MA22020: Exercise sheet 6

Warmup questions

- 1. Let $B: V \times V \to \mathbb{F}$ be a symmetric bilinear form with diagonalising basis v_1,\ldots,v_n . Suppose that, for some v_i , $1\leq i\leq n$, we have $\ B(v_i,v_i)\,=\,0$. Prove that $v_i \in \text{rad } B$.
- 2. Let $B: V \times V \to \mathbb{F}$ be a real symmetric bilinear form with diagonalising basis v_1,\ldots,v_n . Show that $\,B\,$ is positive definite if and only if $\,B(v_i,v_i) > 0$, for all $1 \leq i \leq n$.
- 3. Let $A, B \in M_{n \times n}(\mathbb{F})$ be congruent: $B = P^T A P$, for some $P \in GL(n, \mathbb{F})$. Are the following statements true or false?
	- (a) det $A = \det B$.
	- (b) A is symmetric if and only if B is symmetric.

Rank and signature

4. Let $B=B_A:\mathbb{R}^4\times\mathbb{R}^4\to\mathbb{R}$ where

$$
A = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 \end{pmatrix}.
$$

Diagonalise B and hence, or otherwise, compute its signature.

- 5. Diagonalise the symmetric bilinear form $B: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ given by $B(x, y) =$ $x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2 + x_2y_3 + x_3y_2 + x_3y_3$. Hence, or otherwise, compute the rank and signature of B .
- 6. Compute the rank and signature of the quadratic form $Q(x) = x_1x_2 4x_3x_4$ on \mathbb{R}^4 .

December 10, 2024

MA22020: Exercise sheet 6—Solutions

1. In this case, we have $\ B(v_i,v_j)=0$, for all $\ 1\leq j\leq n$. So, if $\ v\in V$, write $\ v=\sum_j\lambda_jv_j$ and then

$$
B(v_i, v) = \sum_j \lambda_j B(v_i, v_j) = 0.
$$

Otherwise said, $v_i \in \text{rad } B$.

2. If B is positive definite, then $B(v, v) > 0$ for any non-zero $v \in V$ and so, in particular, each $B(v_i, v_i) > 0$.

Conversely, suppose that each $\,B(v_i,v_i)>0\,$ and let $\,v\in V$. Write $\,v=\lambda_1v_1\!+\!\cdots\!+\!\lambda_nv_n\,$ and compute:

$$
B(v, v) = B(\sum_{i} \lambda_i v_i, \sum_{j} \lambda_j v_j) = \sum_{i,j} \lambda_i \lambda_j B(v_i, v_j) = \sum_{i} \lambda_i^2 B(v_i, v_i).
$$

This last is non-negative and vanishes if and only if each $\,\lambda_i^2 B(v_i,v_i)=0$, or, equivalently, $\lambda_i = 0$. Thus *B* is positive definite.

3. (a) This is false: let $P = \lambda I_n$, for $\lambda \in \mathbb{F}$. Then $B = \lambda^2 A$ so that det $B = \lambda^{2n}$ det A. (b) This is true: if $A^T = A$ then

$$
BT = (PTAP)T = PTATP = PTAP = B.
$$

Conversely, if $B^T = B$ we get $P^T A^T P = P^T A P$ and multiplying by P^{-1} on the right and $(P^T)^{-1}$ on the left gives $A^T = A$.

4. We need to start with v_1 with $B(v_1, v_1) \neq 0$. Those diagonal zeros say that none of the standard basis will do so let us try $v_1 = (1, 1, 0, 0)$ for which $B(v_1, v_1) = 4$. Now seek v_2 among the y with

$$
0 = B(v_1, y) = \begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix} A \mathbf{y} = \begin{pmatrix} 2 & 2 & 1 & 1 \end{pmatrix} \mathbf{y} = 2y_1 + 2y_2 + y_3 + y_4.
$$

We take $v_2 = (0, 0, 1, -1)$ with

$$
B(v_2, y) = \begin{pmatrix} 0 & 0 & 1 & -1 \end{pmatrix} A \mathbf{y} = \begin{pmatrix} 1 & -1 & -2 & 2 \end{pmatrix} \mathbf{y} = y_1 - y_2 - 2y_3 + 2y_4.
$$

Then $B(v_2, v_2) = -4$ and we seek v_3 among the y with $B(v_1, y) = B(v_2, y) = 0$, that is:

$$
2y_1 + 2y_2 + y_3 + y_4 = 0
$$

$$
y_1 - y_2 - 2y_3 + 2y_4 = 0.
$$

One solution is $v_3 = (-3, 5, -4, 0)$ with

$$
B(v_3, y) = \begin{pmatrix} -3 & 5 & -4 & 0 \end{pmatrix} A \mathbf{y} = 3 \begin{pmatrix} 2 & -2 & -1 & -1 \end{pmatrix} \mathbf{y} = 3(2y_1 - 2y_2 - y_3 - y_4).
$$

Thus $B(v_3, v_3) = -36$ and we need to find $v_4 = y$ with $B(v_1, y) = B(v_2, y) = B(v_3, y) =$ $0:$

> $2y_1 + 2y_2 + y_3 + y_4 = 0$ $y_1 - y_2 - 2y_3 + 2y_4 = 0$ $2y_1 - 2y_2 - y_3 - y_4 = 0.$

A solution is $v_4 = (0, 4, -5, -3)$ with $B(v_4, v_4) = 36$.

We now have a diagonalising basis with $\,B(v_i,v_i)=4,-4,-36,36\,$ so $\,B\,$ has signature $(2, 2)$ and so has rank 4 .

After all this linear equation solving it is probably good to check our answer: let P have the v_j as columns and check that $P^{T}AP$ is diagonal:

$$
\begin{pmatrix} 1 & 1 & 0 & 0 \ 0 & 0 & 1 & -1 \ -3 & 5 & -4 & 0 \ 0 & 4 & -5 & -3 \ \end{pmatrix} \begin{pmatrix} 0 & 2 & 1 & 0 \ 2 & 0 & 0 & 1 \ 1 & 0 & 0 & 2 \ 0 & 1 & 2 & 0 \ \end{pmatrix} \begin{pmatrix} 1 & 0 & -3 & 0 \ 1 & 0 & 5 & 4 \ 0 & 1 & -4 & -5 \ 0 & -1 & 0 & -3 \ \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 & 0 \ 0 & -4 & 0 & 0 \ 0 & 0 & -36 & 0 \ 0 & 0 & 0 & 36 \ \end{pmatrix}
$$

5. $B = B_A$ where

$$
A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}.
$$

Let us exploit the zero in the $(1,3)$ slot: note that

$$
B(e_1, e_1) = B(e_3, e_3) = 1, \qquad B(e_1, e_3) = 0
$$

so that we just need to find y with

$$
0 = B(e1, y) = y1 + y2
$$

$$
0 = B(e3, y) = y2 + y3.
$$

Clearly $y = (1, -1, 1)$ does the job with $B(y, y) = 0$. Thus e_1, e_3, y are a diagonalising basis with matrix

$$
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0. \end{pmatrix}
$$

Either way, we see that the signature is $(2, 0)$ and so the rank is 2 .

6. The fastest way to do this is to recall that $xy = \frac{1}{4}((x+y)^2 - (x-y)^2)$ so that

$$
x_1x_2 - 4x_3x_4 = \frac{1}{4}(x_1 + x_2)^2 - \frac{1}{4}(x_1 - x_2)^2 - (x_3 + x_4)^2 + (x_3 - x_4)^2.
$$

Moreover, the four linear functions $x_1 \pm x_2, x_3 \pm x_4$ have linearly independent coefficients: $(1, \pm 1, 0, 0)$ and $(0, 0, 1, \pm 1)$.

Now two squares appear positively and two negatively giving signature $(2, 2)$ and so rank 4 .