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Curvature measures

Let E ⊂ R2 be a "nice set". Its curvature measures Φj(E , ·), for
j = 0, 1, 2, are defined for any Borel set U ⊂ R2 by

Φ2(E ,U) = |E ∩ U|, occupied area

Φ1(E ,U) = 1
2 H

1(∂E ∩ U) = 1
2Per(E ,U), regularity property

Φ0(E ,U) = 1
2πTC(∂E ,U), connectivity property

where H1(∂E ∩ U) is the lenght and TC(∂E ,U) the total curvature of
the positively oriented curve ∂E in U.

For E a compact or convex set and E ⊂ U also related to Minkowski or
intrinsic volumes, widely used in mathematical morphology, convex and
integral geometry : Hadwiger (1957), Federer (1959), Santaló (1976),
Schneider & Weil (2008),...
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Total curvature and Euler characteristic

Theorem (Gauss-Bonnet)

Let E ⊂ U be a regular region ie E =
o

E such that ∂E = ∪ni=1Γi is a finite
union of disjoint positively oriented Jordan piecewise regular curves. then

TC(∂E ,U) :=
n∑

i=1

TC(Γi ,U) = 2πχ(E ) (= 2πΦ0(E ,U)) ,

where χ(E ) ∈ Z is the Euler characteristic of E .

χ(E ) = #connected components−# holes.
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Excursion sets

Assume that f : R2 → R is C 2. For t ∈ R, we consider the excursion set
of level t

Ef (t) := {x ∈ R2; f (x) ≥ t}.

We assume it is observed through U a bounded open rectangle.

Credit : BrainMapping : an encyclopedic reference- Topological Inference
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Implicit planar curves

Since f is continuous, we have for t ∈ R

∂Ef (t) = {x ∈ R2; f (x) = t},

corresponding to a level set of f . Hence if ∇f (x) 6= 0, the unit vector
νf (x) = ∇f (x)

‖∇f (x)‖ is the normal vector of ∂Ef (t) at x ∈ ∂Ef (t) with

Dνf (x) =
1

‖∇f (x)‖
[
I2 − νf (x)νf (x)T

]
D2f (x),

where D2f (x) is the Hessian matrix. It follows that the signed curvature
at x is given by

κf (x) = −〈νf (x)⊥,Dνf (x)νf (x)⊥〉 = − 1
‖∇f (x)‖

〈νf (x)⊥,D2f (x)νf (x)⊥〉.
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Coarea formula

By Morse-Sard theorem, the image by f of the set of critical values of f
has measure 0 in R. For a.e. level t ∈ R and U open bounded,

Φ1(Ef (t),U) =
1
2

∫
∂Ef (t)∩U

1H1(dx)

Φ0(Ef (t),U) =
1
2π

∫
∂Ef (t)∩U

κf (x)H1(dx).

The coarea formula states that, for any borel function g : R2 → R s.t∫
U
|g(x)|‖∇f (x)‖ dx < +∞,∫

R

∫
∂Ef (t)∩U

g(x)H1(dx) dt =

∫
U

g(x)‖∇f (x)‖ dx .

Let us choose h : R→ R a bounded continuous function (test function)
such that multiplying g(x) by h(f (x)) we get∫

R
h(t)

∫
∂Ef (t)∩U

g(x)H1(dx) dt =

∫
U

h(f (x))g(x)‖∇f (x)‖ dx .
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Weak formula for Φ1 and Φ0

Let h : R→ R be a bounded continuous function and∫
U
|g(x)|‖∇f (x)‖ dx < +∞, recall the Coarea formula :∫

R
h(t)

∫
∂Ef (t)∩U

g(x)H1(dx) dt =

∫
U

h(f (x))g(x)‖∇f (x)‖ dx .

Coarea formula with g(x) = 1 :∫
R
h(t)Φ1(Ef (t),U)dt =

1
2

∫
U

h(f (x))‖∇f (x)‖ dx .

Coarea formula with g(x) = κf (x)1‖∇f (x)‖>0 for

κf (x) = − 1
‖∇f (x)‖

〈νf (x)⊥,D2f (x)νf (x)⊥〉, and νf (x) =
∇f (x)

‖∇f (x)‖
,

∫
R
h(t)Φ0(Ef (t),U)dt = − 1

2π

∫
U

h(f (x))〈νf (x)⊥,D2f (x)νf (x)⊥〉1‖∇f (x)‖>0 dx .
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Gaussian stationary random fields

Let ρ : R2 → R be an even C 5 function that is of positive type meaning
that ∀k ≥ 1, x1, . . . , xk ∈ R2, λ1, . . . , λk ∈ R,

k∑
i,j=1

λiλjρ(xi − xj) ≥ 0.

Then one can find (Ω,A,P) a complete probability space and

X : Ω× R2 → R

such that X is a centered Gaussian stationary C 2 random field :

∀ω ∈ Ω, x ∈ R2 7→ X (ω, x) ∈ R is C 2 ;

∀n ∈ N, x1, . . . , xn ∈ R2, ω ∈ Ω 7→ (X (ω, x1), . . . ,X (ω, xn)) ∈ Rn is
a centered Gaussian vector of covariance

K (xi , xj) = Cov(X (xi ),X (xj)) = ρ(xi − xj).
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Isotropy

Definition
X = (X (x))x∈R2 isotropic if, ∀Q rotation, (X (Qx))x∈R2 has the same law
than X .

Rk : A stationary Gaussian random field is isotropic iff ρ(Qx) = ρ(x) for
all Q rotation and x ∈ R2

Exple : ρ(x) = exp(−γ1
2 x2

1 ) exp(−γ2
2 x2

2 ) for x = (x1, x2) ∈ R2 and
γ1, γ2 ∈ (0,+∞)
Note that X (x) ∼ N (0, 1) (standard field) and ∇X (x) ∼ N (0, Γ∇X )
with Γ∇X = diag(γ1, γ2)

X isotropic iff γ1 = γ2 and ∆ = γ2I2.

Rk : Any stationary C 1 Gaussian random field may be written as

Y = m + σX ◦ Q,

with X standard with ρX = 1
σ2 ρY and Γ∇X = 1

σ2QΓ∇YQ
T .
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Excursion sets

Let X = (X (x))x∈R2 be a C 2 stationary Gaussian random field. We
consider the excursion set of level t ∈ R

EX (t) := {x ∈ R2;X (x) ≥ t}.

γ1 = γ2 = 0.005 t = 0 t = 1 t = 1.96

γ1 = 0.002
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Mean geometry for excursion sets

First note that by stationarity

E[Φ2(EX (t),U)] = E
(∫

U

1X (x)≥tdx

)
= |U|P(X (0) ≥ t).

Moreover, taking expectation it follows that for all h bounded continuous,
writing ∇X (0) = ‖∇X (0)‖νX (0) a.s., since P(‖∇X (0)‖ = 0) = 0,∫
R
h(t)E[Φ1(EX (t),U)]dt = |U| × 1

2
E (h(X (0))‖∇X (0)‖)∫

R
h(t)E[Φ0(EX (t),U)]dt = |U| × −1

2π
E
(
h(X (0))〈νX (0)⊥,D2X (0)νX (0)⊥〉

)
,

We therefore consider LK densities :

C∗j (X , t) =
1
|U|

E[Φj(EX (t),U)].
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Stationarity

We write Xj = ∂jX , Xij = ∂2
ijX for 1 ≤ i , j ≤ 2. Since

ρ(x) = Cov(X (x),X (0)) = E(X (x)X (0)) = Cov(X (x + y),X (y)),

∂iρ(x) = Cov(Xi (x),X (0)) = Cov(Xi (0),X (−x))), and
∂2
ijρ(x) = Cov(Xij(x),X (0)) = −Cov(Xi (0),Xj(−x))).

Recall ρ is even and therefore ∂iρ(0) = 0 for 1 ≤ i ≤ 2 implies
X (0) is independent from ∇X (0) = (X1(0),X2(0))

and similarly, ∇X (0) is independent from D2X (0).
Since,

γi = Var(∂iX (0)) = −∂2
iiρ(0) = −Cov(Xii (0),X (0)).

Hence Xii (0) + γiX (0) is independent from X (0). Since we assume that
Cov(X1(0),X2(0)) = 0 it also implies

X (0) independent from X12(0).
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Gaussian Lipschitz-Killing (LK) densities

∫
R
h(t)C∗1 (X , t)dt =

1
2
E (E(h(X (0))‖∇X (0)‖ |X (0)))

1
2
E (h(X (0))E(‖∇X (0)‖)) =

∫
R
h(t)

1
2
E(‖∇X (0)‖) 1√

2π
e−t

2/2dt.

with for eθ = (cos(θ), sin(θ)),

E(‖∇X (0)‖) =
1
4

∫ 2π

0
E(|〈∇X (0), eθ〉|)dθ,

〈∇X (0), eθ〉 ∼
√
γ1 cos2(θ) + γ2 sin2(θ)N (0, 1) and E(|N (0, 1)|) =

√
2
π .

Proposition

C∗1 (X , t) = 1
4
√
γPere

−t2/2, a.e. t ∈ R, where

γPer =

(
1
2π

∫ 2π

0

√
γ1 cos2(θ) + γ2 sin2(θ)dθ

)2

.
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Gaussian Lipschitz-Killing (LK) densities

Let νX (0) = (cos(Θ), sin(Θ)) with Θ independent from X (0), D2X (0),∫
R
h(t)C∗0 (X , t)dt

=
−1
2π

E
(
h(X (0))

[
X11(0) sin2(Θ) + X22(0) cos2(Θ)− X12(0) sin(2Θ)

])
=
−1
2π

E
(
h(X (0))

[
−γ1X (0)E

(
sin2(Θ)

)
− γ2X (0)E

(
cos2(Θ)

)])
=

∫
R
h(t)

1
2π

E(γ1 sin2(Θ) + γ2 cos2(Θ))
t√
2π

e−t
2/2dt.

Proposition

C∗0 (X , t) = 1
(2π)3/2 γTCte

−t2/2, a.e. t ∈ R, where

γTC = E(γ1 sin2(Θ) + γ2 cos2(Θ)) =
√
γ1γ2.

Rk : if γ1 = γ2 then γTC = γPer = γ2 and νX (0) ∼ U(S1).
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Summary

Theorem
For X C 2 stationary Gaussian standard random field

C∗0 (X , t) = γTC
1

(2π)3/2 t e−
t2
2 a.e.

C∗1 (X , t) =
√
γPer

1
4
e−

t2
2 a.e.

C∗2 (X , t) = 1−Ψ(t) for Ψ(t) =

∫ t

−∞

e−u
2/2

√
2π

du

If one knows that t 7→ C∗1 (X , t) or t 7→ C∗0 (X , t) are continuous
then a.e. is enough ! In Berzin, Latour, Leon (2017) general
assumptions to ensure that u 7→ C∗1 (X , t) is continuous ;

For isotropic stationary C 3 Gaussian field the formulas hold for all
level (weakest assumptions cf Adler, Taylor (2007)) with

γTC = γPer = γ2 = γ1.



default

Ratio of anisotropy

Proposition

min(γ1, γ2) ≤ γTC ≤ γPer ≤ max(γ1, γ2) and γTC = γPer iff γ1 = γ2.

Defining R = γTC
γPer
∈
[
min(γ1,γ2)
max(γ1,γ2)

; 1
]
and plot the

Almond curve of anisotropy {(x(t), y(t)); t ∈ R}

x(t) =
C∗1 (X , t)

C∗1 (X , 0)
= e−t

2/2 and y(t) =
C∗0 (X , t)

(C∗1 (X , 0))2 =
16

(2π)3/2 R te−t
2/2.

with C∗1 (X , 0) = 4
√
γPer. See also Klatt, Hörmann, Mecke (2021) for

inspiration
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Statistical inference

γ1 = γ2 = 0.005 t = 0 t = 1 t = 1.96

In simulation we can compute for t ∈ R and j = 0, 1, 2,

Ĉj(X , t) =
Φj(EX (t),U)

|U|
, (empirically accessible)

with E(Ĉj(X , t)) = C∗j (X , t). Under good assumptions on X (at least C 3

and good decay on ρ and derivatives) we should have

Ĉj(X , t) −→
U↗R2

C∗j (X , t) a. s. with asymptotic normality.

Some Ref on CLT : Spodarev (2012), Estrade, Leoń (2016), Müller (2017),
Kratz Vadlamani (2018), Reddy et al (2018), Berzin (2021)...
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Statistical inference

C∗0 C∗1 C∗2

First line : γ1 = γ2 = 0.005 and Second line γ1 = 0.001
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Is it anisotropic ?

A = 0.1651

Per = 0.0182


TC = 8.25 e-04

A = 0.1652

Per = 0.0187


TC = 7.36 e-04
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Is it anisotropic ?
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Is it anisotropic ?

R = 0.8 R = 1 R = 0.9

R = 0.9 R = 0.8 R = 1
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Effective level

For t ∈ R unknown, following Di Bernardino and Duval (2020), define
the effective level as

t̂ = Ψ−1(1− Ĉ2(X , t)),

Note that for the quantile t = Ψ−1(q) for q ∈ (0, 1) one has
C∗2 (X , t) = 1− q and set

q̂ = 1− Ĉ2(X , t) such that t̂ = Ψ−1(q̂).

We can consider C∗j (X ,Ψ−1(q)), j = 0, 1, 2.

C∗0 ◦Ψ−1 C∗1 ◦Ψ−1 C∗2 ◦Ψ−1



default

Effective γPer and γTC

Using that

C∗0 (X , t) = γTC
1

(2π)3/2 t e−
t2
2 and C∗1 (X , t) =

√
γPer

1
4
e−

t2
2 ,

define for t̂ > 0 or q̂ > 1/2

γ̂TC = Ĉ0(X , t)× (2π)3/2 t̂−1 e
t̂2
2 and γ̂Per = Ĉ1(X , t)2 × 16 e t̂

2
.

R = 1 R = 0.9 R = 0.8
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Effective Ratio of anisotropy

We finally define

R̂ =
γ̂TC

γ̂Per
=

Ĉ0(X , t)

Ĉ1(X , t)2
× (2π)3/2

16
t̂−1 e−

t̂2
2

R = 1 R = 0.9 R = 0.8
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Is it anisotropic ?

R̂ = 0.7672 R̂ = 1.012 R̂ = 0.8826

R̂ = 0.9029 R̂ = 0.7372 R̂ = 0.9762
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Conclusion and perspectives

Conclusion :

New geometrical equivalent of spectral moments

Anisotropy estimation available from one excursion set

Extension in dimension d with mean curvature, numerical evaluation
for d = 3

Perspective :

Second order and higher moment properties

Control of bias induced by discrete simulation/estimation

Extension for fractional Gaussian fields
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