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Curvature measures

Let E C R? be a "nice set". Its curvature measures ®;(E, ), for
j =0,1,2, are defined for any Borel set U C R? by

m &(E,U) = |E N U|, occupied area
m O(E,U) = 2 HY(OE N U) = LPer(E, U), regularity property
m ®g(E, U) = £TC(IE, U), connectivity property

where HY(OE N U) is the lenght and TC(OE, U) the total curvature of
the positively oriented curve OE in U.

For E a compact or convex set and E C U also related to Minkowski or
intrinsic volumes, widely used in mathematical morphology, convex and
integral geometry : Hadwiger (1957), Federer (1959), Santalé (1976),
Schneider & Weil (2008)....



Total curvature and Euler characteristic

Theorem (Gauss-Bonnet)

o
Let E C U be a regular region ie E = E such that OE = U!_,T; is a finite
union of disjoint positively oriented Jordan piecewise regular curves. then

TC(OE, U) := ZH:TC(F,-, U) = 2rx(E) (= 2r%o(E, U)),

where x(E) € Z is the Euler characteristic of E.

X(E) = #£connected components — # holes.



Excursion sets

Assume that f : R2 — R is C2. For t € R, we consider the excursion set
of level t

Ef(t) == {x € R?; f(x) > t}.

We assume it is observed through U a bounded open rectangle.

Credit : BrainMapping : an encyclopedic reference- Topological Inference



Implicit planar curves

Since f is continuous, we have for t € R
OEf(t) ={x € R?; f(x) = t},

corresponding to a level set of f. Hence if Vf(x) # 0, the unit vector
ve(x) = % is the normal vector of OE¢(t) at x € OE¢(t) with

1

brit) = fgrcay e

— ve(x)ve(x) 7] D*f(x),

where D?f(x) is the Hessian matrix. It follows that the signed curvature
at x is given by

re(x) = = (vr(x) ", Dre(x)re(x)") = ”Vfl( )”< F(x)" D2 (x)ve(x) ")



Coarea formula

By Morse-Sard theorem, the image by f of the set of critical values of f
has measure 0 in R. For a.e. level t € R and U open bounded,

1
ou(E(L) = ;[ oy T
f(t
1
®o(Er(t),U) = o- oE/(2) U'“vf(x)Hl(dx).
F(t)N

The coarea formula states that, for any borel function g : R2 = R s.t
Julg(NIVE(x)| dx < +o0,

/ /aE, H (dx) dt = /U g(x) | VF(x)|| dx.

Let us choose h: R — R a bounded continuous function (test function)
such that multiplying g(x) by h(f(x)) we get

/R h(z) /a oy SO = /U H(F(x)g()IVF(x)]| dx.



Weak formula for ®; and &

Let h: R — R be a bounded continuous function and
Ju lg(C)IVF(x)|l dx < +o0, recall the Coarea formula :

/R h(z) /8 o OB e = /U H(F ()2 () IV F(x)]| dx.

Coarea formula with g(x) =1:

/Rh(t)d)l(Ef(t),U)dt: %/Uh(f(x))HVf(x)H dx.

Coarea formula with g(x) = x¢(x)1vr(x)>0 for

1 1 2 1 nd ve(x Vf( )
Kf(X) ||vf( )||< ( ) D f(X)Vf(X) >7 and f( ) ||Vf( )”
/R h(t)q)o(Ef(t), U)dt = —% ” h(f(X))<Vf(X)l, D2f(X)Vf(X)L>1HVf(X)”>0 dx.



Gaussian stationary random fields

Let p: R? — R be an even C® function that is of positive type meaning
that Vk > 1, X1,y Xk €R2,)\17...,)\k eR,

K
Z Aijip(x;i — x;) > 0.
ij=1

Then one can find (Q, A, P) a complete probability space and
X:QxR* >R
such that X is a centered Gaussian stationary C? random field :
B VweEQ x€ER?— X(w,x) €Ris C?;

mVneEN, x,....,x, ER2, we Qs (X(w,x1),...,X(w,xn)) €ER" is
a centered Gaussian vector of covariance

K(xi, %) = Cov(X(xi), X(x})) = p(xi — X))-



Isotropy

Definition
X = (X(x))xerz isotropic if, VQ rotation, (X(Qx))xerz has the same law
than X.

Rk : A stationary Gaussian random field is isotropic iff p(Qx) = p(x) for
all @ rotation and x € R?

Exple : p(x) = exp(— 2 x7) exp(—2x3) for x = (x1,x) € R? and
V1,72 € (07 +OO)
Note that X(x) ~ A(0, 1) (standard field) and V.X(x) ~ N(0,Tvx)

with Ty x = diag(v1,72)
X isotropic iff vy = 72 and A =y, h.

Rk : Any stationary C! Gaussian random field may be written as
Y=m+0oXoQ,

with X standard with px = %py and Fyx = 5 QMvy Q.



Excursion sets

Let X = (X(x)),cpe be a C? stationary Gaussian random field. We
consider the excursion set of level t € R

Ex(t) := {x € R%; X(x) > t}.




Mean geometry for excursion sets

First note that by stationarity
Ef0a(Ex(t). Ul =B ( [ 1xcs0de) = [VIE(X(O) 2 1)
U

Moreover, taking expectation it follows that for all h bounded continuous,
writing V.X(0) = ||[VX(0)|lvx(0) a.s., since P(||[VX(0)| =0) =0,

/R AL (Ex(), U)ldt = U] x SE (h(X(0))|TX(0)])
/R H(E)EL@o(Ex(), UNldt = U] x 5 E (H(X(0)(vx(0)", DX (0)ux(0)))

We therefore consider LK densities :
1

Cj(th): |U|

E[®;(Ex(t), U)].



Stationarity

We write X; = 0;X, Xjj = 8§X for 1 <i,j <2. Since

p(x) = Cov(X(x), X(0)) = E(X(x)X(0)) = Cov(X(x +y), X(y)),
dip(x) = Cov(X;(x), X(0)) = Cov(X;(0),X(—x))), and
9zp(x) = Cov(Xj(x), X(0)) = —Cov(X;(0), X;(—x)))-

Recall p is even and therefore 9;p(0) = 0 for 1 < j < 2 implies
X(0) is independent from V.X(0) = (X1(0), X2(0))

and similarly, V.X(0) is independent from D?X(0).

Since,

;i = Var(9;X(0)) = —02p(0) = —Cov(X;(0), X(0)).

Hence X;;(0) 4 ;X (0) is independent from X(0). Since we assume that
Cov(X1(0), X2(0)) = 0 it also implies
X(0) independent from Xi»(0).



Gaussian Lipschitz-Killing (LK) densities

/R MOG (X, )d = SEEMXO)IVXO)]1X(0))
1 1 1 _ep
SE(RXO)E(ITXO)) = / h(e) SE(I VX (O) ) =e k.

with for ey = (cos(6),sin(#)),

BIVXOD =3 [ B(TXO). @),

(VX(0), e9) ~ /1 c0s2(6) + 72 sin2()N(0, 1) and E(IN(0, 1)]) = /2.
Proposition

Ci(X,t) = L /Apae /2, ae t € R, where

2

1 27
YPer = (5/0 \/’yl c052(0)+'ygsin2(0)d9) :




Gaussian Lipschitz-Killing (LK) densities

Let vx(0) = (cos(©),sin(©)) with © independent from X(0), D2X(0),

[ nocsx. o
R

- ;T:]E (h(X(0)) [X11(0) sin*(©) + X22(0) cos*(©) — X12(0) sin(20)])

= S2E (h(X(0)) [ X(0)F (sin%(©)) ~ 12X (0)F (co2(®))])

1 : t e
:/Rh(t)EE(% S|n2(@)+'ygcosz(@))\/?e /2 gy

™

G(X,t) = W*yrmte‘tz/z, a.e. t €R, where
e = E(115i0%(0) + 72 c0s3(0)) = v A1%z-

Rk : if 1 = 72 then y1¢ = Yper = 2 and vx(0) ~ U(S?).



Summary

For X C? stationary Gaussian standard random field

1 2

C;(X, t) ’YTCW te 2 a.e.

1 2
(X, t) = ,/fyperz ez ae

CHX. ) = 1-w() for\U(t):/t e/

du
oo V2T

m If one knows that t — CJ(X,t) or t — CF(X,t) are continuous
then a.e. is enough ! In Berzin, Latour, Leon (2017) general
assumptions to ensure that u — C;(X, t) is continuous;

m For isotropic stationary C3 Gaussian field the formulas hold for all
level (weakest assumptions cf Adler, Taylor (2007)) with

YTC = YPer = V2 = 71+



Ratio of anisotropy

min(y1,72) < yrc < Yper < Max(y1,72) and yrc = Yper iff 11 = 2.
Defining R = 2< € [m 1} and plot the

max(71,72)
Almond curve of anisotropy {(x(t),y(t));t € R}
F(X J(X 1
X(t) — Cl( at) _ e7t2/2 and y(t) — CO( 7t) — 6 Rteitz/z.

G (X,0) (C;(X,0))2 ~ (27)3/2

)

with Cf(X,0) = 4, /7per- See also Klatt, Hérmann, Mecke (2021) for
inspiration



Statistical inference

y1 = 2 = 0.005 t=20 t= t=1.96
In simulation we can compute for t e R and j =0,1,2,
. ®;(Ex(t), U
G(X,t) = M, (empirically accessible)

U]

with E((X, t)) = C;(X,t). Under good assumptions on X (at least c3
and good decay on p and derivatives) we should have

éj(X, t) U%Z G/ (X, t) a. s. with asymptotic normality.

Some Ref on CLT : Spodarev (2012), Estrade, Leon (2016), Miiller (2017),
Kratz Vadlamani (2018), Reddy et al (2018), Berzin (2021)..,



Statistical inference
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Is it anisotropic ?

A=0.1651
Per =0.0182
TC =8.25e-04

The simond curve o soropy

A =0.1652
Per =0.0187
TC=7.36e-04




Is it anisotropic ?
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Effective level

For t € R unknown, following Di Bernardino and Duval (2020), define
the effective level as

F=wl(1- Gy(X, 1)),

Note that for the quantile t = W=1(q) for g € (0,1) one has
C5(X,t) =1— g and set

§ =1— Gy(X, t) such that £ = W1(§).
We can consider C/(X,W~*(q)), j =0,1,2.
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Effective yper and e

Using that
1
G(X,t) =
define for t >0or §>1/2

Are = Co(X, t) x

uuuuuuuuu

YTC7A a5 (2 )3/2

(27T)3/2 o

te~ and G(X,t)=

“’:*i#:d:ti\:it‘z::itnj:tti:‘i

1 2
V’YPerZe 2,

ez and ’yper—Cl(X t)? % 16 et .

5:u?:Ht%zfihﬂ:kz;::ﬂ:tzd




Effective Ratio of anisotropy

We finally define

A q Co(X 27)3/2 £
R — YTC — ,\CO( ) t) % ( 7T) t_l e—;
YPer G (X, t)2 16




Is it anisotropic ?




Conclusion and perspectives

Conclusion :
m New geometrical equivalent of spectral moments
m Anisotropy estimation available from one excursion set

m Extension in dimension d with mean curvature, numerical evaluation
ford =3

Perspective :
m Second order and higher moment properties
m Control of bias induced by discrete simulation/estimation

m Extension for fractional Gaussian fields
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