MA22020: Exercise sheet 6

Warmup questions

- 1. Let $B: V \times V \to \mathbb{F}$ be a symmetric bilinear form with diagonalising basis v_1, \ldots, v_n . Suppose that, for some $v_i, 1 \leq i \leq n$, we have $B(v_i, v_i) = 0$. Prove that $v_i \in \operatorname{rad} B$.
- 2. Let $B: V \times V \to \mathbb{F}$ be a real symmetric bilinear form with diagonalising basis v_1, \ldots, v_n . Show that B is positive definite if and only if $B(v_i, v_i) > 0$, for all $1 \le i \le n$.
- 3. Let $A, B \in M_{n \times n}(\mathbb{F})$ be congruent: $B = P^T A P$, for some $P \in GL(n, \mathbb{F})$. Are the following statements true or false?
 - (a) $\det A = \det B$.
 - (b) A is symmetric if and only if B is symmetric.

Rank and signature

4. Let $B = B_A : \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}$ where

$$A = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 \end{pmatrix}.$$

Diagonalise B and hence, or otherwise, compute its signature.

- 5. Diagonalise the symmetric bilinear form $B : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ given by $B(x, y) = x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2 + x_2y_3 + x_3y_2 + x_3y_3$. Hence, or otherwise, compute the rank and signature of B.
- 6. Compute the rank and signature of the quadratic form $Q(x) = x_1 x_2 4x_3 x_4$ on \mathbb{R}^4 .

December 10, 2024

MA22020: Exercise sheet 6—Solutions

1. In this case, we have $B(v_i, v_j) = 0$, for all $1 \le j \le n$. So, if $v \in V$, write $v = \sum_j \lambda_j v_j$ and then

$$B(v_i, v) = \sum_j \lambda_j B(v_i, v_j) = 0.$$

Otherwise said, $v_i \in \operatorname{rad} B$.

2. If B is positive definite, then B(v, v) > 0 for any non-zero $v \in V$ and so, in particular, each $B(v_i, v_i) > 0$.

Conversely, suppose that each $B(v_i, v_i) > 0$ and let $v \in V$. Write $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$ and compute:

$$B(v,v) = B(\sum_{i} \lambda_i v_i, \sum_{j} \lambda_j v_j) = \sum_{i,j} \lambda_i \lambda_j B(v_i, v_j) = \sum_{i} \lambda_i^2 B(v_i, v_i).$$

This last is non-negative and vanishes if and only if each $\lambda_i^2 B(v_i, v_i) = 0$, or, equivalently, $\lambda_i = 0$. Thus B is positive definite.

- 3. (a) This is false: let $P = \lambda I_n$, for $\lambda \in \mathbb{F}$. Then $B = \lambda^2 A$ so that det $B = \lambda^{2n} \det A$.
 - (b) This is true: if $A^T = A$ then

$$B^T = (P^T A P)^T = P^T A^T P = P^T A P = B.$$

Conversely, if $B^T = B$ we get $P^T A^T P = P^T A P$ and multiplying by P^{-1} on the right and $(P^T)^{-1}$ on the left gives $A^T = A$.

4. We need to start with v_1 with $B(v_1, v_1) \neq 0$. Those diagonal zeros say that none of the standard basis will do so let us try $v_1 = (1, 1, 0, 0)$ for which $B(v_1, v_1) = 4$. Now seek v_2 among the y with

$$0 = B(v_1, y) = \begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix} A\mathbf{y} = \begin{pmatrix} 2 & 2 & 1 & 1 \end{pmatrix} \mathbf{y} = 2y_1 + 2y_2 + y_3 + y_4.$$

We take $v_2 = (0, 0, 1, -1)$ with

$$B(v_2, y) = \begin{pmatrix} 0 & 0 & 1 & -1 \end{pmatrix} A \mathbf{y} = \begin{pmatrix} 1 & -1 & -2 & 2 \end{pmatrix} \mathbf{y} = y_1 - y_2 - 2y_3 + 2y_4$$

Then $B(v_2, v_2) = -4$ and we seek v_3 among the y with $B(v_1, y) = B(v_2, y) = 0$, that is:

$$2y_1 + 2y_2 + y_3 + y_4 = 0$$

$$y_1 - y_2 - 2y_3 + 2y_4 = 0$$

One solution is $v_3 = (-3, 5, -4, 0)$ with

$$B(v_3, y) = \begin{pmatrix} -3 & 5 & -4 & 0 \end{pmatrix} A\mathbf{y} = 3 \begin{pmatrix} 2 & -2 & -1 & -1 \end{pmatrix} \mathbf{y} = 3(2y_1 - 2y_2 - y_3 - y_4).$$

Thus $B(v_3, v_3) = -36$ and we need to find $v_4 = y$ with $B(v_1, y) = B(v_2, y) = B(v_3, y) = 0$:

$$2y_1 + 2y_2 + y_3 + y_4 = 0$$

$$y_1 - y_2 - 2y_3 + 2y_4 = 0$$

$$2y_1 - 2y_2 - y_3 - y_4 = 0.$$

A solution is $v_4 = (0, 4, -5, -3)$ with $B(v_4, v_4) = 36$.

We now have a diagonalising basis with $B(v_i, v_i) = 4, -4, -36, 36$ so B has signature (2, 2) and so has rank 4.

After all this linear equation solving it is probably good to check our answer: let P have the v_j as columns and check that $P^T A P$ is diagonal:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ -3 & 5 & -4 & 0 \\ 0 & 4 & -5 & -3 \end{pmatrix} \begin{pmatrix} 0 & 2 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -3 & 0 \\ 1 & 0 & 5 & 4 \\ 0 & 1 & -4 & -5 \\ 0 & -1 & 0 & -3 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -36 & 0 \\ 0 & 0 & 0 & 36 \end{pmatrix}$$

5. $B = B_A$ where

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Let us exploit the zero in the (1,3) slot: note that

$$B(e_1, e_1) = B(e_3, e_3) = 1, \qquad B(e_1, e_3) = 0$$

so that we just need to find y with

$$0 = B(e_1, y) = y_1 + y_2$$

$$0 = B(e_3, y) = y_2 + y_3$$

Clearly y = (1, -1, 1) does the job with B(y, y) = 0. Thus e_1, e_3, y are a diagonalising basis with matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0. \end{pmatrix}$$

Either way, we see that the signature is (2,0) and so the rank is 2.

6. The fastest way to do this is to recall that $xy = \frac{1}{4}((x+y)^2 - (x-y)^2)$ so that

$$x_1x_2 - 4x_3x_4 = \frac{1}{4}(x_1 + x_2)^2 - \frac{1}{4}(x_1 - x_2)^2 - (x_3 + x_4)^2 + (x_3 - x_4)^2$$

Moreover, the four linear functions $x_1 \pm x_2, x_3 \pm x_4$ have linearly independent coefficients: $(1, \pm 1, 0, 0)$ and $(0, 0, 1, \pm 1)$.

Now two squares appear positively and two negatively giving signature (2, 2) and so rank 4.