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Minimal surfaces in quaternionic symmetric spaces

F.E. BURSTALL

University of Bath

We describe some birational correspondences between the twistor spaces of quater-
nionic Kähler compact symmetric spaces obtained by Lie theoretic methods. By
means of these correspondences, one may construct minimal surfaces in such sym-
metric spaces. These results may be viewed as an explanation and a generalisation
of some results of Bryant [1] concerning minimal surfaces in S4.

This represents work in progress in collaboration with J.H. Rawnsley and S.M. Sala-
mon.

BACKGROUND
This work has its genesis in our attempt to understand the following result of Bryant
[1]:

Theorem. Any compact Riemann surface may be minimally immersed in S4.

To prove this, Bryant considers the Penrose fibration π : CP 3 → S4 = HP 1. The
perpendicular complement to the fibres (with respect to the Fubini-Study metric)
furnishes CP 3 with a holomorphic distribution H ⊂ T 1,0CP 3 and it is well-known
that a holomorphic curve in CP 3 tangent to H (a horizontal holomorphic curve)
projects onto a minimal surface in S4. Bryant gave explicit formulae for the horizon-
tality condition on an affine chart which enabled him to integrate it and provide a
“Weierstraß formula” for horizontal curves. Indeed, if f , g are meromorphic functions
on a Riemann surface M then the curve Φ(f, g) : M → CP 3 given on an affine chart
by

Φ(f, g) = (f − 1

2
g(dg/df), g, 1

2
(df/dg))

is an integral curve of H. For suitable f , g, Φ(f, g) is an immersion (indeed, an
embedding) and the theorem follows.

In [6], Lawson gave an interesting interpretation of Bryant’s method by introduc-
ing the flag manifold D3 = U(3)/U(1) × U(1) × U(1) which may be viewed as the
twistor space of CP 2 (the twistor fibring being the non-±holomorphic homogeneous
fibration of D3 over CP 2). Again we have a holomorphic horizontal distribution K



perpendicular to the fibres of the twistor fibration but, this time, horizontal curves
are easy to construct. Indeed, viewing D3 as P (T 1,0CP 2), K is just the natural con-
tact distribution and a holomorphic curve in CP 2 has a canonical horizontal lift into
D3 given by its tangent lines.

The remarkable fact, implicit in Bryant’s work and brought to the fore by Lawson, is

Theorem. There is a birational correspondence Φ : D3 → CP 3 mapping K into H.

Recall that a birational correspondence of projective algebraic varieties is a holomor-
phic map which is defined off a set of co-dimension 2 and biholomorphic off a set of
co-dimension 1.

Thus it suffices to produce horizontal curves in D3 which avoid the singular set of Φ
and this may be done by taking the lifts of suitably generic curves in CP 2.

Lawson gave an analytic expression for Φ but a geometrical interpretation of the map
seemed quite hard to come by. An algebro-geometric interpretation has been given
by Gauduchon [4] but it is our purpose here to show how this map arises naturally
from Lie theoretic considerations.

QUATERNIONIC SYMMETRIC SPACES
The 4-sphere and CP 2 may be viewed as the 4-dimensional examples of the quater-
nionic Kähler compact symmetric spaces. These are 4n-dimensional symmetric spaces
N with holonomy contained in Sp(1)Sp(n). Geometrically, this means that there is a
parallel subbundle E of End(TN) with each fibre isomorphic to the imaginary quater-
nions. There is one such symmetric space for each simple Lie group; the classical ones
in dimension 4n being

HP n, G2(C
n+2), G4(R

n+4).

Following [7], we consider the twistor space Z of N which is the sphere bundle of E
or, equivalently,

Z = {j ∈ E: j2 = −1}.

This twistor space is a Kähler manifold, indeed a projective variety, and once more
the perpendicular complement to the fibres H is a holomorphic subbundle which is
called the horizontal distribution. Our main theorem is then

Theorem. LetN1, N2 are compact irreducible quaternionic Kähler symmetric spaces
of the same dimension with twistor spaces Z1, Z2. Then there is a birational corre-
spondence Z1 → Z2 which preserves the horizontal distributions.

For this we must study the homogeneous geometry of the twistor spaces: if N is
the symmetric space G/K then G acts transitively on Z and, moreover, this action



extends to a holomorphic action of the complexified Lie group GC. Further, the
horizontal distribution is invariant under this GC action. In fact, Z is a special kind
of GC-space: it is a flag manifold, that is, of the form GC/P where P is a parabolic
subgroup.

For any flag manifold GC/P , let p be the Lie algebra of P . We have a decomposition
of the Lie algebra of GC

gC = p⊕ n

where n is the nilradical of p so that n ∼= T 1,0
eP G

C/P is a nilpotent Lie algebra. Let N
be the corresponding nilpotent Lie group and consider the N orbits in GC/P . The
orbit Ω of the identity coset is a Zariski dense open subset of GC/P (it is the “big
cell” in the Bruhat decomposition of the flag manifold). In fact, the map n → Ω
given by

ξ 7→ exp ξ · P

is a biholomorphism with polynomial components (since n is nilpotent) and so ex-
tends to give a birational correspondence of GC/P with P (n ⊕ C). Thus GC/P is
a rational variety: a classical result of Goto [5]. However, more is true: let GC

1 /P1

and GC
2 /P2 be flag manifolds and suppose that the nilradicals n1 and n2 are isomor-

phic as complex Lie algebras. Then we have an isomorphism φ : n1 → n2 which
we may exponentiate to get an isomorphism of Lie groups Φ : N 1 → N 2 and thus
a biholomorphism Ω1 → Ω2 which extends to a birational correspondence between
the flag manifolds. Moreover, on Ω1, this biholomorphism is N 1-equivariant and so
will preserve any invariant distribution so long as φ does when viewed as a map
T 1,0
eP1
GC

1 /P1 → T 1,0
eP2
GC

2 /P2.

We now specialise to the case at hand: if Z is the twistor space of a quaternionic
Kähler compact irreducible symmetric space then Z is a rather special kind of flag
manifold. In fact, Wolf [8] has shown that here n is two-step nilpotent with 1-
dimensional centre and so is precisely the complex Heisenberg algebra. Thus any
two of our twistor spaces of the same dimension have isomorphic n and so the main
theorem follows.

APPLICATIONS TO MINIMAL SURFACES
The relevance of these constructions to minimal surface comes from the well-known
fact that, just as in the 4-dimensional case, horizontal holomorphic curves in Z project
onto minimal surfaces in N . Moreover, in some of the classical cases, horizontal
holomorphic curves are quite easy to come by. For example, the twistor space of
G2(C

n+2) is the flag manifold Z = U(n+2)/U(1)×U(n)×U(1) which we may realise
as the set of flags

{` ⊂ π ⊂ Cn+2: dim ` = 1, dimπ = n+ 1}.



Horizontal, holomorphic curves in this setting are just a special kind of ∂′-pair in the
sense of Erdem-Wood [3] and may be constructed as follows: if f : M → CP n+1 is
a holomorphic curve, we may construct the associated holomorphic curves fr : M →
Gr+1(C

n+2) given locally by

fr = f ∧ ∂f
∂z
∧ . . . ∧ ∂

rf

∂zr
.

Generically, f is full so that f1, . . . , fn are defined and then the map ψ : M → Z

given by
ψ = (f ⊂ fn)

is horizontal and holomorphic. Note that for n = 1, ψ is just the lift of f : M → CP 2

discussed above. Composing these curves with the birational correspondences of the
previous section, we then have horizontal holomorphic curves in all the other twistor
spaces of the same dimension so long as we can ensure that the curves avoid the
singular sets of the correspondences. Thus, for example, one has the possibility of
constructing minimal surfaces in the 8-dimensional exceptional quaternionic symmet-
ric space G2/SO(4) from holomorphic curves in CP 3.

However, to carry out such a programme, a rather more detailed analysis of these
singular sets is required so as to ensure that they are avoided for suitably generic f .
Work is still in progress on this issue.

EXTENSIONS
Many parts of the above development apply to arbitrary generalised flag manifolds.
Burstall-Rawnsley [2] have shown that any flag manifold fibres in a canonical way over
a Riemannian symmetric space of compact type and, moreover, any such symmetric
space with inner involution is the target of such a fibration. In this setting, the
perpendicular complement to the fibres is not in general holomorphic but there is a
sub-distribution thereof, the superhorizontal distribution, which is holomorphic and
GC-invariant. Again, holomorphic integral curves of this distribution project onto
minimal surfaces in the symmetric space.

The above discussion applies so that isomorphisms of nilradicals exponentiate to
give birational correspondences of flag manifolds which preserve the super-horizontal
distributions. However, apart from the quaternionic symmetric case, we have not yet
found any examples of differing flag manifolds with isomorphic nilradicals.
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