hardcore point process (type I and II),
• Standard DPPs (Gaussian, Ginibre,...).
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3. Consistency

Assume λ(x) = f (z(x)) where f is continuous at z(x) and let
• z(Wn) =

⊔
In,j

• In(x) = the cell In,j that contains z(x)
• An(x) = z−1(In(x)) ∩ Wn

Theorem
For a purely RF intensity estimator, if

(1) diam(In(x)) → 0 in probability,

(2) E (1/(an|An(x)|)) → 0,

Then E
[(

λ̂(RF)(x)− λ(x)
)2
]
→ 0.

(1) : In(x) must concentrate around z(x) (bias → 0)

(2) : number of points in An(x) must tend to infinity (variance → 0)
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3. Consistency: the case without covariate

When are the assumptions satisfied ?

(1) diam(In(x)) → 0 and (2) E (1/(an|An(x)|)) → 0.

Without covariate: z(x) = x and In(x) = An(x)

For a regular tessellation of Wn (say Voronoï) with intensity h−d
n ,

An(x) = In(x) is the zero cell of the tessellation and we have:

diam(In(x)) = O(hn) and E (1/|An(x)|) = h−d
n .

Therefore:

(1) is ok whenever hn → 0

(2) depends on the asymptotic regime:

• if an → ∞ (infill or intermediate), then ok whenever anhd
n → ∞

• if an = 1 (increasing domain): no consistency
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3. Consistency: the case with covariates

When are the assumptions satisfied ?

(1) diam(In(x)) → 0 and (2) E (1/(an|An(x)|)) → 0.

With covariates:

For a regular tessellation of z(Wn) with intensity h−p
n ,

(1) ok if hn → 0 since diam(In(x)) = O(hn).

(2) An(x) ≈ level set of z at z(x).
If z takes often the value z(x), then |An(x)| can be “large”

Example : z is binary, z(Wn) = {0, 1} for n large. Say z(x) = 0.
Then An(x) = z−1(0) ∩ Wn and typically |An(x)| → ∞
=⇒ consistency in all asymptotics regimes

Other examples: z periodic or z realisation of an ergodic process
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3. Minimax rates

In λ(x) = f (z(x)), assume that z is α-Hölder continuous and that f is
β-Hölder continuous, so that λ is αβ-Hölder continuous. Then

(i) for a pure RF based on a “regular tessellation” of z(Wn) with
intensity h−p

n ,

E
[(

λ̂(RF)(x)− λ(x)
)2
]
≤ c

(
1

anhd/α
n

+ h2β
n

)
.

(ii) pure RF based on a “regular tessellation” of Wn with intensity
h−d

n ,

E
[(

λ̂(RF)(x)− λ(x)
)2
]
≤ c

(
1

anhd
n
+ h2αβ

n

)
.

In both cases the minimax rate a−2αβ/(2αβ+d)
n is achieved when

an → ∞ for a proper choice of hn → 0.
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(i) for a pure RF based on a “regular tessellation” of z(Wn) with
intensity h−p

n ,

E
[(

λ̂(RF)(x)− λ(x)
)2
]
≤ c

(
1

anhd/α
n

+ h2β
n

)
.

(ii) pure RF based on a “regular tessellation” of Wn with intensity
h−d

n ,

E
[(

λ̂(RF)(x)− λ(x)
)2
]
≤ c

(
1

anhd
n
+ h2αβ

n

)
.
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4. What is the interest to leverage on covariates?

Conclusion : for Hölder-continuous functions, the optimal rate is
minimax when an → ∞ whether or not we use the covariates.

What is the interest to leverage on covariates?

• If an = 1 (increasing domain):

• λ̂(x) is not consistent if we do not use covariates
• λ̂(x) is consistent if we use the covariates z and z is “ergodic”.

• If an → ∞ (infill or intermediate regime): the rate when using
covariates can be faster in some cases.

Example: If z is binary and continuous at x then

• with covariates: E
[(

λ̂(RF)(x)− λ(x)
)2
]
≤ c/(an|Wn|),

• without covariates: E
[(

λ̂(RF)(x)− λ(x)
)2
]
≤ c/(anhd

n).
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5. Benefits of a RF over a single tree

We may prove that for a pure RF

E
[(

λ̂(RF)(x)− λ(x)
)2
]
≤ E

[
V(λ̂(1)(x)|π(1)

n )
]
+

1
M

V(Bn) + E(Bn)
2,

where Bn = E
(
λ̂(1)(x)|π(1)

n

)
− λ(x): conditional bias of a single tree.

For a single tree, the bias can be large, i.e. V(Bn) may be large.

Consequently,

• For a single tree (M = 1), the rate can be sub-optimal when
an → ∞ (this happens for instance if λ is C1 and λ′ is β-Hölder)

• For a pure RF with M large enough, we recover the minimax rate.
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Conclusion

RF approach adapts nicely to point process intensity estimation

Without covariate:

• Based on i.i.d. tessellations

• Works with any window shape

• Pure RF −→ Theory pretty exhaustive

With covariates:

• Similar as standard RF: same benefits, same flaws

• Our theory is restricted to pure RF

• It is generally beneficial to leverage on covariates
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Thank you
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