
M55: Exercise sheet 8

1. Make suitable simplifications to identify the following surfaces:
(i) S(abcbca−1), (ii) S(abca−1b−1c−1), (iii) S(abcabc−1), (iv) S(abcdec−1da−1b−1e−1),
(v) S(abcda−1b−1c−1d−1), (vi) S(abcda−1b−1c−1d), (vii) S(a1a2 . . . ana

−1
1 a−1

2 . . . a−1
n−1an),

(viii) S(a1a2 . . . ana
−1
1 a−1

2 . . . a−1
n−1a

−1
n ).

2. Find the surfaces given by the following triangulations:
(a) 123 234 345 451 512 136 246 356 416 526.
(b) 124 134 246 236 367 347 469 459 698

678 457 259 289 578 358 125 238 135.

3. Show that χ(S1#S2) = χ(S1) + χ(S2)− 2.

4. Let e, f, v be the number of faces, edges and vertices in a triangulation of a surface.
Show that 3f = 2e.
(Thus f is even.)

5. (a) What is the Euler characteristic of a torus?
(b) What are the possible values of the Euler characteristic of a compact, connected

surface?

6. Show that a compact, connected surface admits a triangulation with exactly 4 faces
if and only if it is a sphere.
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M55: Exercise sheet 8—Solutions

1. (i)

S(abcbca−1) = S(a−1abcbc) by step 0: start at a−1

= S(bcbc) by step 1

= RP (2)#S(c−1c) by step 2
= RP (2) by step 1.

(ii)

S(abca−1b−1c−1) = T 2#S(c−1c) by step 3

= T 2 by step 1.

(iii)

S(abcabc−1) = RP (2)#S(c−1b−1bc−1) by step 2

= RP (2)#S(c−1c−1) cancel b’s by step 1
= RP (2)#RP (2)

(iv)

S(abcdec−1da−1b−1e−1) = S(dec−1da−1b−1e−1abc) start at d by step 0

= RP (2)#S(ce−1a−1b−1e−1abc) by step 2

= 2RP (2)#S(b−1a−1ebae) by step 2

= 2RP (2)#S(ebaeb−1a−1) start at e by step 0

= 3RP (2)#S(a−1b−1b−1a−1) by step 2
= 4RP (2)#S(bb) by step 2
= 5RP (2).

(v)

S(abcda−1b−1c−1d−1) = T 2#S(c−1d−1cd) by step 3

= T 2#T 2.

(vi)

S(abcda−1b−1c−1d) = S(da−1b−1c−1dabc) start at d
= RP (2)#S(cbaabc) by step 2

= 2RP (2)#S(b−1a−1a−1b−1) by step 2
= 3RP (2)#S(aa) by step 2
= 4RP (2).

(vii)

S(a1a2 . . . ana
−1
1 a−1

2 . . . a−1
n−1an) = S(ana−1

1 a−1
2 . . . a−1

n−1ana1a2 . . . an−1)
= RP (2)#S(an−1 . . . a1a1 . . . an−1)
= RP (2)#(n− 1)RP (2) = nRP (2),

where the last line comes from n− 1 applications of step 2.



(viii)

S(a1a2 . . . ana
−1
1 a−1

2 . . . a−1
n−1a

−1
n ) = T 2#S(a−1

3 . . . a−1
n a3 . . . an)

= T 2#S(a3 . . . ana
−1
3 . . . a−1

n )

now iterate to get

=

{
n
2T

2 for n even;
n−1

2 T 2#S(ana−1
n ) = n−1

2 T 2 = for n odd.

2. (a) Glue the triangles together to get something like:

1 2 6

1436

5

2

(you may well end up with a different polygon).
Read around the boundary to get the ordered list of vertices:

1 6 2 1 6 2
so that the surface is homeomorphic to S(abcabc). But

S(abcabc) = RP (2)#S(c−1b−1bc) by step 2
= RP (2) by two applications of step 1.

(b) This time the triangles give something like:

1 2 3 4

57643

3 5 9 8 3

21

The list of vertices reads:
1 3 4 5 3 1 2 3 5 4 3 2



so that our surface is homeomorphic to S(abcda−1efd−1c−1b−1f−1e−1). Now

S(abcda−1efd−1c−1b−1f−1e−1) = T 2#S(f−1e−1efd−1c−1cd) by step 3

= T 2 by multiple applications of step 1.

3. First triangulate each surface: say that Si has fi faces, ei edges and vi vertices. The connected
sum is formed by removing the interior of two triangles and identifying corresponding edges
(and vertices). The triangulations of S1 and S2 then fit together to give a triangulation of
S1#S2 with f1 + f2− 2 faces, e1 + e2− 3 edges and v1 + v2− 3 vertices. Arithmetic now gives

χ(S1#S2) = χ(S1) + χ(S2)− 2.

4. Each face contributes three edges but each edge lies on exactly two faces (otherwise we would
not have a surface). Thus 3f = 2e.

5. (a) To compute χ(T 2) we need a triangulation of T 2. Luckily, one is provided by question
2(b) which has 18 sides (and so 27 vertices by question 4) and 9 vertices. We conclude that
χ(T 2) = 0.
(b) All surfaces are build out of the basic surfaces which have Euler characteristics χ(S2) = 2,
χ(RP (2)) = 1 and χ(T 2) = 0 (as we have just proved). From question 3, we see that, for any
surface S,

χ(S#T 2) = χ(S)− 2
χ(S#RP (2)) = χ(S)− 1

so that the connected sum of g tori has Euler characteristic 2 − 2g while the connected sum
of g RP (2)’s is 2− g.
This accounts for all compact connected surfaces so we learn that the possible values of the
Euler characteristic are any integers less than or equal to two.

6. Certainly the sphere has a triangulation with four faces (the tetrahedral one!).
For the converse, let S be such a surface with Euler characteristic χ and v the number of ver-
tices in this triangulation with four faces. By question 4, there are 6 edges in this triangulation
so that

χ = 4− 6 + v = v − 2.

Moreover, v ≥ 3 (each triangle has three distinct vertices) giving χ ≥ 1. In view of question 5,
this only leaves two possibilities, χ = 2 (in which case S ∼= S2) or χ = 1. In this last case,
we have v = 3 which means that all four triangles have the same vertices. But since at least
two must have an edge in common, this breaks the rules for triangulations. Thus v = 4 and
S ∼= S2.


