M55: Exercise sheet 5

1. Let X be a set. What is the coarsest topology on X for which all singleton sets are
closed?

2. Show that a metric space is normal.
3. Let A, B be compact subsets of a topological space X. Show that AU B is compact.

4. (a) Let (Fy,)nen be a family of non-empty closed subsets of a compact topological
space X such that, F,1 C F,, for all n € N.

Prove that
() Fn #0.
neN

(b) Let f: X — X be a continuous map of a compact Hausdorff topological space
into itself. Show there is a non-empty closed subset A of X such that f(A) = A.

5. Let X be a set equipped with the co-finite topology. Show that any subset of X is
compact.
Deduce that R with the Zariski topology has compact subsets which are not closed.

6. Show that a compact Hausdorff space is normal (and so Ty).

7. Recall the Moore plane T'.
(a) Show that any subset of the z-axis is closed in I'.
(b) Show that I is regular.
(c) Show that I is not normal®.
8. Show that there is no Hausdorff topology on [0, 1] which is strictly coarser than the

metric topology.
Hint: Contemplate the identity map. ..
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!This is sufficiently difficult that I offer a small prize for the first correct solution!

Home page: http://www.maths.bath.ac.uk/"feb/math0055.html



M55: Exercise sheet 5—Solutions

1. The co-finite topology is coarsest topology for which all singleton sets are closed: indeed, any
topology for which singleton sets are closed has all finite sets closed (they are finite unions of
singleton sets!) and so contains the co-finite topology.

2. Let C,D C X be disjoint closed subsets of a metric space. For € C, x € X \ D which is
open so there is e, > 0 with B, (z) C X \ C. Similarly, for y € D, there is ¢, > 0 such that
Be,(y) c X\C.

Now define open sets by

U=J B plw) V=[] B,
zeC yeD
Then C CU C X\ Dand D CV C X\ C and all we have to do is see that U and V are
disjoint. However, if z € U NV, there is x € C and y € D such that d(z,z) < €,/2 and
d(z,y) < €,/2. The triangle inequality now gives that d(z,y) < max{e,,¢e,}. Without loss of
generality, suppose €, > €,. Then we have y € B, (z) N D: a palpable contradiction.

3. Let {Ua}aer be an open cover for AU B. Thus each U, is open in X and J,.;Ua D AU B.
Thus {Ua }aer is also an open cover of A and so there is a finite set J4 C [ with J,c;, Ua D A.

Similarly, there is another finite set Jg C I with UaEJB U, D B. Now set J = J4UJg. Then
Uaes Ua D AU B whence {Uq}ae is a finite subcover for AU B and so AU B is compact.

4. (a) Suppose, for a contradiction, that (), .y Fn = 0. Taking complements and using De
Morgan’s Laws gives us X = [J,,cn(X \ Fy,) so that {X \ F}, },en is an open cover of X. Thus
there is a finite subcover X \ F,,,..., X \ F,,, with n; < --- < ny. Thus Ule(X \F,, =X
or taking complements ﬂle F,, = 0. But, since each F,,11 C Fp, ﬂle F,, = F,, # 0. This
is a contradiction!

(b) Let f™ denote the n-times composition of f with itself:

fr=foof
| S —

n times

and set F,, = f"(X). Now X is compact and f™ continuous so that F, is compact and
therefore closed since X is Hausdorff. Further, F,, 11 = f"(f(X)) C f"(X) = F, so we are in
the situation of part (a). So set A =), .y Fn which is non-empty by part (a). I claim that
f(A) = A.

For this, first note that if f(F,) = F,4+1 so that

FA) C () F(F) = [ Farr = A,

neN neN

neN

For equality, let a € A and contemplate f~({a}) N F,: these are closed since {a} is closed
and f is continuous (X is Hausdorff), nested since the F,, are and non-empty: for each n,
a € F,q1 and so there is an x,, € F,, such that f(z,) = a. Thus we are once again in the
situation of part (a) and so can conclude that

0# () (F'{a}) N Fy) = ' ({a}) N A.

neN
Thus there is some = € a such that f(z) = a and so f(A) = A as required.

5. Let A C X and {Ua}aer be an open cover for A. Let U,, be a non-empty element of the
cover. Then X \ U,, and so A\ U,, is finite. Write A\ Uy, = {a1,...,a,} and for each i
between 1 and n, choose U,, containing a;. Then U,,,...,U,, covers A and so is a finite
subcover. Thus A is compact.

When R is equipped with this topology, there are many non-closed sets (for example, Z) but
all of these are compact by what we have just proved.



Let C, D be disjoint closed (and therefore compact) subsets of X and fix x € C. Then, for
each y € D, there are disjoint open sets Uy, V, with € U, and y € V,,. Then {V}},cp is an

open cover of D and so there is a finite subcover V,,,,...,V, . Now set U, = (), ,<,, Uy, and
Wi =Uj<ijcn Vyn- Then x € Uy, D C W, and U,, W, are disjoint open sets.
In particular, {U, },cc is an open cover of C so that there is a finite subcover Uy, ..., U, .

Set U =y iy Uz, and V = (<, <,,, Wa, to get disjoint open sets with U D C'and V O D
whence X is normal and so (being Hausdorff) Ty.

(a) First notice that the x-axis is closed in I': its complement is the union of all the e-balls
in {(z,y) : y > 0}. Second, recall that the induced topology on the z-axis is the discrete
topology so that all subsets of the z-axis are closed with respect to the subspace topology on
the z-axis. Thus any subset of the x-axis is the intersection of the x-axis with a closed subset
of I" and so is itself closed in I'.

(b) Let C C T be closed and p € '\ C. Now I'\ C' is open so there is a basic open set B with
p€ BCTI'\C. If p is in the strict upper half plane then we may take B to be an e-ball about
p and then set U = B, )5(p), V = {q € T': ||¢ — p|| > £/2} to get disjoint open sets with p € U
and C C V.

If, on the other hand, p lies on the z-axis, then B is of the form A U {p} with A an e-ball
tangent to the xz-axis at p. Let A’ be the ball of radius £/2 tangent to the z-axis at p and let
D be its (metric) closure. Then U = A’U{p} and V =T'\ D are disjoint open sets with p € U
and C C V.

(c¢) This is quite tough: one must find disjoint closed sets C, D in T" such that whenever U, V/
are open sets with C C U and D C V then UNV # (). We take C = Q and D = R\ Q: these
are disjoint subsets of the z-axis and so closed by part (a). Suppose that U,V are disjoint
open sets with U D C' and V D D. Then, for p € R, there is a ball tangent to the x-axis at
p of radius r(p) > 0 which lies entirely in U or V according to whether p is rational or not.
Now for the clever bit: define subsets A,, C R, n € N, by

Az ={q€Q:7(q) >1/n}
AQTL—l = {p ¢ Q : T(p) > 1/n}

The complete metric space R is the union of the A,, and so the Baire Category Theorem tells
us that at least one A,, is not nowhere dense, that is, there is some n for which the closure
of A, contains an interval (a,b). Without loss of generality, assume that n is even (and so
consists of rationals) and choose some irrational p € (a,b). Then there is a sequence (gx) in A,
converging to p. I claim that the r(p)-ball tangent to p must intersect some 7 (g )-ball tangent
to g which contradicts the disjointness of U, V. For this, choose 0 < y < min{1/n,r(p)} so
that (p,y) is in the r(p)-ball tangent to p. Then, as k — oo,

I(p,y) = (qx, 1/n)|| — |y = 1/n| < 1/n.

Thus, for k large enough, (p,y) lies in the 1/n-ball tangent to the z-axis at ¢ and so in the
r(qx)-ball tangent to the z-axis at gx. This completes the proof.

Denote the metric topology on [0, 1] by .7; and suppose that .7 is a coarser Hausdorff topology
on [0,1]. Then id : (X,.9;) — (X,.7) is a continuous bijection from a compact space to a
Hausdorff one and so is a homeomorphism. Thus 9; = .



