M55: Exercise sheet 3

- 1. Let A be a closed subset of a topological space X and $F \subset A$. Show that F is closed in A if and only if F is closed in X.
- 2. Let $B \subset A \subset X$. Let C be the closure of B in X and C_A the closure of B in A. Show that $C_A = A \cap C$.
- 3. (Another patching type theorem) Let A, B ⊂ X be closed subsets of a topological space X such that X = A ∪ B. Equip both A and B with the subspace topology. Let f : X → Y be a map into another topological space Y. Show that f is continuous if and only if both f_{|A} : A → Y and f_{|B} : B → Y are continuous (with respect to the subspace topologies). Use this to prove that f : [-1,1] → ℝ defined by

$$f(x) = \begin{cases} -x & \text{if } x \in [-1, 0]; \\ x & \text{if } x \in [0, 1]; \end{cases}$$

is continuous.

- 4. Let X be a topological space with base \mathscr{B} and $A \subset X$. Let $\mathscr{B}_A = \{A \cap B : B \in \mathscr{B}\}.$
 - (a) Show that \mathscr{B}_A is a base for a topology on A.
 - (b) What topology on A is it?
- 5. (The Moore plane) Let Γ denote the closed upper half plane $\{(x, y) \in \mathbb{R}^2 : y \ge 0\}$. Let \mathscr{B} denote all ε -balls lying in the region $\{(x, y) : y > 0\}$ along with all sets of the form $\{z\} \cup A$ with z a point on the x-axis and A an open ball in the upper half plane tangent to the x-axis at z.
 - (a) Show that \mathscr{B} is the base for a topology on Γ .
 - (b) What is the induced topology on the set $\{(x, y) : y > 0\}$?
 - (c) What is the induced topology on the half-line $\{(0, y) : y \ge 0\}$?
 - (d) What is the induced topology on the x-axis?

March 7, 2003

M55: Exercise sheet 3—Solutions

- 1. If F is closed in A then $F = A \cap G$ with G closed in X. Thus F is the intersection of two closed subsets of X and so is itself a closed subset of X. Conversely if F is closed in X and $F \subset A$, then $F = A \cap F$ is closed in A (note that closedness of A is not needed for this bit).
- 2. First note that $A \cap C$ is closed in A and contains B whence $C_A \subset A \cap C$. For the converse, we use a characterisation of C_A given in lectures. Let $x \in A \cap C$ and $x \in U$ with U open in A. We need to show that $U \cap B \neq \emptyset$. Now $U = A \cap V$ with V open in X and since $x \in C$, we know that $B \cap V \neq \emptyset$. Now, since $B \subset A$, $B \cap V = B \cap (V \cap A) = B \cap U$ so that $B \cap U \neq \emptyset$ and $x \in C_A$.
- 3. If f is continuous then certainly f_{|A} and f_{|B} are continuous being the composition of f and the (continuous) inclusions of A, B into X.
 For the converse, it is a good idea to use the closed set formulation of continuity: so let C ⊂ Y be closed and try to show that f⁻¹(C) is closed in X.
 Now f⁻¹(C) = (f⁻¹(C) ∩ A) ∪ (f⁻¹(C) ∩ B) since X = A ∪ B. Also f⁻¹(C) ∩ A = f_{|A}⁻¹(C) which is closed in A (since f_{|A} is continuous) and so closed in X by question 1. Similarly, f⁻¹(C) ∩ B is closed in X whence f⁻¹(C) is closed in X being a union of two sets both closed in X. Thus f is continuous.
 For f: [-1,1] → ℝ defined as above, f_{|[-1,0]} is clearly continuous—it is the restriction of the notoriously continuous x ↦ -x and similarly f_{|[0,1]} is continuous whence, by what we have just proved, f is continuous since [-1,0] and [0,1] are closed in ℝ and so in [-1,1].
- 4. (a) We check the axioms for a base: first, since ℬ is a base, any x ∈ A lies in some B ∈ ℬ and so in A ∩ B ∈ ℬ_A. Second, let A ∩ B₁, A ∩ B₂ ∈ ℬ_A with the B_i ∈ ℬ. If x ∈ (A ∩ B₁) ∩ (A ∩ B₂) then x ∈ B₁ ∩ B₂ and there is B₃ ∈ ℬ with x ∈ B₃ ⊂ B₁ ∩ B₂. Thus x ∈ A ∩ B₃ ⊂ (A ∩ B₁) ∩ (A ∩ B₂) and A ∩ B₃ ∈ ℬ_A so that ℬ_A is a base for a topology on A.
 (b) The topology generated by ℬ_A is the subspace topology. Indeed, a subset of A is open in the subspace topology if and only if it is of the form A ∩ V with V open in X, that is, of the form A ∩ (⋃_{i∈I} B_i), with B_i ∈ ℬ, or, equivalently, of the form ⋃_{i∈I}(A ∩ B_i), that is, a union of elements of ℬ_A.
- 5. (a) We check the axioms: first any point in Γ clearly lies in some element of \mathscr{B} . Second the intersections of two elements of \mathscr{B} come in two flavours: either one gets the intersection of two ε -balls in $\{(x, y) \in \mathbb{R}^2 : y \ge 0\}$ (this also happens when an ε -ball intersects a basic set $A \cup \{z\}$ or when basic open sets $A \cup \{z\}$, $B \cup \{z'\}$ with $z \ne z'$ intersect) or we have two sets $A \cup \{z\}$ and $A' \cup \{z\}$ where A and A' are two balls tangent to the x-axis at z. In the first case, the intersection is a metric open set and thus certainly a union of ε -balls in $\{(x, y) \in \mathbb{R}^2 : y \ge 0\}$. In particular, such an intersection is a union of elements of \mathscr{B} . In the second case, one of the balls contains the other (draw a picture) and so the intersection is itself in \mathscr{B} .

(b) The induced topology on $A = \{(x, y) : y > 0\}$ is the usual metric topology. Indeed, by question 4, a base for A is given by the intersections of A with the elements of \mathscr{B} . But these intersections are precisely the ε -balls in A which generate the metric topology.

(c) Again we get the metric topology and by the same argument: the intersections of the basic open sets with the *y*-axis are the intervals of the form $[0, \varepsilon)$ and (a, b) with a > 0. These are precisely the ε -balls of the induced metric.

(d) The induced topology on the x-axis is an entirely different kettle of fish but the same argument applies: the only basic open sets that intersect the x-axis are those of the form $\{z\} \cup A$ with z on the x-axis and A an ε -ball tangent to the axis. Such a set intersects the X-axis in the singleton set $\{z\}$. Thus the base for the induced topology consists of all the singleton sets and so the induced topology is the discrete topology.