
M55: Exercise sheet 5

1. Let X be a set. What is the coarsest topology on X for which all singleton sets are
closed?

2. Show that a metric space is normal.

3. Let A,B be compact subsets of a topological space X. Show that A ∪B is compact.

4. (a) Let (Fn)n∈N be a family of non-empty closed subsets of a compact topological
space X such that, Fn+1 ⊂ Fn, for all n ∈ N.
Prove that ⋂

n∈N
Fn 6= ∅.

(b) Let f : X → X be a continuous map of a compact Hausdorff topological space
into itself. Show there is a non-empty closed subset A of X such that f(A) = A.

5. Let X be a set equipped with the co-finite topology. Show that any subset of X is
compact.
Deduce that R with the Zariski topology has compact subsets which are not closed.

6. Show that a compact Hausdorff space is normal (and so T4).

7. Recall the Moore plane Γ.
(a) Show that any subset of the x-axis is closed in Γ.
(b) Show that Γ is regular.
(c) Show that Γ is not normal1.

8. Show that there is no Hausdorff topology on [0, 1] which is strictly coarser than the
metric topology.
Hint: Contemplate the identity map. . .
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1This is sufficiently difficult that I offer a small prize for the first correct solution!

Home page: http://www.maths.bath.ac.uk/~feb/math0055.html



M55: Exercise sheet 5—Solutions

1. The co-finite topology is coarsest topology for which all singleton sets are closed: indeed, any
topology for which singleton sets are closed has all finite sets closed (they are finite unions of
singleton sets!) and so contains the co-finite topology.

2. Let C,D ⊂ X be disjoint closed subsets of a metric space. For x ∈ C, x ∈ X \ D which is
open so there is εx > 0 with Bεx(x) ⊂ X \ C. Similarly, for y ∈ D, there is εy > 0 such that
Bεy (y) ⊂ X \ C.
Now define open sets by

U =
⋃
x∈C

Bεx/2(x) V =
⋃
y∈D

Bεy/2(y).

Then C ⊂ U ⊂ X \ D and D ⊂ V ⊂ X \ C and all we have to do is see that U and V are
disjoint. However, if z ∈ U ∩ V , there is x ∈ C and y ∈ D such that d(x, z) < εx/2 and
d(z, y) < εy/2. The triangle inequality now gives that d(x, y) < max{εx, εy}. Without loss of
generality, suppose εx ≥ εy. Then we have y ∈ Bεx(x) ∩D: a palpable contradiction.

3. Let {Uα}α∈I be an open cover for A ∪B. Thus each Uα is open in X and
⋃
α∈I Uα ⊃ A ∪B.

Thus {Uα}α∈I is also an open cover of A and so there is a finite set JA ⊂ I with
⋃
α∈JA Uα ⊃ A.

Similarly, there is another finite set JB ⊂ I with
⋃
α∈JB Uα ⊃ B. Now set J = JA ∪JB . Then⋃

α∈J Uα ⊃ A ∪B whence {Uα}α∈J is a finite subcover for A ∪B and so A ∪B is compact.

4. (a) Suppose, for a contradiction, that
⋂
n∈N Fn = ∅. Taking complements and using De

Morgan’s Laws gives us X =
⋃
n∈N(X \Fn) so that {X \Fn}n∈N is an open cover of X. Thus

there is a finite subcover X \ Fn1 , . . . , X \ Fnk with n1 < · · · < nk. Thus
⋃k
i=1(X \ Fni = X

or taking complements
⋂k
i=1 Fni = ∅. But, since each Fn+1 ⊂ Fn,

⋂k
i=1 Fni = Fnk 6= ∅. This

is a contradiction!
(b) Let fn denote the n-times composition of f with itself:

fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

and set Fn = fn(X). Now X is compact and fn continuous so that Fn is compact and
therefore closed since X is Hausdorff. Further, Fn+1 = fn(f(X)) ⊂ fn(X) = Fn so we are in
the situation of part (a). So set A =

⋂
n∈N Fn which is non-empty by part (a). I claim that

f(A) = A.
For this, first note that if f(Fn) = Fn+1 so that

f(A) ⊂
⋂
n∈N

f(Fn) =
⋂
n∈N

Fn+1 = A.

For equality, let a ∈ A and contemplate f−1({a}) ∩ Fn: these are closed since {a} is closed
and f is continuous (X is Hausdorff), nested since the Fn are and non-empty: for each n,
a ∈ Fn+1 and so there is an xn ∈ Fn such that f(xn) = a. Thus we are once again in the
situation of part (a) and so can conclude that

∅ 6=
⋂
n∈N

(
f−1({a}) ∩ Fn

)
= f−1({a}) ∩A.

Thus there is some x ∈ a such that f(x) = a and so f(A) = A as required.

5. Let A ⊂ X and {Uα}α∈I be an open cover for A. Let Uα0 be a non-empty element of the
cover. Then X \ Uα0 and so A \ Uα0 is finite. Write A \ Uα0 = {a1, . . . , an} and for each i
between 1 and n, choose Uαi containing ai. Then Uα0 , . . . , Uαn covers A and so is a finite
subcover. Thus A is compact.
When R is equipped with this topology, there are many non-closed sets (for example, Z) but
all of these are compact by what we have just proved.



6. Let C,D be disjoint closed (and therefore compact) subsets of X and fix x ∈ C. Then, for
each y ∈ D, there are disjoint open sets Uy, Vy with x ∈ Uy and y ∈ Vy. Then {Vy}y∈D is an
open cover of D and so there is a finite subcover Vy1 , . . . , Vyn . Now set Ux =

⋂
1≤i≤n Uyn and

Wx =
⋃

1≤i≤n Vyn . Then x ∈ Ux, D ⊂Wx and Ux,Wx are disjoint open sets.
In particular, {Ux}x∈C is an open cover of C so that there is a finite subcover Ux1 , . . . , Uxm .
Set U =

⋃
1≤i≤m Uxi and V =

⋂
1≤i≤mWxi to get disjoint open sets with U ⊃ C and V ⊃ D

whence X is normal and so (being Hausdorff) T4.

7. (a) First notice that the x-axis is closed in Γ: its complement is the union of all the ε-balls
in {(x, y) : y > 0}. Second, recall that the induced topology on the x-axis is the discrete
topology so that all subsets of the x-axis are closed with respect to the subspace topology on
the x-axis. Thus any subset of the x-axis is the intersection of the x-axis with a closed subset
of Γ and so is itself closed in Γ.
(b) Let C ⊂ Γ be closed and p ∈ Γ \C. Now Γ \C is open so there is a basic open set B with
p ∈ B ⊂ Γ \C. If p is in the strict upper half plane then we may take B to be an ε-ball about
p and then set U = Bε/2(p), V = {q ∈ Γ : ‖q− p‖ > ε/2} to get disjoint open sets with p ∈ U
and C ⊂ V .
If, on the other hand, p lies on the x-axis, then B is of the form A ∪ {p} with A an ε-ball
tangent to the x-axis at p. Let A′ be the ball of radius ε/2 tangent to the x-axis at p and let
D be its (metric) closure. Then U = A′∪{p} and V = Γ\D are disjoint open sets with p ∈ U
and C ⊂ V .
(c) This is quite tough: one must find disjoint closed sets C,D in Γ such that whenever U, V
are open sets with C ⊂ U and D ⊂ V then U ∩ V 6= ∅. We take C = Q and D = R \Q: these
are disjoint subsets of the x-axis and so closed by part (a). Suppose that U, V are disjoint
open sets with U ⊃ C and V ⊃ D. Then, for p ∈ R, there is a ball tangent to the x-axis at
p of radius r(p) > 0 which lies entirely in U or V according to whether p is rational or not.
Now for the clever bit: define subsets An ⊂ R, n ∈ N, by

A2n = {q ∈ Q : r(q) > 1/n}
A2n−1 = {p /∈ Q : r(p) > 1/n}.

The complete metric space R is the union of the An and so the Baire Category Theorem tells
us that at least one An is not nowhere dense, that is, there is some n for which the closure
of An contains an interval (a, b). Without loss of generality, assume that n is even (and so
consists of rationals) and choose some irrational p ∈ (a, b). Then there is a sequence (qk) in An
converging to p. I claim that the r(p)-ball tangent to p must intersect some r(qk)-ball tangent
to qk which contradicts the disjointness of U, V . For this, choose 0 < y < min{1/n, r(p)} so
that (p, y) is in the r(p)-ball tangent to p. Then, as k →∞,

‖(p, y)− (qk, 1/n)‖ → |y − 1/n| < 1/n.

Thus, for k large enough, (p, y) lies in the 1/n-ball tangent to the x-axis at qk and so in the
r(qk)-ball tangent to the x-axis at qk. This completes the proof.

8. Denote the metric topology on [0, 1] by Td and suppose that T is a coarser Hausdorff topology
on [0, 1]. Then id : (X,Td) → (X,T ) is a continuous bijection from a compact space to a
Hausdorff one and so is a homeomorphism. Thus Td = T .


